
COMP	6411:	PROJECT	DESCRIPTION		

Important	Info:	

1. Projects	can	be	done	either	individually	or	in	a	group	of	2	or	3	students	
(extra	work	is	required	for	group	submissions).		
	

2. Projects	must	be	submitted	on	time	in	order	to	received	full	value.	
Appropriate	late	penalties	(<	1	hour	=	10%,	<	24	hours	=	25%)	will	be	
applied,	as	appropriate.	.	You	MUST	verify	the	contents	of	your	
assignment	AFTER	you	submit.	You	will	be	graded	on	the	version	
submitted	at	the	deadline	–	no	other	version	will	be	accepted	at	a	later	date.	
	

3. The	graders	will	be	using	a	standard	distribution	of	Erlang	(the	version	in	the	docker	
distribution	is	OTP	23	(or	higher),	but	any	recent	version	should	be	fine).		You	cannot	use	any	
Erlang	libraries	and/or	components	that	are	not	found	in	the	standard	distribution.	The	
graders	will	not	have	these	libraries	on	their	systems	and,	consequently,	your	programs	will	
not	run	properly.	
	

	
OBJECTIVE:	For	the	final	project,	we	will	take	a	look	at	Erlang.	Note	that	while	Erlang	is	a	
functional	language,	our	focus	here	is	the	concurrency	model	provided	by	Erlang.	In	particular,	this	
assignment	will	require	you	to	gain	some	familiarity	with	the	concept	of	message	passing.	In	fact,	
Erlang	does	this	more	effectively	than	any	other	modern	programming	language.		

Briefly,	your	objective	is	to	create	a	(really)	simple	gaming	tournament.	Specifically,	you	will	be	
simulating	the	classic	Rock/Paper/Scissors	game	(RPS).	If	you	haven’t	heard	of	this	game	before,	it	
will	be	described	below.		The	basic	idea	is	that	you	will	be	given	a	list	of	players,	each	with	a	unique	
number	of	game	credits.	Players	will	interact	with	one	another,	making	random	RPS	guesses,	and	
wins	and	losses	will	be	determined	by	a	“master”	process.	Players	will	gradually	exhaust	their	game	
credits	and	will	be	forced	to	leave	the	game.	Eventually,	only	one	player	will	remain	–	this	person	
will	become	the	tournament	winner.	That’s	it.	

	

DETAILS:	So	now	for	the	details.	To	begin,	you	will	need	a	collection	of	players.	These	will	be	
supplied	in	a	very	simple	text	file.	While	Erlang	provides	many	file	primitives	for	processing	disk	
files,	the	process	is	not	quite	as	simple	as	Clojure’s	slurp()	function.	So	your	input	file	will	
contain	records	that	are	already	pre-formatted.	In	other	words,	they	are	ready	to	be	read	directly	
into	standard	Erlang	data	structures.		

	 	

A	sample	player	file	might	be:	

{sam,26}.

{jill,12}.

{ahmad,17}.

	
	

In	other	words,	the	file	simply	contains	a	set	of	Erlang	tuples.		The	first	element	of	each	tuple	is	an	
atom	(note	that	atoms	start	with	a	lower-case	letter).	The	atoms	will	represent	the	names	of	the	
players	(so	no	string	processing	is	required).	You	will	see	that	each	atom/label	is	associated	with	a	
number.	This	is	the	total	number	of	game	credits	that	they	will	have	when	the	tournament	begins.		

To	read	the	file,	we	use	the	consult()	function	in	the	file	module.	This	will	load	the	contents	of	
the	file	directly	into	an	Erlang	structure	(i.e.,	a	list	of	tuples).		Note	that	NO	error	checking	is	
required.	The	text	files	are	guaranteed	to	contain	valid	data.		

