
Comparison of Adaptive Sampling Methods for Generation
of Surrogate Aerodynamic Models

T. J. Mackman∗ and C. B. Allen†

University of Bristol, Bristol, England BS8 1TR, United Kingdom

M. Ghoreyshi‡

U.S. Air Force Academy, Colorado 80840

and

K. J. Badcock§

University of Liverpool, Liverpool, England L69 3GH, United Kingdom

DOI: 10.2514/1.J051607

A surrogate modeling strategy, using effective interpolation and sampling methods, facilitates a reduction in the

number of computational fluid dynamics simulations required to construct an aerodynamic model to a specified

accuracy. In this paper, two adaptive sampling strategies are compared for generating surrogate models, based on

Kriging and radial basis function interpolation, respectively. The relationships between the two model formulations

are discussed, and three test cases are considered, including analytic functions and recovery of aerodynamic

coefficients for two example applications: longitudinal flight mechanics analysis for the DLR-F12 aircraft and

structural loads analysis of an RAE2822 airfoil. For the airfoil example, models ofCL,CD, andCM were constructed

with the two sampling strategies using Euler/boundary-layer-coupled computational fluid dynamics and a three-

dimensional flight envelope of incidence, Mach, and Reynolds number. The two sampling approaches direct some

samples toward exploration of the domain by minimizing model uncertainty and some toward refinement of local

nonlinearities, by adapting to model curvature or extrema. The results provide some evidence that, for certain

functions, in certain scenarios, each update scheme could be useful. Bothmethodswere at least better than traditional

space-filling sampling for all the test cases presented.

I. Introduction

I NRECENTyears, there has been increasing adoption of surrogate
models in the aerospace community for generating databases

of computational fluid dynamics (CFD) data [1,2]. A surrogate
modeling strategy, using effective interpolation and sampling
methods, facilitates a reduction in the number of simulations required
to construct an aerodynamic database to a specified accuracy.
Interpolation allows a continuous model to be reconstructed from a
finite set of simulations, and an efficient method for sampling
the relevant parameters allows the interesting nonlinear aerody-
namics to be represented as well as possible, using a small budget of
CFD runs.
For aircraft structural loads analysis, a model of the global forces

andmoments on the aircraft, and their corresponding distributions on
the components, is required across the flight envelope, which may
relate to a range of Reynolds numbers,Mach numbers, incidence and
sideslip angles, and control surface deflections [3].Without surrogate
modeling, this parameter space is traditionally populated using a
factorial design with regular intervals in each dimension, which leads
to a large number of required simulations. A surrogate modeling
approach that reduces the amount of effort spent on sufficiently

populating the space allows critical loads cases to be identified
earlier, and allows a greater amount of effort to be spent on further
simulations of these points.
Furthermore, as computational resources and simulation capabil-

ity increase, there is a growing desire to use physics-based
simulations for additional aspects of aircraft design. For example, the
design of unstable configurations could be helped by the use of
physics-based simulations to reduce the lead time on production of
high-quality aerodynamic models toward development of control
laws [4]. A model of global forces and moments with respect to
aircraft state and control variables is required for flight mechanics
analysis, which is typically fulfilled by a full factorial lookup table of
wind tunnel measurements taken relatively late in the design cycle.
This can be replaced by a surrogate model of CFD simulations taken
earlier in the design cycle, using an appropriate sampling strategy to
reduce the potentially significant computational cost of running a
new simulation for every entry in the table.
A comparison of sampling strategies for generating surrogate

models is presented in this paper, considering three test cases,
including analytic functions, recovery of aerodynamic coefficients
toward longitudinal stability and control analysis, and recovery of
aerodynamic coefficients toward structural loads analysis. Two
adaptive sampling methods [4,5], one based on Kriging [6] and one
based on radial basis function (RBF) interpolation [7], are compared
against a standard space-filling Latin hypercube approach, and full
factorial designs and their relative merits are discussed for the
different test problems. Adaptive sampling methods, which
incrementally add points based on interim models of the data, are a
natural accompaniment to surrogate modeling, and especially so for
problems involving expensive simulations in which it is not possible
to generate all the required data simultaneously. The two approaches
presented both aim to direct a portion of the update samples to
refinement of local nonlinearities and the remainder to exploration of
the parameter space.
First, the relevant background is discussed, then the model

formulations are presented, followed by the sampling strategies and a
discussion of results for the three test cases. In the results section, the
two-dimensional analytic test functions are presented first, followed
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by the simple stability and control analysis application, which uses
data from the U.S. Air Force Stability and Control Digital DATCOM
[8], and finally the structural loads analysis application, which uses a
set of simulation data for the RAE2822 airfoil generated using the
MSES flow solver [9], andwhich incorporates some highly nonlinear
features.

