
ARED - Yocto Project Architecture v1.0.3
Changelog
Intro

Conventions
General Architecture

Project’s goal
General system architecture

General Architecture

Operating System stack
Base Operating System

System partitioning
SSH connection
Firewall
Time synchronization
Dockerized client services
Dockerized client services
VPN connection

Cloud connection

Content management
Future development

Content management summary
System monitoring
Device provisioning

Provision procedure
Provision procedure

System update

Dual image approach
Update flow
Update strategies
Containers update

Summary of the project architecture

Base operating system
Cloud connection
Device provisioning
System update

Implementation plan

Changelog

v1.0.3 - 13/09/2022
Change provisioning process description
v1.0.2 - 28/04/2021

Expand content management options
v1.0.1 21/04/2021

Update OS stack diagram
Explain the need for OpenVPN and openSSH in the system
Add a time synchronization section
Add a content management option with the toolrsync
Ad content management summary
Mention the possibility of scheduling system updates
Propose to use as a content management toolrsync

v1.0.0 - 15/04/2021

Initial document release

Intro

The goal of this document is to formulate technical requirements based on the business requirements received from the client. The possible
solutions will be researched and described there.

Conventions

In the case of commands

$ command - command to be executed on the host PC
command - command to be executed on the target device

In the case of log/code snippets

(...) - part of the log was truncated for readability
\ - the content of the line moved to the second line (line break) to fit on the page

General Architecture

Project’s goal

The main goal is to develop an edge device called ARED Mini Server (also known as Smart Solar Kiosk), which will provide multiple services to
the local community. It was meant to replace internet connection in places where the global medium is unavailable due to lack of infrastructure or
financial costs.

The main idea is to allow end users to download multimedia files, documents,

and Android applications without direct internet access, but only by connecting their smartphones to the access point provided by Smart Solar
Kiosks.

General system architecture

General Architecture

Operating System stack

Base Operating System

This section covers the base operating system components.

System partitioning

The system is divided into five partitions taking into account the dual image approach used in the update system. A short description is provided
below along with the name of each partition.

boot - first partition; includes firmware and other files necessary to run the platform
rootfsa - second partition; first slot for the system
roofs - third partition; second slot for the system
rwoverlay - fourth partition; used for read-only rootfs overlay
data-app - fifth partition; includes space for user files and other data

SSH connection

One of the critical requirements for the implementation of the project should be the ability to establish an SSH connection with any Smart Solar
Kiosk located in the field.

Ultimately Mini Server devices will be scattered all over the continent, thus it will be impossible to manage and control them without the remote
control. Moreover, SSH connection can be available only through a VPN tunnel to isolate from local WiFi-connected devices and improve security.

To improve the security even more, every Mini Server should have its own private key generated that is mandatory to connect via SSH.
Connection using a password should be prevented.

The ability to log into any Mini Server will be possible only when all devices are inside one network, which will be ensured by the implementation
of a VPN in the system.

Firewall

Appropriate firewall configuration is aimed at increasing the security of devices in the field. We suggest that only a minimal set of inbound and
outbound connections be allowed.

A list of all possible connections needs to be prepared, and the system should block each one that is not allowed.

Time synchronization

Ensuring the current time on the Mini Servers will enable the correct implementation of actions to be run at the appropriate times. An example of
such actions may be checking for updates only during the hours when the device is not used. The correct time on the Mini Servers can be
ensured by installing and properly configuring .chrony

Dockerized client services

To ensure the optimal environment for every service without any dependency conflict, Docker containers infrastructure can be used. Every
service can be encapsulated into a separate Docker container which can contain only necessary dependencies.

According to the provided materials, the following services can be dockerized

Android applications store
Video camera with AI integration for analytics
Payment processing
Distributed storage
Crypto mining
and more

Target system requirements and architecture have very much in common with the balenaOS which is an operating system targeted at running
Docker containers on edge devices. The system is open source and built using Yocto. It can be customized and rebuilt by oneself if needed.

But the balenaOS system also has some major issues like

now officially supported mechanism to update the base OS
generally poor support for image customization on the build phase; the officially supported method for updating base OS only allows updates
to the official images built by the team; otherwise, some hacks are neededbalena

Dockerized client services

To have much greater flexibility over the OS, a custom one can be developed(using Yocto). Even if not using the , some of the good balenaOS
concepts or components can be integrated there.

