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Abstract
Monitoring land use and land cover (LULC) changes is crucial for comprehending
ecological dynamics in sensitive ecosystems like the Eastern Sunderban Mangrove
Forest. This study analyzes shifts in LULC from 2010 to 2024, utilizing satellite
data from Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and Landsat
8. By integrating Geographic Information Systems (GIS) with machine learn-
ing algorithms, including K-Nearest Neighbors (KNN), Support Vector Machine
(SVM), and Random Forest (RF), we were able to detect substantial transforma-
tions in land use across the study area.The focus of our analysis was on changes in
mangrove coverage, water bodies, and barren lands over the 14-year period. The
performance of the machine learning models was evaluated based on their classi-
fication accuracy, with Random Forest achieving the highest accuracy at 92.5%,
followed closely by SVM at 91.82% and KNN at 89.62%. These results illus-
trate the effectiveness of employing GIS-integrated machine learning for LULC
analysis and underscore the increasing vulnerability of the Sunderban Mangroves
due to anthropogenic pressures and climate change. By providing insights into
these ongoing changes, this research contributes to the broader understanding of
environmental management and conservation strategies in ecologically sensitive
regions.
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1 Introduction
Changes in Land Use and Land Cover (LULC) are critical in shaping environmental
processes and maintaining ecological balance. Such transformations can have profound
effects on biodiversity, water availability, and the overall health of ecosystems. It is
especially important to monitor and understand LULC changes in sensitive ecosys-
tems, such as mangrove forests, which act as essential buffers against climate change,
provide habitats for various species, and sustain local communities’ livelihoods. The
Sunderban Mangrove Forest, spanning Eastern India and Bangladesh, ranks among the
largest and most biodiverse mangrove systems worldwide. However, this unique ecosys-
tem is increasingly threatened by human activities, climate change, and rising sea
levels, which pose significant ecological and socio-economic challenges.Rising anthro-
pogenic pressures, such as agricultural expansion, urban development, and industrial
growth, have led to notable changes in the land cover of the Sunderban area. Recent
progress in remote sensing technologies and Geographic Information Systems (GIS)
has transformed our capability to monitor LULC changes across extensive spatial and
temporal dimensions. Satellite imagery from tools like Landsat 7 Enhanced Thematic
Mapper Plus (ETM+) and Landsat 8 provides valuable data for analyzing land cover
dynamics, enabling researchers to observe LULC changes with high spatial resolution
and accuracy, thereby offering critical insights into environmental changes in vulner-
able areas.This study aims to perform a spatiotemporal analysis of LULC changes
in the Eastern Sunderban Mangrove Forest from 2010 to 2024. Utilizing Landsat 7
ETM+ and Landsat 8 satellite data, we seek to evaluate the scale and trends of
LULC changes in relation to both natural phenomena and human-induced factors. By
applying machine learning algorithms—K-Nearest Neighbors (KNN), Support Vector
Machine (SVM), and Random Forest (RF)—we will gain insights into classifying land
cover categories and assess the degree of mangrove forest degradation, urbanization,
and land reclamation. Additionally, we will evaluate model performance using metrics
such as precision, overall accuracy, Kappa coefficient, and recall to ensure reliable clas-
sification outcomes. The findings of this study will enhance our understanding of LULC
dynamics in the Sunderban region and provide essential data to guide conservation
efforts and sustainable land-use strategies.