II. Background

Much of the current thinking on the design of experiments for
surrogate modeling of computer simulations stems from the paper
by Sacks et al. [10], who presented a statistical framework for
building surrogate models and determining sample locations by
minimizing an associated uncertainty measure. They noted that,
for deterministic data, modeling error can be minimized without
any knowledge of the data by placing samples in a space-filling
manner. Thus, it has become customary to use space-filling
designs for constructing global surrogate models where good
accuracy is required throughout the whole parameter space. They
also made the distinction between one-stage sampling methods,
sequential sampling methods, and sequential sampling with
adaption to the data, depending on how the chosen sampling
criterion is evaluated. Adaptive sampling offers a potential
improvement to customary one-stage or sequential space-filling
methods by using information from successive metamodels as the
number of points is increased.
The most notable space-filling methods include factorial designs,

Latin hypercube sampling (LHS), low-discrepancy sequences, and
designs based on statistical optimality criteria (A-, D-, and G-
optimal designs), which are discussed in the detailed review papers
by Giunta et al. [11], Koehler and Owen [12], Simpson et al. [13],
and Chaloner and Verdinelli [14]. Factorial designs are extremely
simple to construct and convey results intuitively, hence they
have traditionally been used for computer simulations when no
surrogate is constructed, despite having relatively poor space-filling
properties. Latin hypercube designs are probably the most popular
method for constructing surrogate models, but in their original form,
as presented by McKay et al. [15], space-filling behavior is not
guaranteed. The Latin hypercube requirement is simply that all one-
dimensional projections of the design have the maximal number of
intervals, and it is necessary to then select from the possible Latin
hypercube designs for a given number of points using a separate
criterion that quantifies how space-filling different arrangements
are. This can be done by maximizing the minimum distance
between samples (amaximin distance design [16]) or by minimizing
the “potential energy” of the sample set (an Audze–Eglais design
[17]), either of which is quite a challenging optimization problem
in practice ([18] pp. 17–27), because the number of possible
permutations of sample coordinates increases dramatically with
dimensionality and the number of samples. An alternative might be
to use a deterministic (hence, cheap to compute) low-discrepancy
sequence, where discrepancy is a measure of the uniformity of the
samples produced. One of the best known sequences, in terms of the
rate of convergence of the discrepancy with respect to the number of
samples, is the Sobol sequence (also the LPτ sequence, or (t, s)
sequence of base two) [19,20].
The Sobol sequence employs a somewhat similar concept of

stratification to LHS, whereby the interval �0; 1� is split into
successive uniform intervals using special binary fractions, called
direction numbers, providing coordinates for each dimension
[21,22]. Unlike LHS, however, careful formulation of the direction
numbers for each dimension and imposed uniformity properties
produce a deterministic sequence that can be used to generate space-
filling points very efficiently, with a discrepancy convergence rate of
O�logn N� for N points in n dimensions, which is believed to be as
good as possible for an infinite sequence [20].
In general, adaptive methods are either multiple-criteria methods

or statistical methods, with criteria that reflect both the spread of the
data and the functionvalues themselves. Jin et al. [23] provide a fairly
comprehensive description of many existing methods and some
proposals of their own. They propose a two-criteria method based on

the leave-one-out cross-validation (LOOCV) error,¶ evaluated
throughout the domain, and scaled by the distance to the nearest
existing sample point. This is a promising form of approach, also
used by Aute et al. [24] and others, but the LOOCV error can
be a particularly poor indicator for adaptive sampling if the initial
model contains too few data points. Also, the computational cost
of calculating the LOOCV error explicitly at arbitrary locations
is of O�N4� for N samples, hence an interpolated model of the
LOOCVerror at the data sites is often used [24] (for whichO�N3� can
be achieved [25]), but this introduces an additional level of
approximation.
Another two-criteria approach worth mentioning is by Tang et al.

[26], who developed a strategy for sampling a three-dimensional
flight envelope for a crew transfer vehicle, which achieved good
results. They divided the domain into bins with only one point
allowed per bin, placed randomly within it, and then chose only to
add points in bins with large gradients or Laplacian. Other authors
have also used a function gradient criterion and a separate space-
filling criterion, notably Turner et al. [27] and, more recently,
Jakobsson et al. [28], who used a rational RBF model and based the
space-filling criterion on the power function, which is an uncertainty
measure for RBF models.
Statistical criteria, using the framework of Sacks et al. [10], are