For example, the is advised to be used (no matter if using the balenaOS or the custom image). The first advantage is ~4 times balenaEngine
smaller binary than the original Docker (decreased system image size). The second advantage (in terms of the update system) is the support for c

.ontainer deltas

balenaOS components and Yocto metadata are released under the license, which does not prevent them from meta-balena Apache 2.0
integrating into proprietary products.

This section contains information about services that should be run on the cloud server in order to fulfill the architecture requirements.

VPN connection

Access to any Mini Server should be provided through a VPN connection. For this purpose, a VPN server should be started on the cloud, which
can be a service run inside the container.

A configuration file should be generated for each Mini Server when the device is first started. It will be used by a VPN client installed on each
device.

Moreover, such a configuration file can also be generated for workstation operators, thanks to which they will have access to all devices in the
VPN network.

Adding a VPN to the system architecture ensures the creation of a network layer thanks to which all elements (cloud, Mini Servers, workstations)
can be seen and available to each other. The fulfillment of this condition is required to be able to remotely log in to Mini Servers using SSH. This
ensures the ability to perform diagnostic and repair work on devices.

https://linux.die.net/man/1/chrony
https://www.balena.io/engine/
https://www.balena.io/engine/docs/#Container-deltas
https://www.balena.io/engine/docs/#Container-deltas

Cloud connection

Content management

The ARED Content Manager (referred to as) shall provide an endpoint for ARED edge devices (Mini Servers) to download content (Android CM
apps, documents, music, videos, etc.) for local distribution. It shall provide a standard HTTP response code, verbs, and authentication.

According to the provided materials, the asset storage should be done using Google Cloud Storage Buckets or equivalent hosting services such
as AWS S3 or Azure Blob Storage. The backend services shall manage which assets are exposed to which device.

The shall use API keys to authenticate requests. Each Mini Server should have its own unique API key that shall be provisioned by its CM
configuration client. Restricted API keys can be used for granular permission to content in conjunction with configured device realm.

Content management will include ads, surveys, and offline files. The first step will be to implement offline files support, the rest could be prepared
in a similar way.

In the proposed Shiriki Hub API we saw some inconsistency. The provided materials indicate how assets should be described in cloud storage.

{
 "id": "0000234",
 "name": "ared_welcome.ts",
 "active": true,
 "realms": [],
 "created": "2021-01-18 09:01:00:000",
 "md5sum": "xxxxxxxx",
 "version" : "0000001",
 "url": "asset url",
 "description": null
},

But we see some differences in the actual examples given in the file . We have an example of an available video there described as follows: list

{
 "id": 4,
 "category": "media",
 "sme": null,
 "created": "2021-03-30T10:35:12.712473+03:00",
 "updated": "2021-03-30T10:35:12.712510+03:00",
 "file_type": "Video",
 "file": "https://storage.googleapis.com/m-shirki-production/files/rea
/lms/8/media \
 /Video/76567e5a-f237-49e3-8671-b6d661f61bb5.mp4",
 "unique_id": "76567e5a-f237-49e3-8671-b6d661f61bb5",
 "status": "Enabled",
 "realm": 8,
 "realm_name": "EDIT Africa Solar kiosk"
},

The main missing field is the one containing the value of md5sum of the given file. Its absence makes it impossible to verify the correctness of
the file download.

Another alarming issue is the installed on Mini Servers. It should be responsible for exchanging files with the cloud, checking the Content Client
correctness of downloading files, and verifying the list of files that should be on a given Mini Server, depending on the region (realm) to which it
has been assigned. In this scenario, the shall be the source of truth for all assets.Content Manager

According to the provided materials, should use a small local database (such as SQLite) to store a list of files located locally on Content Client
the device. This list should be sent to after each successful download of the file by the . Content Manager Content Client

We strongly advise against using this approach as it is not well scalable. From the experience gained while working on another project, we know
that the size of a file containing a similar list saved in JSON format can grow quickly. 50,000 entries generate a file with a size of about 15 MB.
Additionally, the necessity of sending this list after each successful download of a new file seems unacceptable. This would lead to situations
where downloading a file with a size of several KB would trigger the action of sending a file with a list having a size of several times larger (for
example several dozen MB). When downloading a few such small files in a short time, it would result in sending the file list several times. Such a
process would unnecessarily burden the Mini Server System and use the available transfer, which is very limited.