Because	you	(and	the	graders)	will	want	to	run	the	program	with	different	input	files,	we	don’t	
want	to	hard-code	the	file	name.	Instead,	it	will	be	passed	as	a	command	line	parameter.	While	this	
isn’t	especially	difficult	to	do,	I	don’t	want	you	to	waste	time	trying	to	get	this	to	work.	So	after	
compiling	your	source	files	with	erlc,	you	will	run	your	program	with	the	following	invocation	on	
the	command	line:	

erl -noshell -run game start p1.txt -s init stop

This	will	run	a	program	in	which	the	main	module	(i.e.,	source	file)	is	called	game.	Within	game,	the	
initial	function	(e.g.,	like	main	in	Java)	will	be	called	start.	The	start	function	will	accept	a	list	of	
parameters,	in	this	case	just	the	file	name	p1.txt.	This,	of	course,	is	the	name	of	the	player	file.	You	
can	call	it	anything	you	like	(the	graders	will	provide	their	own	test	files).		

Inside	the	game.erl	source	file,	you	will	have	the	following	code	at	the	top	of	the	file:	

-module(game).
-export([start/1]).

start(Args) ->
 PlayerFile = lists:nth(1, Args),

 {ok, PlayerInfo} = file:consult(PlayerFile),
	 …	

Note	that	the	…		at	the	end	simply	means	that	the	start	function	will	have	more	logic	after	this	
point.	This	is	just	the	code	to	read	the	data	files.		

In	summary,	the	code	above	provides	the	module	name	for	the	current	source	file	(game),	and	it	
indicates	that	the	module	exports	a	single	function	called	start.	The	start	function	will	take	one	
parameter	which,	in	this	case,	is	going	to	be	a	list	of	the	command	line	args:	[“p1.txt”].	We	just	

assign	“p1.txt”	to	PlayerFile		and	then	use	the	consult	function	in	the	file	module	to	read	
the	content	of	the	file	and	bind	it	to	a	label.		So	PlayerInfo	will	be	a	list	of	player	tuples	
[{sam,26}, {jill,12}, {ahmad,17}].	At	this	point,	you	have	all	of	your	input	data	and	you	
are	ready	to	proceed.	

So	your	job	now	is	to	take	this	information	and	create	an	application	that	models	the	tournament	
environment.	Because	each	player	is	a	distinct	entity	in	this	world,	they	will	be	modeled	as	separate	
tasks/processes.	When	the	application	begins,	it	will	therefore	generate	a	new	process	for	each	
player.	Because	you	do	not	know	how	many	players	there	will	be	(there	could	be	dozens	or	even	
hundreds),	or	even	their	names,	you	cannot	“hard	code”	this	phase	of	the	application.		

The	player	tasks	will	then	start	up	and	begin	the	tournament.		

You	may	want	to	make	each	new	player	sleep	for	200	milliseconds	or	so,	just	to	make	sure	that	all	
the	player	tasks	have	been	created	and	are	ready	to	be	used	-	this	can	be	done	trivially	with	an	
expression	like	timer:sleep(200).	Otherwise,	the	application	may	crash	if	a	player	tries	to	
contact	another	player	that	does	not	yet	exist.		

Okay,	so	now	for	the	game	logic	itself:	

1. Players	will	make	requests	to	one	another	to	begin	a	new	RPS	game.	To	do	so,	they	will	
randomly	select	one	of	the	players	from	the	full	list	(excluding	themselves).	In	order	for	this	
to	work,	of	course,	the	players	must	be	provided	with	the	complete	player	list.		
	

2. To	ensure	that	everything	doesn’t	happen	at	once,	each	request	is	made	after	a	random	
delay	of	between	10	and	100	milliseconds.	Again,	this	can	be	done	with	something	like	
timer:sleep(N), where	N	is	a	number	between	10	and	100.	
	

3. Since	all	players	can	make	requests,	then	it	should	be	obvious	that	all	players	can	receive	
invitations	as	well.	When	a	player	receives	an	invitation,	it	will	send	a	confirmation	back	to	
the	first	player	to	confirm	that	they	will	have	a	game	(unless	the	player	has	lost	all	of	
his/her	credits,	in	which	case	they	must	reject	the	invitation…as	described	below).		
	