2 Related Work
Debajit Deb’s study [1] examines coastal land use and land cover (LULC) changes in
the Indian Sundarbans using remotely sensed data. Deb identifies significant trans-
formations in the region, including a shift from mangrove swamp ecosystems to
agriculture and tourism-based developments. The study reports an increase in dense
mangrove coverage, along with a reduction in open mangrove areas, highlighting cru-
cial ecological changes. Deb stresses the need for sustainable management of mangrove
ecosystems to prevent further degradation. He advocates for higher-resolution imaging,
such as optical and RADAR-based technologies, to enhance accuracy in monitoring
land cover changes. The study also recommends using air-borne hyperspectral data
to improve species-level mapping and better understand mangrove dynamics in inac-
cessible regions of the Sundarbans. Shouraseni Roy et al. [2] conduct a comprehensive
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study on coastal wetland transformations in the Sundarban Delta, focusing on LULC
changes between 1999 and 2020. They uncover a distinct north-south divide, where
mangroves dominate the southern regions, while pond aquaculture expands in the
north. The study attributes these land-use patterns to local policies and human activ-
ities. Future projections indicate that warmer sea surface temperatures could enhance
cyclone formation, posing a significant threat to the region’s delicate ecosystem. Roy
and colleagues emphasize the necessity of sustainable management practices to mit-
igate the impacts of climate change and human activities on the Sundarbans. They
also suggest incorporating more detailed time series data in future research for a
comprehensive analysis of land-use changes.Talukdar et al. [3] evaluate the accuracy
of various machine-learning classifiers for LULC mapping using satellite data. Their
findings demonstrate that the random forest (RF) algorithm achieves the highest
accuracy (0.89), outperforming the support vector machine (SVM) algorithm (0.84).
Conducted in a riparian landscape along the Ganga River, the study utilized Landsat
8 data for classification. The authors conclude that RF is the most suitable classifier
for LULC modeling in highly dynamic charland areas and recommend future research
to assess classifier performance in different morphoclimatic conditions.Junye Wang
and colleagues [4] focus on the application of machine learning in modeling LULCC,
exploring the challenges and limitations in predicting these processes. They employ
artificial neural networks and deep learning algorithms to analyze and predict land use
changes, emphasizing the importance of integrating environmental and socio-economic
factors. The study also highlights the environmental impacts of land use changes,
such as the urban heat island effect and carbon emissions, and calls for sustainable
urban development practices.Andrea Vizzari [5] develops and tests an object-oriented
classification approach by combining SNIC, GLCM, and machine learning algorithms
to classify LULC using remote sensing data. The study tests this approach across
different datasets, revealing better results on higher-resolution data, with SVM per-
forming better on lower-resolution data. Vizzari’s work highlights the computational
demands of processing higher-resolution datasets but demonstrates the reliability of
the proposed methodology.Jagannath Aryal’s team from the University of Melbourne
[6] introduces a novel approach for LULC classification by combining spatial, statisti-
cal, and index-based features. Their study, conducted in Melbourne, Australia, shows
that the Random Forest algorithm outperforms others with an F1-score exceeding
0.99. The authors underscore the robustness of traditional machine learning (ML)
algorithms compared to deep learning (DL)-based methods and emphasize the need
for explainable schemes to improve ML performance.Денис Кривогуз [7] explores
machine learning models for LULC classification in the Kerch Peninsula. The study
reports that the deep neural network model achieved the highest accuracy of 96.2%,
outperforming other models. Although limited by data sources, the study emphasizes
the potential of using such models for environmental management and calls for future
research incorporating field studies and ensemble methods to enhance accuracy.Prachi
Chachondhia’s team [8] evaluates the performance of machine learning algorithms for
LULC classification using optical and microwave data in Doiwala City, India. Their
findings indicate that fused datasets achieve better classification results, with overall
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accuracy ranging from 85.71% to 93.43% using RF and SVM classifiers. The study sug-
gests that combining data sources improves classification accuracy and recommends
future exploration of fused datasets for LULC mapping.