particularly popular owing to the widespread use of Kriging models.
Maximizing the entropy, or amount of information provided by a
sample, is the simplest andmost intuitive of thesemethods, involving
successively adding sample points at the locations with the largest
value of error predicted by the Kriging mean squared error (MSE)
function [29]. This will be referred to as the entropy or MaxMSE
criterion. MaxMSE samples are primarily space-filling but adapt to
the relative variability of each coordinate direction as well, because
the MSE function is dependent on the both the sample positions and
the Kriging model parameters, which are optimized to fit the data. A
number of statistical criteria have also been developed for the purpose
of global optimization, which attempt to both explore the domain and
refineminima or maxima [30]. This is a slightly different objective to
refining nonlinearities everywhere in the domain, but optimization
criteria can be useful for building complete surrogate models as part
of a larger sampling strategy, ensuring that the absolute values
of peaks and troughs are well predicted. A popular statistical
optimization criterion is the expected improvement function (EIF),
described in detail by Jones et al. [31].
Adaptive sampling strategies developed by the authors have used

theMaxMSE and EIF criteria to developKrigingmodels for tables of
aerodynamic data for stability and control analysis [4], and used the
model Laplacian and a sample separation function to build RBF
models of analytic functions and aerodynamic data [5,32]. In this
work, the RBF sampling approach is given a space-filling criterion
based on the power function, and the two methods are compared
for the chosen test problems, with factorial designs and Audze-
Eglais-optimized Latin hypercube sampling used as baseline data-
independent methods.
To further reduce the cost of generating models of aerodynamic

data, it is possible to use gradient information for constructing the
surrogate [33], or to merge data from both low- and high-fidelity
simulations [3,4,34,35], or from simulation and experiment [36].
Variable fidelity modeling such as this also introduces the possibility
of sampling based on the difference between the high- and low-
fidelity data. However, for simplicity, the scope of this comparison
study is limited to regular surrogate models.

III. Methods

The formulations of the Kriging and RBF models are presented
here. Let y�x� be the original function to bemodeled, and let yi be the

¶The LOOCV error at x for a given sample i is the difference between the
full model and the model with point i removed, i.e., ŷ−i�x� − ŷ�x�. For
adaptive sampling, thismust be evaluated at arbitraryx throughout the domain.
LOOCV can also provide a single global error metric for the whole model by
taking the norm (usually L1 or L2) of these errors at all sample locations.
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values at N sample points where xi is the vector of coordinates
xi � fxi;1; : : : ; xi;ng for the ith sample point. The samples can be
described as a set X � fx1; : : : ;xNg confined to the domain Ω in
n-dimensional space, which is normalized to the unit hypercube
�0; 1�n for interpolation. The label y denotes a scalar function, and
multivariate responses are considered by constructing separate
models for each response.
The Kriging model was implemented using the DACE toolbox

developed by Lophaven et al. [37,38], and the RBF model was
implemented by the authors, using the theory presented byWendland
[39] and Fasshauer [40] as reference.

A. Kriging Model

AKrigingmodel approximates the target function at an untried site
x� as

ŷ�x�� � μ� ϵ (1)

where μ is the mean value and ϵ is a normally distributed error term
with zero mean and variance σ2. Different types of Kriging models
based on different assumptions about the mean are discussed by
Goovaerts [41].UniversalKriging assumes only that the mean value
μ is a linear combination of known functions f1�xi�; : : : ; fM�xi�. It
is common to use linear functions fk�xi� � 1; xi;1; : : : ; xi;n, such
that the mean is a linear regression model, but higher-order terms can
be used. A universal Kriging model is written as

ŷ�x�� �
XM
k�1

γkfk�x�� � ϵ (2)

where γ � fγ1; : : : ; γMg is the M-dimensional vector of regression
coefficients, andM � n� 1 for a linear mean.
The error term ϵ is assumed to be a random process, because it is in

a pure regression model, but is assumed to be a continuous function
ϵ�x� with correlated values ϵi; i � 1; : : : ; N depending on their
distance apart. To estimate the correlation for the error term, a
spatially weighted distance formula between samples xi and xii is
generally defined as

d�xi;xii� �
Xn
j�1

θjjxi;j − xii;jjpj ; �θj ≥ 0; pj ∈ �1; 2�� (3)

where the parameter θj expresses the importance of the jth coordinate
and the exponent pj is related to the smoothness of the function in
coordinate direction j. A correlation matrix R of all pairwise
correlations can then be written as

R �

2
6664
ϕ1;1 ϕ1;2 · · · ϕ1;N

ϕ2;1 ϕ2;2 · · · ϕ2;N

..

. ..
. . .

. ..
.