4. When	the	first	player	receives	confirmation	that	the	second	player	has	accepted	their	
request,	they	will	send	a	message	to	the	master	process	to	ask	for	a	new	game	to	be	
scheduled.	Note	that	the	master	process	is	just	the	initial	Erlang	process	–	the	one	that	
created	all	of	the	player	tasks.	It	is	NOT	an	additional	process	called	“master”.		
	

5. When	the	master	receives	this	message,	it	will	create	a	new	ID	for	the	game.	This	is	just	a	
unique	integer,	starting	from	1,	that	will	be	incremented	each	time	a	new	game	request	is	
made.	This	ID	must	be	sent	to	both	players	so	that	they	know	who	they	are	playing	in	this	
round.		
	
IMPORTANT:	It	might	not	be	obvious	thus	far,	but	a	player	can	be	involved	in	multiple	
games	at	the	same	time,	since	they	can	receive	multiple	requests	from	other	players	during	
the	time	they	are	making	their	own	requests.	In	fact,	it	is	possible	to	play	multiple	games	

with	the	same	player	at	the	same	time.	Moreover,	some	games	will	take	longer	than	others	
so	games	may	overlap.	This	is	why	we	need	unique	ID	numbers	for	each	game.	
	

6. Once	the	ID	number	arrives,	each	player	will	randomly	select	their	RPS	“move”	for	this	
game.	This	is	probably	a	good	time	to	explain	how	RPS	works,	just	in	case	you	have	never	
heard	of	it	before.	So	the	idea	is	as	follows:	

a. RPS	is	a	two-person	game	in	which	simultaneously	reveals	one	of	three	possible	
“weapons”:	a	rock,	a	piece	of	paper,	or	scissors.	The	rules	for	victory	are	simple:	

i. Rock/Scissors:	rock	wins	because	a	rock	breaks	scissors	
ii. Rock/Paper:	paper	wins	because	paper	covers	a	rock	
iii. Scissors/Paper:	scissors	win	because	they	cut	paper	

b. Based	upon	the	options	above,	victory	is	obvious,	unless…	
c. If	there	is	a	tie	(e.g.,	rock/rock),	then	the	process	is	repeated	as	many	times	as	

necessary,	until	a	winner	is	found.		
	

7. So	back	to	the	game.	Clearly,	the	players	can’t	be	trusted	to	determine	their	own	winner.	So	
each	must	send	its	random	selection	(rock,	paper,	or	scissors)	to	the	master	process.	
Because	these	two	RPS	moves	are	coming	from	two	different	processes,	they	will	arrive	at	
different	times.	Once	the	second	message	arrives	(i.e.,	one	with	the	same	game	ID),	the	
master	will	determine	the	winner	and	record	this	information	for	future	use.		

Important:	The	master	does	not	“block”	while	waiting	for	the	second	message.	When	the	
master	receives	the	first	message,	it	will	immediately	wait	for	game	messages	from	other	
players.	Only	when	the	second,	matching,	RPS	move	arrives	will	the	master	determine	a	
winner	for	that	game.			

8. In	practice,	the	players	don’t	need	to	be	informed	about	the	outcome	of	an	individual	game	
since	they	will	just	keep	playing	by	making/answering	requests	for	new	games.	However,	
there	are	two	cases	when	a	response	is	definitely	required:		

a. A	tie	(e.g.,	rock/rock).	In	this	case,	the	master	must	send	a	message	back	to	both	
players	to	indicate	that	a	tie	has	occurred.	When	this	happens,	the	players	will	
randomly	choose	a	new	move	and	send	it	back	to	the	master	(along	with	the	same	
ID).	This	process	will	be	repeated	until	a	victory	occurs.		

b. Eventually,	a	player	will	exhaust	their	credits	and	be	forced	to	stop.	So	what	is	a	
credit?	In	this	tournament,	credits	are	not	used	for	new	games.	Instead,	they	
represent	the	number	of	games	that	you	can	lose	before	you	are	disqualified.	If	you	
have	4	credits	at	the	start	of	the	tournament,	for	example,	you	can	only	lose	up	to	4	
games.		