Yashon Ouma et al. [9] compare four machine learning algorithms (CART, RF,
GTB, and SVM) for LULC classification using Landsat data from 1984 to 2020. Their
results show that RF and SVM are most effective for mapping built-up areas, while
GTB and SVM perform better for mapping water bodies. They propose integrating
the best results from each classifier to enhance overall mapping accuracy.Anubhava
Srivastava et al. [10] compare the performance of four machine learning algorithms
(CART, RF, GTB, and SVM) for LULC classification near the Himalayan foothills
using multi-temporal satellite data. RF and GTB show the highest accuracy rates,
while SVM has comparatively lower performance. The study highlights the utility of
error matrix metrics for accuracy assessment and recommends future research focus-
ing on classifier performance across diverse regions.Sameer Mandal et al. [11] analyze
LULC changes in the Pare River Basin, Arunachal Pradesh, India, using machine
learning techniques. Their study projects future LULC scenarios and identifies driver
variables, revealing a decrease in forest areas and an increase in built-up and crop-
land areas. Mandal’s research provides insights for decision-makers to guide policy
development toward sustainable land management practices.Andromachi Chatzianto-
niou et al. [12] utilize Sentinel-1 and Sentinel-2 data with machine learning classifiers
to map wetlands. Their study achieves high classification accuracy by incorporating
spectral and textural information, particularly for distinguishing vegetation types.
They suggest that this methodology shows promise for long-term monitoring of wet-
lands and call for further validation across different wetland types.Ramesh Singh et
al. [13] apply machine learning algorithms to LANDSAT images for mapping LULC
in India. Their approach achieves an accuracy of 80-86%, demonstrating the poten-
tial of machine learning in improving mapping accuracy and consistency. The study
concludes that these methods are cost-effective and scalable for other regions.Landa
Sankarrao et al. [14] project a decrease in forest area by 9.02% and an increase in
agricultural land by 8.74% for the Nagavali River Basin by 2030. They find that the
hybrid MLP-MC-CA model performs best, with overall accuracy values greater than
80%. The study emphasizes the need for accurate land-use predictions for effective
water resource planning.Abdulla Al Kafy et al. [15] focus on LULC and land surface
temperature (LST) changes in Chattogram, Bangladesh. The study predicts a rise
in LST due to LULC changes and underscores the importance of sustainable urban
planning to mitigate urban heat islands. The authors highlight the role of cellular
automata and artificial neural network models in simulating future scenarios.Hemant
Pokhariya et al. [16] evaluate different classifiers for LULC mapping in Nainital, India,
using Sentinel-2 data. Their findings show that RF achieves the highest accuracy, and
the integration of spectral indices like NDVI and EVI further improves classification
accuracy. The study stresses the importance of choosing suitable classifiers and indices
for heterogeneous landscapes.
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3 Study Area and Data
The research focuses on the Eastern Sunderban Mangrove Forest, a UNESCO World
Heritage Site located within the delta region of the Sundarbans, which stretches across
the southern part of West Bengal, India. This area is notable for its exceptional bio-
diversity and complex ecosystems, featuring vast mangrove forests, tidal waterways,
and numerous islands. The Eastern Sunderban Mangrove Forest encompasses around
4,262 square kilometers, positioned between latitudes 21.5° N and 22.5° N, and lon-
gitudes 88.5° E and 89.5° E. The Bay of Bengal borders it to the south, significantly
impacting the tidal dynamics and ecological characteristics of the area.Tracking land
use and land cover (LULC) changes in the Eastern Sunderban Mangrove Forest is cru-
cial for grasping the environmental dynamics and ecological well-being of this region.
By examining LULC changes during the years 2010, 2017, and 2024, this research aims
to shed light on the ongoing alterations affecting the mangrove ecosystem, providing
valuable information for conservation and management efforts.

Fig. 1 Study Area Map of Easter Region of Sunderbans
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Table 1 Classes and Descriptions

Classes Description
Dense forest Areas with high tree density, characterized by

a closed canopy and rich biodiversity.
Moderate dense forest Forests with a moderate number of trees and

some gaps in the canopy, supporting a mix of
species.

Water bodies Includes rivers, lakes, ponds, and other aquatic
environments, playing a crucial role in the
ecosystem.

Sparse forest Forested areas with low tree density, often
featuring open spaces and a variety of under-
growth.

Barren land Land that is devoid of vegetation, includ-
ing exposed soil, rock, and areas affected by
human activities.

The dataset employed in this research encompasses satellite imagery from the
Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and Landsat 8 Operational
Land Imager (OLI) sensors, focusing on three significant periods: 2010, 2017, and
2024. These specific years were selected to evaluate long-term changes in land use
and land cover (LULC) within the ecologically critical Eastern Sunderban Mangrove
Forest. The imagery was sourced from the United States Geological Survey (USGS)
Earth Explorer platform, ensuring the acquisition of high-quality data appropriate
for spatiotemporal analysis.To maintain the integrity and dependability of the anal-
ysis, only satellite images exhibiting cloud cover of 20% or less were utilized. This
requirement was essential to reduce cloud interference and ensure visibility of key fea-
tures such as mangrove forests, water bodies, and urban areas. A meticulous screening
process was implemented using the cloud mask function in the Landsat Collection 1
Level-1 dataset available on the USGS Earth Explorer portal. The 2010 imagery was
obtained from Landsat 7 ETM+, which provides multispectral data across seven spec-
tral bands, encompassing visible light, near-infrared (NIR), and shortwave infrared
(SWIR) sections of the electromagnetic spectrum. Additionally, this sensor features a
panchromatic band with a spatial resolution of 15 meters, allowing for enhanced visual
interpretation through high-resolution grayscale imagery.For the years 2017 and 2024,
the research relied on Landsat 8 OLI imagery, which boasts significant enhancements
compared to Landsat 7. Landsat 8 features 11 spectral bands with a higher radiometric
resolution of 12 bits, facilitating better differentiation of surface characteristics. The
OLI sensor captures data in visible, NIR, and SWIR wavelengths, incorporating addi-
tional bands for cirrus detection and two thermal infrared (TIR) bands. The spatial
resolution of the multispectral bands remains at 30 meters, while the panchromatic
band maintains a resolution of 15 meters, consistent with Landsat 7. Furthermore,
Landsat 8 imagery provides an improved signal-to-noise ratio, contributing to the
accuracy of LULC classification. Preprocessing of the images was conducted to elimi-
nate cloud cover through the Fmask (Function of Mask) algorithm, which effectively
removes cloud and shadow pixels from the dataset.