ϕN;1 ϕN;2 · · · ϕN;N

3
7775 (4)

where ϕi;ii�xi;xii� is the correlation function. The form of ϕ can be
chosen, and for this work a standard exponential of the form ϕi;ii �
e−d�xi ;xii� was used, with allpj fixed to two. This is an intuitive choice
because ϵ�x� is then a Gaussian process, and the correlation function
ϕ has a radial basis.
To compute the Kriging model, values must be estimated for the

regression coefficients γ1; : : : ; γM, in conjunction with the model
parameters θ1; : : : ; θn (and p1; : : : ; pn if used). The parameters can
be quantified by an optimization process called maximum likelihood
estimation, as discussed in detail by Toal et al. [42] and Martin and
Simpson [43], and a generalized least-squares (GLS) fit for the mean
gives

γ � �FTR−1F�−1 FTR−1y (5)

The predictions at an unsampled location x� can then be obtained by
expanding Eq. (1). By writing the correlation and regression terms as
follows,

r �

2
6664
ϕ�;1
ϕ�;2
..
.

ϕ�;N

3
7775; f �

2
6664
f1�x��
f2�x��

..

.

fM�x��

3
7775;

F �

2
6664
f1�x1� f2�x1� ::: fM�x1�
f1�x2� f2�x2� ::: fM�x2�

..

. ..
. . .

. ..
.

f1�xN� f2�xN� ::: fM�xN�

3
7775

(6)

the standard form of the Kriging predictor for point x� is given by

ŷ�x�� � μ�x�� � ϵ�x�� � fTγ � rTR−1�y − Fγ� (7)

An alternative way of writing Eq. (7) is as follows:

ŷ�x�� � fTγ � rTβ; β � R−1�y − Fγ� (8)

� μ�x�� �
XN
i�1

βiϕ�x�;xi� (9)

which shows that a Kriging model can be described as a linear
combination of basis functions, scaled by the coefficients βi, plus a
contribution from the mean [31]. Equation (8) is useful in practice,
because the vectors β and γ are fixed and may be stored after their
initial calculation.
An uncertainty measure can also be calculated for the predictor.

The Kriging variance, or mean squared error as it is usually called
[10], is given by

s2�x�� � σ2�1� uT�FTR−1F�−1 u − rTR−1r�;
u � FR−1r − f

(10)

where σ2 is the sample variance with respect to the mean μ, given by

σ2 � 1

n
�y − Fγ�T R−1�y − Fγ� � 1

n
βTRβ (11)

If x� is close to a sample point, there is a small amount of uncertainty
in the model and, conversely, if x� is far away from all sample points,
there is a large amount of uncertainty. TheMSE function reflects this
and has a value of zero at the data sites and an increasing value away
from them, dependent on the correlation between x� and the other
points, which is a function of distance and the model parameters, but
has no direct dependence on the response values.

B. Radial Basis Function Interpolation

An RBF model is a linear combination of basis functions, whose
argument is the Euclidean distance between the evaluation point x�
and all points in the training dataset, known as the basis function
centers. Ifϕ is the chosen basis function and k · k is used to denote the
Euclidean norm, the interpolation model has the form

ŷ�x�� �
XN
i�1

βiϕ�kx� − xik� � p�x�� (12)

where βi; i � 1; : : : ; N are the model coefficients, and p�x�� is an
optional polynomial. The coefficients are found by requiring exact
recovery of the original data ŷX � y for all training data points X .
The model is then a sum of contributions from the polynomial

p�x�� and the basis functions, which form a set of departures. The
general form for a polynomial is given by

p�x� �
XM
k�1

γkfk�x� (13)
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where f�x� are the monomial components, and γk are the M
additional coefficients that must be solved for. A side constraint is
introduced to provide the additional equations required to solve the
system. This ensures that the polynomial is orthogonal to the basis
functions, which is the same as requiring a GLS approximation. The
side constraint is written as

XN
i�1

βifk�xi� � 0; k � 1; : : : ;M (14)

The problem can be cast as an augmented linear system in matrix
form, which must be solved before any new approximations can be
made.Writing the training data vector y, the coefficient vectors β and
γ, and the matrices of basis function and monomial terms R and F,
respectively, the system may be written as follows:

�
y
0

�
�
�
R F
FT 0

��
β
γ

�
(15)

where

R�

2
6664
ϕ1;1 ϕ1;2 · · · ϕ1;N

ϕ2;1 ϕ2;2 · · · ϕ2;N

..

. ..
. . .

. ..
.

ϕN;1 ϕN;2 · · · ϕN;N

3
7775; F�

2
6664
f1;1 · · · f1;M
f2;1 · · · f2;M

..

. . .
. ..