	
9. The	master	process	must	keep	track	of	player	losses.	Once	a	player’s	credits	reach	0,	the	

master	must	inform	that	player	that	they	are	disqualified.	At	this	point,	the	disqualified	
player	cannot	(i)	make	any	new	game	requests	or	(ii)	accept	any	new	invitations.	There	are	
two	important	points	to	note:	

a. If	the	player	is	currently	playing	other	games,	those	games	should	continue	to	
completion.	Trying	to	cancel	partially	completed	games	would	just	add	unnecessary	
complexity.	

b. When	a	player	is	disqualified,	they	must	continue	to	listen	to	messages,	since	other	
players	may	still	send	them	requests	for	new	games	–	which	MUST	be	denied.	In	this	
case,	the	active	player	should	avoid	sending	a	request	to	that	same	player	again.	
	

10. Eventually,	the	master	process	will	recognize	that	only	one	player	is	left	(all	others	have	no	
credits	remaining).	At	this	point,	the	master	will	notify	all	players	that	the	tournament	is	
over.	All	player	tasks	will	then	properly	terminate	(i.e.,	they	don’t	crash	or	run	forever).	
	

11. Finally,	the	master	will	display	a	tournament	summary	and	the	application	will	finish	(a	
standard	command	prompt	will	appear).	
		

And	that’s	it.		Woo	hoo.	

Of	course,	we	need	a	way	to	demonstrate	that	all	of	this	has	worked	properly.		To	begin,	it	is	
important	to	understand	that	this	is	a	multi-process	Erlang	program.	The	“master”	process	will	be	
the	initial	process	that,	in	turn,	spawns	processes	for	each	of	the	players.	So,	in	our	little	example	
above,	there	will	be	4	processes	in	total:	the	master	and	3	players.		

To	confirm	the	validity	of	the	program,	we	need	a	series	of	info	messages	to	be	printed	to	the	
screen.	This	will	include:	

• A	new	game	is	scheduled	and	an	ID	is	assigned	
• An	individual	game	has	completed	and	a	summary	is	provided	
• A	player	has	used	his/her	credits	and	is	disqualified	

In	effect,	these	messages	provide	a	real-time	transaction	log	as	the	program	is	running.		

IMPORTANT:		The	“master”	process	is	the	only	process	that	should	display	anything	to	the	screen.	
Player	processes	NEVER	do	any	I/O	themselves.	In	production	applications	this	would	also	be	true	
since	(1)	concurrent	I/O	from	multiple	tasks	would	get	interleaved	together,	creating	an	
unreadable	mess,	and	(2)	large	applications	would	often	use	networked/distributed	nodes	that	
would	not	even	use	the	same	console/screen.	The	graders	will	check	your	source	code	to	ensure	
that	all	printing	is	done	from	the	master.			

On	the	next	page,	we	can	see	partial	output	for	a	small	example.	

	

	

	

	

	

	

** Rock, Paper Scissors World Championship **

Starting game log...

+ [1] new game for sam -> jill
$ (1) sam:rock -> jill:paper = jill loses [11 credits left]
+ [2] new game for sam -> ahmad
+ [3] new game for jill -> john
$ (2) sam:paper -> ahmad:scissors = sam loses [25 credits left]
+ [4] new game for ahmad -> sam
+ [5] new game for sam -> ahmad
$ (4) ahmad:scissors -> sam:rock: ahmad loses [16 credits left]
$ (3) jill:scissors -> sam:paper: sam loses [24 credits left]
+ [6] new game for sam -> jill
$ (5) sam:rock -> ahmad:rock, sam:rock -> ahmad:paper = sam loses [23 credits
left]

…

+ [36] new game for sam -> jill
+ [37] new game for ahmad -> sam
- (36) sam:paper -> jill:paper, sam:rock -> jill:scissors = jill loses [0
credits left]
+ [38] new game for ahmad -> sam

…
+ [45] new game for sam -> ahmad
- (45) sam:paper -> ahmad:rock = ahmad loses [0 credits left]

We have a winner…

** Tournament Report **

Players:
 sam: credits used: 16, credits remaining: 10
 jill: credits used: 12, credits remaining: 0
 ahmad: credits used: 17, credits remaining: 0

 Total games: 45

winner: sam

See you next year...