6



Table 2 Landsat 8 Band Characteristics

Band Number Description Spatial Resolution (m) Band Width
1 Coastal/Aerosols 30 20
2 Blue 30 65
3 Green 30 30
4 Red 30 40
5 Near Infrared (NIR) 30 85
6 Shortwave Infrared (SWIR1) 30 140
7 Shortwave Infrared (SWIR2) 30 180
8 Panchromatic 15 115
9 Cirrus 30 20
10 Thermal Infrared 1 (TIRS1) 100 10000
11 Thermal Infrared 2 (TIRS2) 100 10500

Table 3 Landsat 7 ETM+ Band Characteristics

Band Number Description Spatial Resolution (m) Band Width
1 Blue 30 60
2 Green 30 70
3 Red 30 60
4 Near Infrared (NIR) 30 120
5 Shortwave Infrared (SWIR1) 30 140
6 Thermal 60 10500
7 Shortwave Infrared (SWIR2) 30 200
8 Panchromatic 15 180

4 Methodology
The methodology utilized in this research encompasses satellite image processing,
machine learning classification, and Geographic Information System (GIS) integra-
tion to analyze multi-temporal satellite imagery from the years 2010, 2017, and 2024.
Satellite images from Landsat 7 and Landsat 8 for these years were subjected to
processing and classification through machine learning algorithms.This integrated
approach enabled the identification of notable transformations in vegetation, water
bodies, forest coverage, and barren land across the specified time intervals. The
processed imagery was imported into a GIS framework, where geo-referencing and
accuracy assessments were conducted. This integration allowed for the overlay of
various datasets, execution of spatial queries, and performance of change detection
analyses to quantify LULC transformations over time.The resultant LULC maps for
2010, 2017, and 2024 are vital for understanding trends related to urbanization, defor-
estation, and other ecological changes. By merging GIS capabilities with machine
learning outputs, the methodology enhances the clarity of results, providing a visual
representation of spatial distributions and evolving trends. This approach aligns with
contemporary research practices in environmental monitoring and land use studies .
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Fig. 2 The land use land cover (LULC) mapping process is depicted in a flowchart
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Fig. 3 The land use land cover (LULC) mapping of Eastern Region of Sunderbans in 2010

Fig. 4 The land use land cover (LULC) mapping of Eastern Region of Sunderbans in 2017
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Fig. 5 The land use land cover (LULC) mapping of Eastern Region of Sunderbans in 2024

4.1 Machine Learning Algorithms
Machine learning (ML) methods are increasingly utilized for classifying land use
and land cover (LULC), which is crucial for interpreting satellite imagery and vari-
ous geospatial datasets to categorize different land types. This classification is vital
for tracking environmental shifts, urban development, deforestation, and agricul-
tural trends, yielding valuable insights into ecosystem dynamics and aiding informed
decision-making in land management and conservation efforts.The advent of high-
resolution satellite images from sources such as Landsat 7 and Landsat 8, alongside
extensive geospatial datasets, has greatly improved the effectiveness of machine learn-
ing in this area. These data sources provide essential information about land surface
features, enabling more precise and detailed evaluations of land use patterns over time.
The following machine learning algorithms will be utilized in this research:

1. K-Nearest Neighbors (KNN): KNN [3],[17] utilised to classify land cover types
in a remote sensing context and achieved promising results, demonstrating the algo-
rithm’s ability to distinguish between various land classes effectively.Incorporating
[18]) features, such as texture and spectral indices, enhanced the KNN model’s
performance, enabling it to distinguish between urban and non-urban land covers
more accurately. KNN’s reliance on local information allows it to adapt well to the
inherent variability found in remote sensing data.KNN [19] is particularly effective
in classifying densely vegetated areas, which are typically challenging due to the
similarities in spectral characteristics among different vegetation types.

The KNN algorithm for Land Use/Land Cover detection can be expressed as:
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ŷ = argmaxc∈C

k∑
i=1

I(yi = c) · exp
(
−Dweighted(x,xi)

2σ2

)
· wi

Where: -ŷ is the predicted LULC class label, - C is the set of LULC classes, -
k is the number of nearest neighbors, - yi is the class label of the i-th neighbor, - I
is an indicator function, -σ is a bandwidth parameter.

The weighted distance is computed as:

Dweighted(x,xi) =

√√√√ m∑
j=1

wj · (fj(x)− fj(xi))2

Where: - m is the number of features; - fj(x) and fj(xi) are the j-th features,
- wj is the weight of the j-th feature.