.

fN;1 · · · fN;M

3
7775 (16)

andwhereϕi;ii � ϕ�kxi − xiik�, fi;k � fk�xi�. The points xi and xii
are both data sites, and R contains basis function values for all
pairwise combinations.
The solution of the system is given by

γ � �FTR−1F�−1 FTR−1y β � R−1�y − Fγ� (17)

� �R−1 −R−1F�FTR−1F�−1 FTR−1�y (18)

This allows the response at an arbitrary evaluation point x� to be
calculated using

ŷ�x�� � rTβ� fTγ (19)

where r and f are vectors of basis function and monomial terms for
the point x�, respectively.
The form of basis function chosen governs the stability of the

system, the smoothness of the interpolation, and its predictive
capability. It was decided to use Wendland’s C4 function ϕ3;2 �
�1 − r�6��35r2 � 18r� 3� for this work [39]. Wendland’s functions
ϕn;k are compact functions of minimal degree for a stated number of
continuous derivatives C2k in n dimensions, and they offer a good
compromise between matrix conditioning and modeling behavior.
They decay to zero at a given distance from the center, known as the
support radius R. In addition to the support radius, it was decided to
useweighting parameterswj for each dimension to allow the norm to
be biased in certain parameter directions. Thus, the basis function
argument is a scaled and weighted Euclidean distance given by

kx� − xikscaled �
1

R

���������������������������������������Xn
j�1

w2
j �xj;� − xj;i�2

vuut (20)

Theweights (and, therefore, R) can be tuned to give the best possible
model according to some accuracymeasure. For this work,wj values
were determined using a particle swarm optimizer [44], with
minimizingLOOCVerror at the data sites as the objective, in a similar
approach to that of Rippa, who developed an efficient algorithm for
optimizing a single basis function shape parameter [25].
A standard uncertainty measure can also be constructed for RBF

interpolants, based on the power function and the native space norm
[28,40]. The power function Pϕ;X �x�� quantifies the component of
interpolation error that is dependent on the basis function, model
parameters, and sample locations, and is given by

Pϕ;X �x�� �
�������������������������������������������������������������������������
ϕ�0� � uT�FTR−1F�−1 u − rTR−1r

q
;

u � FR−1r − f (21)

This can be scaled by the native space norm kŷy;XkN ϕ
, which

quantifies the variability of the training data, to give the more generic
uncertainty measure Pϕ;X �x��kŷy;XkN ϕ

, although this quantity still
has no direct spatial dependence on the function values. The native
space norm has a scalar value, given by

kŷy;XkN ϕ
� βTRβ (22)

It should be apparent that there is a great deal of similarity between
the Kriging and RBFmodel formulations and their error estimates. In
fact, the only significant difference between the methods as
implemented is the choice of basis function and model parameters,
which reflect different logical choices (and conventions) arising from
the different branches of mathematics used for derivation.

C. MaximumMean Squared Error and Expected
Improvement Function Sampling Criteria

As mentioned in Sec. I, the aims of the sampling strategy are to
explore the domain and refine regions of local nonlinearity to produce
an accurate model. The Kriging MSE can be exploited to achieve the
first of these goals and, to a small extent, the second. As a measure of
model uncertainty that is dependent on the distance to existing
samples and the model parameters, s�x� can be used directly as a
sampling criterion by simply adding a point at the maximum value.
This is the MaxMSE criterion, which gives predominantly space-
filling points, with emphasis on certain parameter directions
according to the optimized θj.
The EIF is a statistical criterion, developed for efficient global

optimization [31]. The EIF leads to points that maximize the
expectation of improvement upon the global minimum or maximum
of the current predictor and can be used to refine significant peaks and
troughs in the model. An estimate of the optimum value of the
function is first found based on the available samples, for example,
ymin � min�y1; y2; : : : ; yN�. The Kriging predictor at any point can
then be regarded as a random variable with mean ŷ and variance s.
Viewed in this way, a probability can be computed that the value at
any point will fall below the current minimum (or above the
maximum). The EIF is obtained by weighting the possible
improvements by these probability densities and, forminimization, is
written as

E�I�x�� �
�
�ymin − ŷ�Φ�ymin−ŷ

s � � sφ�
ymin−ŷ
s � s > 0

0 s � 0
(23)

whereφ andΦ are the probability density and cumulative distribution
functions. New samples are located by finding max E�I�x��.
Formodeling aerodynamic loads data, refinement of theminimum

and maximum coefficient values is desirable in addition to overall
modeling accuracy. Moreover, accurate prediction of extrema values
can also be expected to improve the model fit and therefore average
error. A sampling strategy based on initial use of the MaxMSE
criterion, followed by a number of EIF samples directed toward
finding both the global minima andmaxima in turn, was proposed by
the authors [4], and the same strategy is used for this comparison
study. The ratio of MaxMSE and EIF samples used is decided for
each problem, and the method requires a small set of space-filling
samples to build an initial interpolation.