	

Let’s	review	the	output.	After	the	application	starts	up,	we	begin	to	see	messages	indicating	that	
new	games	are	about	to	begin.	These	are	the	lines	like:	

	+ [1] new game for john -> sue
	

Here,	the	“+”	indicates	that	this	is	a	new	game,	while	the	“[1]”	tells	us	that	this	is	game	#1.	The	
remaining	text	shows	that	this	is	a	game	between	john	and	sue	that	was	initiated	by	john.		

Other	lines	summarize	a	completed	game:	

$ (2) sam:paper -> ahmad:scissors = sam loses [25 credits left]
	

In	this	case,	the	“$”	symbol	indicates	a	game	victory.	The	“(2)”	shows	the	ID	number	of	the	game.	
This	will	match	a	previous	“new	game”	message.	We	then	see	a	summary	of	the	game	play:	
sam:paper -> ahmad:scissors. Sam	has	chosen	“paper”,	while	ahmad	has	chosen	“scissors”.	
This	implies	that	sam	loses,	leaving	him	with	25	credits.		

When	ties	occur	in	games,	multiple	moves	will	be	displayed,	as	in:	

$ (5) sam:rock -> ahmad:rock, sam:rock -> ahmad:paper = sam loses [23 credits
left]
	

Here,	sam	and	ahmad	both	played	“rock”	initially,	so	another	round	was	required	in	order	to	
produce	a	victory.		

In	the	final	group	of	messages,	the	master	indicates	that	certain	players	have	been	disqualified:	

- (36) sam:paper -> ahmad:rock = ahmad loses [0 credits left]
	

At	the	end,	there	are	no	players	remaining	(jill	and	ahmad	have	both	been	disqualified)	and	the	
tournament	can	come	to	a	conclusion.	At	this	stage,	the	report	is	printed.	The	content	is	fairly	
simple	but	it	is	worth	noting	that	the	contents	of	the	report	must	be	completely	consistent	with	the	
log	listing.	This	is	fairly	easy	to	confirm	on	a	small	example.		

As	a	final	point,		the	use	of	randomness	guarantees	that	the	output	will	be	slightly	different	on	each	
run.	In	general,	the	player	starting	with	the	highest	number	of	credits	will	be	the	winner.	However,	
if	credit	counts	are	more	similar,	and	the	number	of	players	is	larger,	it	will	be	hard	to	predict	the	
outcome	in	advance.		

	

OTHER	THINGS:	As	noted,	this	is	an	assignment	that	focuses	on	concurrency,	not	general	
programming	issues.	Consequently,	I	want	to	minimize	the	time	spent	on	other	things.	So	please	
keep	the	following	things	in	mind.	

• With	Erlang,	you	send	messages	to	other	process	by	using	their	process	IDs	(this	is	the	
value	returned	by	the	spawn	function.	In	some	situations,	you	can	just	bind	this	value	to	a	
label	and	then	use	this	later	in	a	send.	However,	when	processes	have	been	spawned	in	
another	task,	you	don’t	necessarily	know	what	their	IDs	are.	Erlang	provides	a	very	simple	
mechanism	for	this.	Specifically,	you	can	register	a	name/processID	pair	using	the	
register(name, ID)	function.	Later,	you	can	use	the	whereis(name)	lookup	function	
-	in	another	process	-	to	get	the	processID	of	your	target	process.		