2. Support Vector Machine: Support Vector Machine (SVM) has become a pop-
ular choice for land use and land cover (LULC) classification in remote sensing
due to its ability to handle high-dimensional data and effectively model complex
decision boundaries. For instance, Rana et al. [20] demonstrated the efficacy of
SVM in distinguishing various land cover types using satellite imagery, achieving
superior classification accuracy compared to traditional methods. The algorithm’s
effectiveness lies in its kernel trick, which allows it to transform input data into
higher-dimensional spaces, thereby facilitating the separation of non-linearly sep-
arable classes.Further studies, such as Prasad et al. [21] , highlighted SVM’s
robustness in urban land cover classification. By incorporating features such as
spectral information and texture metrics, SVM was able to improve classification
performance, particularly in complex urban environments where land cover types
are closely related. The authors noted that SVM’s reliance on a limited number of
support vectors contributes to its ability to generalize well, even in the presence of
noisy data.Additionally, Adam et al. [22]explored the application of SVM for clas-
sifying forest types, revealing that the algorithm effectively managed the spectral
similarities often encountered in densely vegetated areas. Their findings suggested
that parameter optimization, particularly the choice of kernel and regularization
parameters, significantly influenced SVM’s classification accuracy.

The decision function for SVM can be represented as:

f(x) = sgn

(
N∑
i=1

αiyiK(xi, x) + b

)
where: - f(x) is the output class label for the input feature vector x, - αi are

the Lagrange multipliers, - yi are the class labels, - K(xi, x) is the kernel function
that measures the similarity between the support vectors xi and the input vector
x, - b is the bias term.

This formula illustrates how SVM classifies land cover types by determining the
optimal separating hyperplane in a transformed feature space.
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3. Random Forest: Random Forest (RF) has emerged as a powerful method for
land use and land cover (LULC) classification in remote sensing applications. For
instance, Hayas et al. [23] employed RF to classify various land cover types using
high-resolution satellite imagery, achieving high classification accuracy due to the
algorithm’s ability to manage the complexities of heterogeneous landscapes effec-
tively. The ensemble nature of RF, which aggregates predictions from multiple
decision trees, enhances its robustness against overfitting, particularly in cases with
noisy data.Amini et al. [24],highlighted that incorporating various features, includ-
ing texture and spectral attributes, significantly improved RF’s performance in
urban area classification. This ability to integrate diverse data types allows RF to
differentiate between closely related land classes, such as built-up areas and vege-
tation, which often present classification challenges.Kavzoglu et al. [25] found RF
particularly effective in classifying complex ecosystems like mangroves, where the
algorithm excelled in distinguishing subtle variations in land cover. The prediction
of a Random Forest can be expressed as:

ŷ =
1

T

T∑
t=1

ft(x)

where: - ŷ is the predicted output, -T is the total number of trees in the forest,
-ft(x) is the prediction from the t-th decision tree.

Each ft can be represented by the recursive partitioning function:

ft(x) =

{
classj if x ∈ Rj

undefined otherwise

where: -Rj is the region corresponding to leaf node j in tree t.

LULC Change Detection Algorithm Using Machine
Learning
This algorithm integrates three machine learning approaches—K-Nearest Neighbors
(KNN), Random Forest, and Support Vector Machine (SVM)—to enhance Land
Use and Land Cover (LULC) change detection over time. Initially, remote sensing
data for two distinct time periods is collected and preprocessed to ensure con-
sistency. Relevant features, including spectral indices and texture attributes, are
extracted from the datasets. Each method employs its unique classification mecha-
nism: KNN identifies classes by evaluating distances to nearest neighbors, Random
Forest aggregates predictions from multiple decision trees trained on bootstrapped
samples, and SVM optimizes a hyperplane to separate classes. The predicted labels
for both time periods are compared to generate a change detection map, indicating
areas of significant LULC change.
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Algorithm 1 LULC Change Detection Using KNN, Random Forest, and SVM (Part
1)

Input:
Xt1: Feature set for time 1 (e.g., spectral bands, textures)
Xt2: Feature set for time 2
C: Set of LULC classes
k: Number of nearest neighbors

Output:
Change map indicating LULC changes between time 1 and time 2

Step 1: Data Preparation
• Collect remote sensing data for two different time periods (t1 and t2).
• Preprocess the data to remove noise and correct for atmospheric effects.
• Align and normalize the datasets for consistent analysis.
Step 2: Feature Extraction
• Extract relevant features from both datasets, including spectral indices (e.g.,

NDVI, NDBI) and texture features.
• Formulate the feature vectors: xt1

i for time 1 and xt2
j for time 2.