Content management must be implemented using Google Cloud Storage. In addition, file transfer must be resistant to poor internet connection
due to the conditions in which the Mini Servers will work. This means that the target solution must meet the following requirements

possibility of further development of a given solution
possibility of resuming interrupted transfers
resistance to breaking the connection
basic sync feedback on the synchronization status - information about the status of the synchronization for a given device
full sync feedback on the synchronization status - view the list of files available on the device

https://api.shirikihub.com/api/v1/files/

 cooperation with Google Cloud Storage as a storage backend

In the further part of the content management section, three possible implementation options will be presented. Below is a table with information
on whether a given solution meets a given requirement.

Solution Further development Resuming interrupted
transfer

Resistance to
breaking the
connection

Basic sync
feedback

Coop with
CGS

1 gsutil sync YES NO NO NO YES

2 combination of gsutil rsync
and cp

YES YES NO NO YES

3 custom solution from scratch
based on Shiriki API

YES YES YES YES YES

The first option to implement content management is to use Google CloudStorage buckets with the tool.gsutil

The factor deciding which file should be on which device is the realm to which it was assigned. To meet these requirements, one possibility is to
use cloud buckets (using Google Cloud Storage). Each bucket should be assigned to one region. When adding new files to the cloud, they
should go to the appropriate bucket. Thanks to this approach, we are able to easily divide the content going to cloud storage.

The task of the Mini Servers will be periodic file synchronization. The source of truth here will be the bucket assigned to a given region, which
means that Mini Server, when synchronizing, will have to delete unnecessary files or download the missing ones.

https://cloud.google.com/storage/docs/gsutil/

In the proposed solution, the role of Content Client can be served by the gsutil

gsutil advantages

use created in communication with the storagecredentials
provide command which easily allows synchronizing the content stored on the given Mini Server with the content from the given rsync
bucket
does not need any external list of stored files
created in Python, a recipe for Yocto build is not available but can be generated from the , as it is developed under the repository Apache

 license, which does not prevent from integrating them into proprietary products2.0

https://cloud.google.com/storage/docs/gsutil/addlhelp/CredentialTypesSupportingVariousUseCases#configuringusing-credentials-via-standalone-gsutil-distribution
https://cloud.google.com/storage/docs/gsutil/commands/rsync
https://github.com/GoogleCloudPlatform/gsutil

The access restriction can be also easily met in such an approach, by granting each device access to the files in the selected bucket (realm) only.

Such an approach greatly simplifies the implementation of the solution by using existing tools rather than implementing them from scratch. The
backend to be developed here should be fairly minimal, while the client on the Mini Server would be a simple script using one of the CLI tools.
This way the solution could be shipped to market much faster.

Unfortunately, this solution may not meet e.g the resumable download requirements but can be improved to do so in the second proposed option.

The second option is an extension of the first. Thanks to the use of additional logic, file transfer between the cloud and Mini Servers can be
resistant to a weak Internet connection. In this solution, the command will only be used to compare the content between the bucket gsutil rsync
and the Mini Server. By using the , option the file hash will be checked during the comparison.-c

Based on this information, Mini Servers will delete local unnecessary files and the missing ones will be downloaded using the cp command.
Using it provides .resistance to broken connections and allows you to resume the download

Future development

In the future, the option using the utility may be extended with the following functionalitygsutil

basic sync feedback with the status of the synchronization carried out by theMini Server - it will require adding Google IoT Core and opening
communication with the Mini Server, for example via the MQTT protocol, the status can tell if a sync is in progress or when the last successful
sync was completed
full sync feedback - at the operator's request a given Mini Server could send a list of stored files, such a list would also be sent via the MQTT
protocol
preparing the structure of folders in buckets that will reflect the information proposed in the custom Shiriki API, i.e. category, file type, realm,
status, or information related to SME, thanks to which it will be easy to distinguish, for example, the status of a given file (Enabled / Disabled)
file synchronization performed according to a set schedule

The diagram below shows content management after implementing the second option, the dashed arrows indicate possible system development
in the future.

