
F28PL – Resit Coursework

Submission date
3:30pm (local time) Aug 08, Thursday

Instructions

1. There are four questions totaling 50 marks. You need to attempt all of them.

2. You cannot use library functions in your code. All helper functions you use
need to be implemented by you in the same file.

3. All code should be clearly written and laid out and should include an explanation
in English explaining the design of your code.

4. Your answers need to be valid OCaml and Python code. Code that cannot
compile may score zero marks.

5. Submit your work by pushing your code to the Gitlab server. Only code that
has been pushed to your fork of the project before the deadline will be marked.
We are not using Canvas for coursework submission.



Question 1 [OCaml] (5 marks)

Certain types, especially ones that are highly polymorphic, admit natural imple-
mentations of functions of that type. Intuitively, a natural implementation should
not cause errors, exceptions or nontermination (other than possibly by calling its
arguments), should not discard values, and the inferred type should be the same as
specified (up to renaming of type variables).

(a) Provide natural implementations of the two functions f1 and f2 below.

f1 : (’a -> ’b -> ’c) -> (’a -> ’b) -> ’a -> ’c
f2 : (’a -> ’b -> ’c) -> ’a -> (’d -> ’b) -> ’d -> ’c

(2 marks)

(b) In the comments, carefully explain the process you took to arrive at your
implementations of f1 and f2. Do there exist any natural implementations for
f1 and f2 other than the ones you chose? (3 marks)



Question 2 [OCaml] (15 marks)

Consider the class of certain mystery functions of one argument. The mystery
functions can be formed in one of four ways:

• the variable is a valid mystery function (note, there is only one variable, but it
can possibly occur many times in a function);

• any integer constant is a valid mystery function;
• a product of two mystery functions is a mystery function;
• a sum of two mystery functions is a mystery function.

(a) Represent the syntax of mystery functions, as defined above, as an algebraic
datatype type myst. (3 marks)

(b) Define a function evalAt : myst -> int -> int, which takes a mystery
function and a point at which we want to compute its value, and evaluates the
function (the point should be used as the value for the variable). (2 marks)

(c) It turns out that mystery functions are just another way of representing poly-
nomials (see lecture notes for weeks 3/4), which we represented as lists of
floats, with no trailing zeroes, which denoted the coefficients in increasing order.
Here we shall just consider integer coefficients, giving us the alternative def-
inition type poly = int list. Define a function asPoly : myst -> poly
that converts a polynomial from our representation as mystery function to
the one in the lecture notes. To help in this, define two helper functions:
addPoly : poly -> poly -> poly and mulPoly : poly -> poly -> poly,
which respectively add and multiply polynomials. (6 marks)

(d) Define a function evalAtP : poly -> int -> int, analogous to evalAt from
part (b). Using this, define a predicate on myst * int (i.e., a function of type
myst * int -> bool) which can be used to test the correctness of asPoly
from part (c). In other words, assuming all functions have been correctly
defined, this predicate should return true on all inputs. (2 marks)

(e) Define a function eqMyst : myst -> myst -> bool that checks whether two
mystery functions are equal in the usual, functional sense (i.e., their results
match for any arguments). (2 marks)

Hint: This is infeasible by checking all inputs, and difficult directly — but you
can use your solution to one of the previous parts of this question!



Question 3 [OCaml] (10 marks)

In this question we will be working with infinite lists of values, which we hereby
refer to as inflists. Examples of inflists of integers are the list of all non-negative
integers [0, 1, 2, 3, . . .] and the list of all even integers [0, 2, 4, 6, . . .]. An example of
an inflist of booleans is the infinite list of alternating booleans [true, false, true,
false, . . .].

One way to represent an inflist of some type ’a is as a function from (non-negative)
integers to ’a, where the value at the nth position of the inflist can be obtained by
evaluating the given function at n. In this representation the inflists [0, 1, 2, 3, . . .] and
[0, 2, 4, 6, . . .] are given by the functions l1 = fun n -> n and l2 = fun n -> n*2,
respectively. We take the definition of our type inflist as follows:

type ’a inflist = int -> ’a

We shall now define some functions to operate on inflists.

Note: for each question below ensure that you clearly explain how you arrived at
all your respective implementations and demonstrate (by pasting the corresponding
outputs of example computations from the interpreter) that all your functions work
as intended.

(a) Define the inflist of alternating booleans [true, false, true, false, . . .] as a
value of type bool inflist. (1 mark)

(b) As with finite lists, we can consider analogues of the functions take, drop, and
append on inflists. Define the following three functions.

• take : int -> ’a inflist -> ’a list

• drop : int -> ’a inflist -> ’a inflist

• append : ’a list -> ’a inflist -> ’a inflist (3 marks)

(c) Recall the functions map and filter for finite lists. Write down the corre-
sponding types for the inflist versions of these two functions followed by
their implementations. (2 marks)

(d) Consider inflists [x1, x2, x3, . . .] and [y1, y2, y3, . . .]. These two lists can be in-
terleaved to obtain the infinite list [x1, y1, x2, y2, x3, y3, . . .]. Define the function
interleave : ’a inflist -> ’a inflist -> ’a inflist. (2 marks)



(e) It is possible to produce inflists of type ’b by starting with some given ini-
tial seed value seed : ’a and an iteration function iter : ’a -> ’a * ’b.
From this we can obtain an inflist of ’bs by repeatedly applying iter to
seed and projecting out the appropriate value of type ’b and using the
value of type ’a’ as the next seed. Implement this process as the func-
tion produce : ’a -> (’a -> ’a * ’b) -> ’b inflist and show how the
inflist of all odd integers can be defined using produce. (2 marks)



Question 4 [Python] (20 marks)

This question is about paths on a grid. The paths always start at the top-left corner
and end at the bottom-right and at each step are only allowed to either go down or
to the right. Below are all six such paths that one can get on a 2 × 2 grid.

We will write out paths as strings consisting of the letters “d” (down) and “r” (right).
So, for example, the first path above is “ddrr” and the second path is “rddr”.

(a) Write a function isValidPath(m,n,p) which takes the dimensions m (height), n
(width), and a path p (as a string) and returns either true or false depending
on whether or not the path is a valid one on a given m × n grid. (3 marks)

(b) Consider the function allPaths(m,n) which returns the list of all valid paths
on an m × n grid. What should such a function return when one or both
of the arguments is zero? Now suppose m and n are non-zero: how can we
then express allPaths(m,n) in terms of the results obtained from computing
allPaths(m-1,n) and allPaths(m,n-1)? Hence, or otherwise, implement
allPaths(m,n). (7 marks)

(c) Explain what you observe when you run allPaths(30,30). (2 marks)

(d) We say a path has turning number k if it has k turning points. In the
2 × 2 example above, the first three paths have turning numbers 1, 3, and 2,



respectively. Write a function numTurningPaths(m,n,k) which returns the
number of paths in an m × n grid with turning number k. (4 marks)

(e) We say path p1 is above path p2 if at no point along p1 do we cross p2. In the
2 × 2 grid all the paths are above “ddrr” (including itself), and only “rrdd”,
“rdrd”, and “drrd” are above “drrd”. Write a function pathsAbove(m,n,p)
which returns the list of all paths above path p in an m × n grid. (4 marks)