D. Power Function and Curvature Sampling Criteria

A sampling criterion for RBF interpolation has been developed by
the authors, using response surface curvature and a sample separation
function to achieve the two aims of local refinement and exploration
of the domain [5,45]. This placesmore emphasis on improving global
accuracy than the Kriging MaxMSE/EIF strategy, but does not
explicitly refine minima and maxima.
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The method requires an initial set of samples to first build an
interpolation, and then update points are added based on a combined
criterion C, defined as the product of the modeled Laplacian and the
separation function. The separation function is a continuous function
that grows with distance from the data sites and must have zero value
when that distance is zero. For this work, the square of the power
function and the native space norm were used for the separation
function,which is then directly comparable to theMaxMSEcriterion.
This differs from previous published work by the authors [5], which
primarily used an artificial function, created by interpolating values
of one at the data sites using a small support radius. The criterion is
given by

C � �j∇2ŷj � ε�P2
ϕ;X �x�kŷy;XkN ϕ

(24)

where ε is an offset parameter to ensure a nonzero value when
j∇2ŷj � 0. The largest values of C indicate promising new sample
locations, and the formulation given in Eq. (24) achieves a balance
between adding points in locations where the data are nonlinear and
adding points in unsampled regions of the domain. This is different to
the Kriging MaxMSE/EIF strategy, in that the two effective criteria
are switched on all the time.
The Laplacian of the interpolation model can be calculated by

∇2ŷ �
Xn
j�1

∂2ŷ
∂x2j

(25)

and model derivatives for a given direction xj can be evaluated at
arbitrary locations by applying the following differentiated form of
Eq. (19):

∂2ŷ
∂x2j
� ∂2rT

∂x2j
β� ∂2fT

∂x2j
γ (26)

The interpolation coefficients β and γ for a datasetX remain the same
for derivative evaluations, which are no more expensive than
additional function evaluations.

IV. Results

A. Analytic Test Functions

Previous work demonstrated that sampling based on RBF model
curvature worked well for two-dimensional analytic functions [5]. It
was decided to use two of themore challenging of these test functions
as an initial comparison for this work, herein referred to as Franke’s
function [46] F�x; y� and the droplet function D�x; y�, given by

F�x; y� � 3

4
e−

1
4
��9x−2�2��9y−2�2� � 3

4
e−

1
49�9x�1�2− 1

10�9y�1�2

� 1

2
e−

1
4��9x−7�2��9y−3�2� −

1

5
e−�9x−4�

2−�9y−7�2 ;Ω � �0; 1�2 (27)

D�x; y� � −4e−25
8
�x2�y2� � 7e−

125
4
�x2�y2�; Ω � �−1; 1�2 (28)

For these examples, optimization of the sampling criteria was done
using a search on a fine grid of 51 × 51 (512) evaluation points in
accordancewith the original results, and sampling was stoppedwhen
a predetermined budget of samples had been exhausted. The two
methods could then be comparedwith each other andwith equivalent
nonadaptive full factorial (FF) and optimized Latin hypercube
(OLHS) designs** for reference. Two different numbers of points
were chosen for this purpose, 49 and 81, allowing comparison
between the two adaptive methods using 42 initial points plus 33
updates, with a 72 full factorial design and 49 OLHS points as
reference, and similarly for 52 � 56 points with 92 FF and 81 OLHS
points as reference. One-third of the total points, or as close as the FF
designs will allow, have been allocated as initial points, which is the
guideline strategy suggested by Forrester et al. ([18] pp. 102–103).
Figures 1 and 2 show the results for methods using 52 � 56 points

and OLHS nonadaptive samples. The original test function shape,
root mean squared error (RMSE) convergences, and the sample
positions and final models with residuals [y�x�� − ŷ�x��] for the
adaptive methods are shown. Table 1 also summarizes the final
results for configurations not plotted. A naming convention has been
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Fig. 1 Franke’s function, interpolation error, sample placements, and models; 25� 56 points.