https://cloud.google.com/storage/docs/gsutil/commands/rsync#options
https://cloud.google.com/storage/docs/gsutil/commands/cp#resumable-transfers

The last option involves the use of Shiriki API for the implementation of content management. This approach will be the most time-consuming as
it will require custom development almost from scratch. The solution would be based on libraries enabling communication with Google Cloud

.Storage

The proposed API will require several changes, including the differences described on page 16. In the beginning, work will have to be focused on
proper communication with Google Cloud Storage. Then it will be possible to add more functionalities. Firstly, basic ones such as downloading

https://cloud.google.com/storage/docs/reference/libraries
https://cloud.google.com/storage/docs/reference/libraries

files from storage, and comparing the hash of files to determine which to download. Many of these functionalities are already properly
implemented in the tool we propose to use in the previous sections, but the custom Shiriki API option provides the greatest flexibility in gsutil
implementing the target solution.

Content management summary

While analyzing the possibility of implementing content management, open-source solutions enabling the use of the current Shiriki Hub API were
checked. Unfortunately, none of them met all the requirements. Using a custom API would require the development of a new solution. Such an
approach would greatly delay the product's entry into the market.

We propose an implementation with the use of . Thanks to it, we are able to easily provide a synchronization system resistant to problems gsutil
with the Internet connection. In addition, this solution may be developed in the future to provide additional functionalities, such as reporting the
synchronization status for sending a list of files on the Mini Server data.

System monitoring

Monitoring of the entire infrastructure should be a very important element of the discussed architecture. Its proper implementation makes it
possible to detect any existing problems, which then leads to their diagnosis and repair in a satisfactory time.

One of the available solutions for the above is . Zabbix is used to collect, analyze and visualize data. It has several reasons to use itZabbix

it is released under the GPLv2 license
provide a huge amount of monitoring methods - various protocols can be used including SNMP, SSH, TELNET, HTTP/HTTPS, etc.
stable software - Zabbix has LTS (Long Time Support) version

This solution requires a server installed on the cloud and a client on each device that should be monitored. On the server side, there should also
be a database for storing information and a front end for data visualization.

Device provisioning

Provision procedure

After flashing the new image onto the Mini Server, we can say that it is in mode. At this stage, the provisioning procedure should be factory
carried out to prepare the device for operation in production mode.

The result of such a procedure should be

creating a VPN configuration and installing it on the device

https://www.zabbix.com/

generating SSH connection keys
cloud storage credentials
device configuration for a given realm consists of elements such as

setting the language of the applications appropriate to the given region
assigning the Mini Server to the appropriate cloud storage directory for the proper implementation of the content management system
setting the configuration of services run on Mini Servers appropriate for a given region, for example setting the right name of the access
point generated by the device

Provision procedure

The effects of performing the provisioning procedure should be saved on the partition that is not upgradeable. In the case of the discussed
system, it will be the partition. The configurations saved on it should be permanent, only deleted at the request of the operator, who overlay
should be able to perform an action called on the device. After doing so, the Mini Server should be in the state again.factory reset unprovisioned

Starting from release v0.11.0 of the Mini Server system image, the process is fully automated by the usage of installer-image. It is a special
image designed to automate SSD flashing and the target system provisioning process. It uses the special script which

flashes target image to the internal SSD storage
call endpoint of provisioning service which is running on the virtual machineprovisioning yocto-one
decompress downloaded packages and place secrets on internal storage
test connection with VPN () and Zabbix server ()yocto-one yocto-two
adds a new host on the Zabbix server with its IP address and name , where is device unique ID that is calculated from the mini-server_ID ID
MAC address of one of the ethernet interface

The provisioning service itself, after authenticating the provisioning request creates a bunch of secrets for the given Mini Server which are:

 VPN configuration for VPN server that is running on the virtual machine started on Google Cloudyocto-one
VPN configuration for Zabbix VPN server that is running on virtual machine started on Google Cloudyocto-two
Google Cloud content management access key
Google Cloud container registry access key
Predefined values for country and interval which are and content management synchronization RW 10

System update

The goal of this section is to show how the system update mechanism is implemented.