• The	self()	function	gives	the	process	ID	of	the	current	process	

• Erlang	uses	if	for	its	conditional	processing.	Note	that	at	least	one	of	the	conditional	checks	
MUST	return	true;	otherwise,	you	will	get	a	runtime	error.	If	needed,	you	can	use	something	
like	the	expression	below.	Basically,	this	says	that	if	the	first	condition(s)	isn’t	true,	the	
default	is	just	to	match	”true”	and	essentially	do	nothing.	
if
 X > 3 -> do_something();
 true -> false
end.	

• The	lists:foreach	function	is	a	way	to	quickly	process	a	list	by	performing	a	function	
on	each	of	the	values	in	the	list.		

• The	lists:foldl	function	is	Erlang’s	equiavalent	to	Clojure’s	reduce	function	(i.e.,	
reduce	all	values	in	a	list	to	a	single	value	with	a	function	like	sum).		

• While	not	absolutely	required,	it	is	good	practice	to	send	your	message	content	as	a	tuple.	
Use	an	atom/label	as	the	first	element	of	the	tuple	to	easily	distinguish	one	message	from	
another!	

• Erlang	has	modules	for	lists	and	maps	(and	other	things).	Each	contains	many	functions	for	
manipulating	the	associated	data	structures.	The	online	docs	give	many	examples	of	their	
use.	

• Erlang’s	list	comprehensions	can	be	used	to	easily	build	lists	from	other	lists.	For	example,	
the	code	below	makes	a	new	list	from	the	second	element	of	each	tuple	in	the	original	list:	
FruitList = [Fruit || {_ , Fruit} <- GroceryList]

• Erlang	allows	you	to	use	many	expressions	in	a	single	function.	They	just	execute	one	after	
another.	You	simply	have	to	separate	each	expression	with	a	comma.	The	function	itself	will	
end	with	a	period.		

• Some	expressions	–	like	receive	and	if expressions	–	use	a	semi-colon	to	end	each	block	
(though	no	semi-colon	is	used	after	the	final	block).		

• The	rand module	is	used	for	random	number	generation.	rand:seed(exsss)	can	be	
used	to	initialize	the	generator	and	rand:uniform(myInteger)	can	be	used	to	get	a	
random	number	from	1	to	myInteger.		

• The	function	length(myList)	can	be	used	to	get	the	length	of	a	list.	lists:nth(n,
myList)	can	be	used	to	extract	the	value	at	position	n.	Note,	however,	that	list	indexing	in	
this	case	begins	at	1,	not	0.	

• Basic	printing	can	be	done	with	io:fwrite()	or	io:format().	These	functions	work	
very	much	like	printf()	in	the	C	language.	You	provide	a	list	of	values	that	are	mapped	
into	a	formatted	string.	Again,	the	online	docs	provide	many	examples.	
	

I	think	that	covers	most	of	the	obvious	issues.	If	you	build	on	these	ideas	and	utilize	the	
documentation	on	the	main	Erlang	website,	which	is	pretty	good,	you	should	be	able	to	mostly	
focus	on	the	logic	of	the	communicating	tasks.		

	

GROUP	VERSION	If	you	are	working	in	a	group,	you	will	create	the	same	Erlang	application.	
However,	you	will	also	be	creating	a	second	version	of	the	application	in	Java.	The	comparable	Java	
program	will	produce	exactly	the	same	result.		

You	will	begin	by	reading	the	same	data	file.	In	this	case,	you	will	use	Java’s	IO	classes	to	extract	the	
player	data.	Once	you	have	the	data,	you	will	replicate	the	functionality	of	the	Erlang	program.		

In	this	case,	you	will	use	Java’s	basic	thread	mechanism	to	create	individual	threads	to	represent	
each	player.	So	just	like	the	Erlang	app,	this	will	be	a	multi-threaded	program.	Each	player	will	be	
constructed	as	a	thread,	and	the	player	threads	will	exchange	the	same	info	(requests,	confirmation,	
RPS	moves)	with	both	each	other	and	the	master	thread,	using	the	same	logic/order	described	in	
the	Erlang	description	above.	Output	to	the	screen	(log	and	final	report)	will	also	take	the	same	
form.	