Step 3: KNN Classification for Time 1
for each pixel xt1

i in Xt1 do
Calculate distances: d(xt1

i ,xt1
j ) for j = 1 to N .

Select k nearest neighbors based on minimum distance.
Predict class label:

ŷt1i = argmaxc∈C

k∑
m=1

I(yt1m = c)

end for
Step 4: Random Forest Classification for Time 2
for each pixel xt2

j in Xt2 do
Predict LULC class using Random Forest:

ŷt2j = H(xt2
j )

where H is the ensemble of decision trees.
end for
Step 5: SVM Classification
for each pixel i in the dataset do

Predict LULC class using SVM:

ŷi = SVM(xi)

end for

13



Step 6: Change Detection Analysis
• Compare predicted class labels ŷt1i , ŷt2j , and ŷi for each corresponding pixel.
• Generate a change map:

ChangeMap(i) =

{
1 if ŷt1i ̸= ŷt2j or ŷi ̸= ŷj

0 if ŷt1i = ŷt2j and ŷi = ŷj

Step 7: Output Results
• Visualize the change map using appropriate mapping techniques.
• Analyze the results to assess the nature and extent of LULC changes.

4.2 Model Evaluation Metrics
1. Kappa Coefficient: The Kappa Coefficient (Cohen’s Kappa) is a statistic that

measures the agreement between two raters (or classification models) while consid-
ering the possibility of agreement occurring by chance. In LULC detection, it helps
evaluate how well the classifier’s predictions match the ground truth, adjusted for
random chance.

The Kappa statistic for LULC detection can be expressed as:

κ =

(∑C
i=1 TPi

)
−
(∑C

j=1
(TPj+FPj)(TPj+FNj)

N

)
1−

(∑C
j=1

(TPj+FPj)(TPj+FNj)
N

)
Where: TPi is the True Positives for class i, FPj is the False Positives for class

j, FNj is the False Negatives for class j, C is the Total number of classes, N is the
Total number of samples.

2. Accuracy: Accuracy is the proportion of correctly classified instances (both true
positives and true negatives) out of the total number of instances. It’s a general
measure of how often the classifier is correct.

Accuracy =

∑N
i=1 wi · TPi∑N

i=1(TPi + FPi + FNi)

Where: N is the number of classes, TPi is the true positives for class i, FPi is
the false positives for class i, FNi is the false negatives for class i, wi is the weight
for class i, representing its importance.

3. Recall (Sensitivity): Recall measures the classifier’s ability to correctly iden-
tify positive instances. It’s particularly useful when missing positive cases is more
critical.

Recall =

∑N
i=1 wi · TPi

TPi+FNi∑N
i=1 wi
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4. Precision: Precision is the proportion of correctly predicted positive instances out
of all predicted positives. It reflects how many of the predicted positives are actually
relevant, helping in scenarios where minimizing false positives is important.

Precision =

∑N
i=1 wi · TPi

TPi+FPi∑N
i=1 wi

Where: N is the number of classes, TPi is the true positives for class i, FPi is
the false positives for class i, wi is the weight for class i, representing its importance.

5 Result and Analysis
Tables and figures illustrating the findings of the spatiotemporal analysis of land
use and land cover dynamics are presented below. Various satellite datasets and
parameters have been utilized for evaluation. The assessment criteria are based on
classification accuracy and model performance.

Table 4 Performance Metrics for KNN

KNN Precision Recall
Dense Forest 91.96 96
Moderate Dense Forest 92.38 89.3
Water Bodies 86 85.3
Sparse Forest 83.88 87.8
Barren Land 85.76 90.68

OA= 89.62 Kappa= 0.856

Table 5 Performance Metrics for SVM

SVM Precision Recall
Dense Forest 92.01 96.65
Moderate Dense Forest 93.33 90.5
Water Bodies 87.43 89
Sparse Forest 86.86 91.7
Barren Land 87.57 91.23

OA=91.82 Kappa=0.879

Table 6 Performance Metrics for RF

RF Precision Recall
Dense Forest 92.57 96
Moderate Dense Forest 96.06 93.4
Water Bodies 87.44 87
Sparse Forest 88.3 92.42
Barren Land 90.39 93.67

OA= 92.50 Kappa= 0.899
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Fig. 6 Visualisation of Performance Metrics

The area of LULC classes detected in the Eastern Region of the Sunderban
mangrove forest for the years 2010, 2017, and 2024.