Dual image approach

The dual image approach implies having two partitions for the entire software running on the board. Synergy with the boot loader is often
necessary because the boot loader must decide which copy should be started. Again, it must be possible to switch between the two copies. After
a reboot, the boot loader decides which copy should be run.

This approach has several advantages

installing updates on an inactive slot allows to run them in the background, which allows the system to continue working (minimal system
downtime)
in case of an incorrectly installed update or power outage when installing the update, we always have a system with an older version of the
software, thanks to which the device is always usable
the update installation is atomic which means complete success or no success

If system A is active, system B is updated. After the platform restart system B is launched and (if an update is accepted, e.g. no error occurs) it is
a new active slot. In the case of the next update, system A will be updated.

Update flow

The below diagram illustrates the process of updating the installation and approving a new active partition.

Update strategies

Manual update

an operator logs in via SSH downloads the relevant update image and executes
Simple polling

the device regularly polls a given endpoint (e.g. HTTP URL) for a new update image - if there is a newer version available, it will be
automatically downloaded and installed

Update server with updated management dashboard

an operator can schedule updates via the dashboard
devices can also poll the server for the updates
the dashboard presents the versions present on the fleet of devices and the updated statuses

Advanced system update features

Binary delta updates

significantly less bandwidth required to update the system
requires the files to be generated on the servers sidediff
requires the file to be generated for each possible version combination - if we have many devices and many different versions in the diff
field, the number of files to generate may grow over timediff

Signed updates

only images signed by our private key will be accepted by the devices
Encrypted updates

images can be encrypted to prevent interception and inspection by an attacker (if this is a threat in a given use case)

Update delta patches

At the moment, a strategy is implemented in the system. We propose to expand it with the use of binary delta patches and the manual update
automation of the delivery of update files to the cloud server from which the update client will download them to Mini Servers.

Cloud storage can be effectively used as an update file server. The simple automatic system can be implemented as follows. An appropriate
folder structure must be created in the cloud. Adding the file with the description of the latest system version to the server will current-version.txt
allow transferring of the entire logic of selecting the file to be updated to the application on the device.

The task of the updating application will be to periodically check the file and automatically start the update when a newer current-version.txt
version of the system is available. Checking for available updates should be scheduled so that its hypothetical execution together with the
required system restart does not interfere with the use of Mini Servers. Each device can return information to the server after the last update is
performed. This information may include data such as the current system version or the status and date of the last update.

https://sbabic.github.io/swupdate/handlers.html?highlight=librsync#rdiff-handler
https://sbabic.github.io/swupdate/signed_images.html
https://sbabic.github.io/swupdate/encrypted_images.html

Containers update

The is advised to be used (no matter if using the or the custom image). The first advantage is ~4 times smaller binary balenaEngine balenaOS
than the original (decreased system image size). The second advantage (in terms of the update system) is the support for .Docker container deltas

https://www.balena.io/engine/
https://www.balena.io/engine/docs/#Container-deltas

Summary of the project architecture

Base operating system

We suggest preparing a system that can run dockerized custom services
It is advised to use a custom Yocto image with instead of to run custom services inside containers. The advantages are:balenaEngine Docker

less binary size
container delta updates support

The prepared system should have an SSH server installed with a firewall properly configured

Cloud connection

On the cloud there should be an OpenVPN server running, it can be started inside a container
Adding a VPN server will allow connecting to devices in the field after proper configuration
As a content management system, we suggest using specially prepared infrastructure on the server side and a simple script using the torsync
ol on the client side

there should be one user account on the server for each realm
rsync provides proper synchronization methods with resumable download possibility

Zabbix should be used to monitor the whole infrastructure

Device provisioning

The provisioning procedure should configure the device for a given realm
Configuration should be stored on a persistent partition

System update

The current update system should be enriched with additional functionalities
Binary delta updates - correct implementation aims to limit the size of the update file
OS update files can be uploaded to the cloud storage, and then it will depend on the updating applications on the Mini Servers whether the
update process should be started
Container images can be simply pulled from the registry. Using the balenaEngine delta update, the update size is considerably lower.

Implementation plan

The implementation plan - a list of the technical requirements and the effort of implementing each of them will be presented in a separate
document.

https://www.balena.io/engine/docs/
https://www.zabbix.com/

	ARED - Yocto Project Architecture v1.0.3