Important:	You	are	free	to	implement	your	Java	code	however	you	like.	However,	you	can	only	use	
Java	classes	contained	in	the	Java	Standard	libraries	-	NO	external	third-party	libraries,	including	
any	message	frameworks	that	do	the	communication	work	for	you.	The	real	purpose	of	the	Java	
component	is	to	see	how	a	general	imperative	language	compares	to	a	language	designed	for	a	
particular	purpose.	

	

GRADING	The	graders	will	provide	their	own	player	text	files.	A	very	simple	file	will	be	used	to	
assess	basic	functionality	(and	award	most	of	the	point	value).	Then	some	larger	examples	will	be	
used	to	see	if	your	application	performs	well	under	different	conditions.	As	noted,	the	test	files	will	
ALWAYS	use	valid	data.	Again,	no	error	checking	of	any	kind	is	required	on	the	input.	All	game	
credits	will	be	recorded	as	positive,	non-zero	integers.	Basically,	if	your	code	works	well	in	your	
own	testing,	it	should	work	properly	for	the	graders.	

Note	that	Erlang	automatically	uses	the	current	folder	when	searching	for	your	modules.	So	nothing	
special	has	to	be	done	to	find	them.	For	groups,	your	Java	program	will	also	read	its	input	from	the	
current	folder	and	must	compile	and	run	from	the	command	line	without	any	additional	
configuration	settings	or	files.	

Finally,	you	do	not	have	to	provide	any	error	checking	on	the	file	names	passed	on	the	command	
line.	It	is	the	markers’	job	to	correctly	input	the	names	of	their	test	files.			

In	terms	of	group	grading,	please	note	that	although	two	programs	will	be	written,	they	will	not	be	
given	equal	weight.	This	is	primarily	an	Erlang	project	and,	as	such,	the	Erlang	application	will	
receive	80%	of	the	total	grade.	The	remaining	20%	will	be	associated	with	the	Java	program.	So,	if	
you	want	a	good	grade,	you	cannot	simply	do	the	Java	version	and	quickly	throw	together	a	non-
functional	Erlang	application	

	
DELIVERABLES:	Your	Erlang	submission	will	have	just	2	source	files.	The	“main”	file	will	be	called	
game.erl	and	will	correspond	to	the	master	process.	The	second	file	will	be	called	player.erl	
and	will	include	the	code	associated	with	the	“player”	processes.	Module	names	will	be	identical	to	
the	file	names	(minus	the	.erl	extension).	Do	not	include	any	data	files,	as	the	markers	will	provide	
their	own.		

For	groups,	the	Java	version	can	have	multiple	source	files,	depending	on	how	you	choose	to	
organize	your	code.	However,	the	main	“driver”	class	must	be	called	game.java.	It	will	have	the	
main	method	and	will	be	the	entry	point	for	running	and	testing	your	code.	

Before	preparing	your	submission,	please	create	a	simple	README.txt	file.	Inside,	indicate	whether	
this	is	a	solo	project	or	a	group	project.	For	group	projects,	include	the	name(s)	of	the	other	
member(s).	Only	one	submission	on	Moodle	will	be	made	for	the	group	and	each	person	in	the	
group	will	receive	the	same	grade.		

Once	you	are	ready	to	submit,	place	the	README.txt	file	and	the	.erl	(and		possibly	.java)	source	
files	into	a	zip	file.	The	name	of	the	zip	file	will	consist	of	"project"	+	last	name	+	first	name	+	
student	ID	+	".zip",	using	the	underscore	character	"_"	as	the	separator	(for	groups,	the	last	name	
will	coincide	with	the	name	of	the	person	doing	the	actual	submission).	For	example,	if	your	name	
is	John	Smith	and	your	ID	is	"123456",	then	your	zip	file	would	be	combined	into	a	file	called	
project_Smith_John_123456.zip".	The	final	zip	file	will	be	submitted	through	the	course	web	site	on	
Moodle.	You	simply	upload	the	file	using	the	link	on	the	project	web	page.	

	

Good Luck
	