**All Latin Hypercube designs for this work had the corner points added,
inclusive of the total number of points.
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used here, first indicating whether an RBF (R-) or a Kriging (K-)
model has been used, then indicating the type of nonadaptive samples
(FF or OLHS), and, if applicable, followed by the adaptive criterion
used, either C (C) or MaxMSE/EIF (M/E).
For fixed sets of points (e.g., 72 FF, 92 FF), the Kriging models

should theoretically be slightly better suited to these test functions,
because the smoothness of theGaussian correlation functionmatches
the response, but it can be seen that there is no clear advantage evident
in the results. The existing differences are a necessary observation to
put further results into context, however.
Both adaptive sampling strategies perform well for Franke’s

function, although the RMSE convergence graphs show that the error
in the Kriging model reduces to a low level faster than the RBF
model. This is perhaps surprising because, up until the final 10% of

samples for this test case, the Kriging model usesMaxMSE samples,
whereas the RBF model uses the directly equivalent power function
combined with second derivative information. In fact, the space-
fillingMaxMSE criterion has first sampled theminimum for Franke’s
function (causing a sharp drop in RMSE) earlier than the curvature-
based criterion, which emphasizes improvement of the known
features more than exploration of the domain. Note also that the
Kriging MaxMSE criterion produces space-filling samples slightly
denser in y than x, due to differences in optimized θx and θy. A further
difference in the sample locations is that the EIF has led to refinement
of the global minimum and maximum, but curvature-based samples
have caused refinement of all three prominent features, including the
additional local maximum. Looking at the results table, theminimum
and maximum values for Franke’s function are determined very
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Fig. 2 Droplet function, interpolation error, sample placements, and models; 25� 56 total points.

Table 1 Final results for the analytic test functions, all configurations

Method Total points F�x; y� D�x; y�
RMSE Min Max RMSE Min Max

R-FF (72) 49 0.01156 −0.12502 1.03517 0.27284 −2.60185 3.00000
K-FF (72) 49 0.01200 −0.12506 1.03583 0.21952 −2.61051 3.00000
R-FF/C (42 � 33) 49 0.00779 −0.17727 1.03909 0.12090 −2.89483 3.00000
K-FF/M/E (42 � 33) 49 0.00846 −0.19664 1.03924 0.16851 −2.65103 3.00000

R-OLHS (49) 49 0.00896 −0.19187 1.03428 0.36075 −2.43084 0.00366
K-OLHS (49) 49 0.01130 −0.19163 1.03749 0.36514 −2.43535 0.00884
R-OLHS/C (16� 33) 49 0.00714 −0.19747 1.04015 0.15565 −2.77027 2.90975
K-OLHS/M/E (16� 33) 49 0.00853 −0.19747 1.03924 0.17548 −2.66233 3.00000

R-FF (92) 81 0.00425 −0.16522 1.03696 0.06149 −2.77838 3.00000
K-FF (92) 81 0.00420 −0.17167 1.04134 0.05455 −2.58278 3.00000
R-FF/C (52 � 56) 81 0.00277 −0.19327 1.03888 0.04230 −2.68516 3.00000
K-FF/M/E (52 � 56) 81 0.00343 −0.19747 1.03924 0.05197 −2.62098 3.00000

R-OLHS (81) 81 0.00303 −0.19408 1.03896 0.13359 −2.93167 2.30904
K-OLHS (81) 81 0.00410 −0.19427 1.03946 0.14848 −2.78564 2.29828
R-OLHS/C (25� 56) 81 0.00251 −0.18566 1.03925 0.04091 −2.70317 2.91463
K-OLHS/M/E (25� 56) 81 0.00279 −0.19747 1.03924 0.05126 −2.62555 3.00000

Target −0.19747 1.03924 −2.61926 3.00000
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closely using only 10%EIF samples for the Krigingmodels, whereas
curvature-based sampling does not capture these values quite as well,
particularly for the smaller case with 49 points.
For the droplet function, the EIF was used to generate half of the

total samples for the Kriging models, leading to very well-defined
rings of samples around the maximum and minimum annulus in
Fig. 2. However, this distribution of samples is relatively clustered,
and the curvature-based sampling leads to faster error convergence.
Slight increases in RMSE are due to the combined effect of
adaptive sampling and parameter optimization, hence it might be
suggested that the parameters should be fixed. However, preliminary
investigations showed that overall an optimized interpolation leads to
quicker error convergence; this has also been investigated by Toal
et al. [42], who draw the same conclusion.
In general, OLHS points give improved results compared with FF

designs for the initial samples. However, note that for the 52, 72, and
92 FF designs, the center of the domain is included, which captures
the maximum peak of the droplet function and improves the result.
The center point does not appear in any of the OLHS designs, as
shown in Fig. 3. For the case with 81 total points, the adaptive
methods initialized with 25 OLHS points produce better RMSE than
those initialized by the 52 FF design, despite this. An important
motivation for considering an FF design for the initial points is the
inclusion of points on the boundary to mitigate edge oscillations or
extrapolation; in general, interpolation errors are known to be greater
near boundaries than in the interior of the domain for constant sample
spacing [47]. It can be seen in Figs. 1 and 2 that the power function/
MSE component of the adaptive criteria places a significant number
of samples on the domain boundary when starting with OLHS
samples. The addition of corner points to the OLHS designs was also
intended to aid on this issue.