KNN Classification For the KNN classification, the area of Dense Forest declined
from 2450 km² in 2010 to 2300 km² in 2017, then increased to 2500 km² in 2024.
Moderate Dense Forest experienced a decrease from 780 km² in 2010 to 700 km² in
2017, followed by an increase to 740 km² in 2024. The area of Sparse Forest rose from
620 km² in 2010 to 670 km² in 2017, and remained stable at 620 km² in 2024. Water
Bodies dropped from 390 km² in 2010 to 340 km² in 2017, then increased to 360 km²
in 2024. Barren Land increased from 660 km² in 2010 to 780 km² in 2017, and then
slightly decreased to 680 km² in 2024. As with the other classifications, the total area
consistently remained at 5000 km² throughout these years.

Fig. 7 LULC Mapping through KNN in respective years

SVM Classification In the SVM classification, the area of Dense Forest decreased
from 2500 km² in 2010 to 2400 km² in 2017, before increasing again to 2550 km² in
2024. The area of Moderate Dense Forest declined from 800 km² in 2010 to 700 km²
in 2017, with a slight recovery to 750 km² by 2024. Sparse Forest area increased from
600 km² in 2010 to 650 km² in 2017, but dropped to 550 km² in 2024. Water Bodies
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also saw a decline from 400 km² in 2010 to 350 km² in 2017, before recovering to 370
km² in 2024. Barren Land increased from 600 km² in 2010 to 700 km² in 2017, and
slightly decreased to 680 km² in 2024. The total area for all classes remained consistent
at 5000 km² throughout the years.

Fig. 8 LULC Mapping through SVM in respective years

Random Forest (RF) Classification In the Random Forest classification, the
area of Dense Forest showed a slight decrease from 2550 km² in 2010 to 2450 km²
in 2017, followed by an increase to 2600 km² in 2024. The area of Moderate Dense
Forest decreased from 750 km² in 2010 to 720 km² in 2017, and then rose to 800 km²
in 2024. The Sparse Forest area slightly decreased from 580 km² in 2010 to 640 km²
in 2017, before falling back to 600 km² in 2024. Water Bodies decreased from 410 km²
in 2010 to 360 km² in 2017, and increased to 380 km² in 2024. Barren Land rose from
610 km² in 2010 to 730 km² in 2017, then decreased to 640 km² in 2024. The total
area remained stable at 5000 km² across all years.

Fig. 9 LULC Mapping through RF in respective years
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6 Discussion
In our study, Random Forest (RF) emerged as the best-performing model in compari-
son to K-Nearest Neighbor (KNN) and Support Vector Machine (SVM), demonstrat-
ing superior precision, recall, overall accuracy (OA), and Kappa values. These findings
align with extensive literature that underscores RF’s capacity for handling complex
and high-dimensional datasets due to its ensemble learning approach and random sub-
set selection (Belgiu and Drăgut, [26]; Gislason et al., [27]). RF is particularly effective
in reducing overfitting and accommodating noisy data, which is often encountered in
land use and land cover (LULC) mapping applications (Rodriguez-Galiano et al.,[28]
). Its ability to generate diverse decision trees for classification allows RF to handle
the heterogeneity of land cover classes with greater accuracy than single decision tree-
based models (Mellor et al., [29]; Pelletier et al., [30]). In addition, RF’s ensemble
approach leverages multiple weak learners to strengthen model prediction, providing
it with an edge in accuracy, particularly in environmental data analysis where errors
and misclassifications can arise from the noisy or incomplete data common in freely
available satellite imagery like Landsat (Friedl and Sulla-Menashe [31]).Contrary to
RF’s consistent performance, KNN tends to struggle in high-dimensional settings,
often underperforming in datasets that involve complex class boundaries. This limita-
tion is well documented in other studies, where KNN’s accuracy tends to decline with
increasing dimensionality, making it less suitable for LULC classifications that require
detailed, pixel-based precision (Heydari and Mountrakis [32]). Moreover, KNN’s sen-
sitivity to the choice of the k-value further complicates its application, as improper
selection can result in suboptimal classifications, especially in heterogeneous environ-
ments (Pouteaua et al.[33]). Despite these challenges, KNN has demonstrated better
performance in less complex classifications, such as in agricultural or homogenous
landscapes, which aligns with findings from other geographic contexts (Gong et al.
[34]).SVM, while known for its robustness and ability to handle nonlinear data using
kernel functions, also showed lower performance compared to RF in our study, largely
due to the potential for overfitting in high-dimensional spaces and challenges in select-
ing optimal kernel parameters (Pelletier et al. [35]. Despite this, SVM remains a
frequently used tool for LULC classification, primarily in applications where bound-
ary precision between classes is crucial, though it lacks the computational efficiency
of RF in large-scale data environments (Khatami and Mountrakis, [36]). This obser-
vation supports the findings of other researchers who have noted that SVM may not
scale as well with large datasets or work as effectively in regions where training data
is sparse or noisy.

The RF model’s adaptability and computational efficiency, especially in dealing
with fragmented or missing data, make it particularly useful in tropical and subtrop-
ical regions. Such environments are prone to incomplete or low-resolution datasets,
often obtained from freely available satellite imagery sources like Landsat (Gislason
et al. [27]; Belgiu and Drăgut, [26]). The high dimensionality and varying spectral
properties of these datasets make them challenging for simpler models like KNN or
SVM to manage effectively (Friedl and Sulla-Menashe [31]). Our results support the
assertion that RF is the most consistent and reliable machine learning algorithm for
such geospatial applications, especially in mapping LULC, which is corroborated by
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studies focusing on global forest and crop cover (Hansen et al. [37]) Potapov et al.
[38]).It’s noteworthy that while RF achieved the best performance metrics in this
study, some literature suggests that KNN can outperform RF under certain conditions.
For instance, in homogenous landscapes or specific LULC classifications, KNN has
been shown to yield better results than RF. Such discrepancies underline the impor-
tance of context in model selection and suggest that while RF is generally superior,
there may be scenarios where simpler models like KNN or more specialized models
like SVM could be more suitable, depending on the dataset characteristics and clas-
sification task. Although this validation method provides a robust comparison, it’s
important to acknowledge the limitations inherent in using global-scale products for
local-level LULC assessments. Misclassification of certain land cover features has been
reported in these products, particularly in heterogeneous regions like tropical forests
[39] , which could lead to slight deviations in accuracy . An alternative approach would
be to validate with ground-truthed data, though such datasets were not available for
this study area. However, despite these constraints, the RF model’s ability to han-
dle such validation protocols, coupled with its robust performance, affirms its utility
in LULC mapping across diverse geographic contexts. Overall, our findings provide
further evidence of RF’s efficacy in reducing classification uncertainties in complex
LULC tasks, particularly in underrepresented tropical regions like equatorial Africa
[40], which are often characterized by fragmented and incomplete datasets. These
results could have important implications for future research, as they demonstrate the
potential for RF to enhance the accuracy of land cover classifications, informing policy
development and sustainable land use planning initiatives.

7 Conclusion
This research provides a comprehensive spatiotemporal analysis of land use and land
cover (LULC) changes in the Eastern Sunderban Mangrove Forest between 2010 and
2024. Significant changes in land cover, especially a decline in mangrove forests and
an expansion of barren land and urbanized regions, were observed, highlighting the
growing vulnerability of this ecosystem to both human activities and environmental
stressors. Integrating GIS with machine learning models—namely K-Nearest Neighbors
(KNN), Support Vector Machine (SVM), and Random Forest (RF)—proved effective
in monitoring these changes. Among the models, Random Forest displayed the highest
accuracy at 92.50%, followed by SVM at 91.82%, and KNN at 89.62%. This study rein-
forces the potential of using GIS-enhanced machine learning techniques to efficiently
track LULC dynamics.The study lays the groundwork for further investigation, partic-
ularly by introducing more advanced machine learning methods, such as deep learning
models like Convolutional Neural Networks (CNN) and Recurrent Neural Networks
(RNN), which could enhance the accuracy of LULC classification. Increasing the tem-
poral resolution of the satellite data would allow for real-time analysis and monitoring
of ongoing changes in sensitive areas like the Sunderbans.Further, investigating the
socio-economic drivers behind these LULC changes can provide insights into human
influences on land cover transformation, such as urban expansion, agriculture, and
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population growth. This would offer actionable insights for policy development, allow-
ing for more precise intervention strategies to conserve and restore the ecosystem.
Going forward, efforts should focus on sustainable land management and conservation
strategies, including reforestation and mangrove restoration. International collabo-
rations, supported by frameworks like the United Nations Sustainable Development
Goals (SDGs) and the Ramsar Convention on Wetlands, are essential to protecting
the Sunderban Mangroves. Additionally, AI-based predictive models can offer valuable
insights into the future impact of climate change on this region, aiding in adap-
tive management strategies.Ultimately, this research highlights the critical need for
more sustainable approaches to land management in the Sunderban Mangrove region.
Advanced methodologies and stronger conservation efforts will be pivotal in safeguard-
ing this unique ecosystem against further degradation and ensuring its resilience to
future environmental and human-induced challenges.
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