B. Aerodynamic Loads Model for DLR-F12

The second test case is an example representative of generating a
lookup table of forces andmoments for stability and control analysis,
with a limited selection of input and output variables to simplify the
problem. For analysis of slow rate maneuvers, a model of the quasi-
steady aerodynamic behavior of an aircraft is required, which
involves knowing the variation of six-degree-of-freedom forces and
momentswith respect to aircraft statevariables (e.g.,Mach, incidence

and sideslip angles and their time rates, roll, pitch, and yaw rates) and
control variables (e.g., aileron, elevator, rudder, and flap angles)
[4,34]. To reduce the dimensionality of the problem, coupled effects
can be ignored for all but Mach number and incidence, reducing the
size from one model with 12 dimensions to 10 models with three
dimensions. The example presented here includes incidence α, Mach
number M, and elevator angle δ to illustrate the problem, and the
longitudinal coefficients lift CL, drag CD, and pitching moment CM
are modeled.
The configuration considered is based on the DLR-F12 wind

tunnel model, which is a 1∶40 scale development model of a
commercial passenger jet. A lookup table of aerodynamic data for
this configurationwas generated using DATCOMand interpolated to
increase resolution. The data encompass α, M, and δ values in the
ranges �−10;�27 deg�, �0.1; 0.8�, and �−35;�35 deg� respectively,
and 493 points were used in the lookup table to give a fine evaluation
grid for subsampling using the adaptive criteria, and for accurately
calculating the RMSE. A two-stage evaluation grid of 243, followed
by 33 points, was used to search for optimum sampling criterion
values to decrease computation. In practice, an optimization
algorithm may be used, such as that for optimization of the
interpolation parameters [44], but a direct search was used for
robustness in this comparison study.
The reference data are shown in Fig. 4. The underlying physics,

and therefore absolute accuracy of the test data, is limited, but for the
purpose of this comparison, the function may be considered a black
box, with only the relative accuracy of the surrogate compared with
the original data being important. Within the parameter ranges
chosen, the forces and moment exhibit almost monotone trends in
incidence and elevator angle, with some nonlinearity in the Mach
number direction, hence, it was decided to use a limited number of
points to replicate them with the surrogate models. One hundred
twenty-five total points were used, with 42 OLHS� 83 updates for
the adaptive methods compared against 53 and 125 OLHS designs.
For theMaxMSE/EIFmethod, 10%of the total pointswere dedicated
toward expected improvement, split evenly between minimization
and maximization of the CL, CD, and CM responses.
To find optimal sample placements for all of the Nr responses

simultaneously, the MaxMSE and RBF sampling criteria were
modified as follows:
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Fig. 3 Optimized Latin hypercube samples on the domain �0;1�, plus the domain corners.
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Fig. 4 Reference data for the DLR-F12 test case, δ � −35 deg.
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MaxMSE � max

�XNr
k�1

sk�x�
�
; C � max

�XNr
k�1

Ck�x�
�

(29)

Figures 5 and 6 show the resulting RBF and Kriging models and
residuals for δ � 35 deg, and Fig. 7 shows the RMSE convergence
for the two adaptive sampling approaches, with respective OLHS
interpolations as reference. In both cases, the final result is a slight
improvement over the space-filling design, with slightly faster
RMSE convergence achieved with RBF interpolation and curvature-
based samples than Kriging and MaxMSE/EIF. Looking at the
sample positions, shown in Fig. 8, the behavior of the two adaptive
methods appears quite similar, with the effect of the curvature
criterion being quite subtle, due to fairly even curvature in the
responses at both high and low incidence,Mach number, and elevator
angle. Both methods have again placed a number of points on the
boundary, due to the use of the power function and MSE function,
which have larger values on the boundary than the interior of the
domain for a given sample separation.
Tables 2 and 3 list the remaining results. From this, it can be

seen that the interpolations using OLHS points comprehensively
outperform those with full factorial samples in terms of RMSE and

maximum error, and it was decided not to run additional adaptive
designswith full factorial initial points.KrigingMaxMSE/EIFmakes
a much closer approximation of the minimum and maximum values,
but fails to capture all six target minimum and maximum values
exactly, owing to the limited number of samples available overall.
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Fig. 5 RBF models and residuals for the DLR-F12 test case, δ � −35 deg, 42� 83 points.
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Fig. 6 Kriging models and residuals for the DLR-F12 test case, δ � −35 deg, 42� 83 points.
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Fig. 7 RMSE convergence for the DLR-F12 test case, OLHS and 42� 83 points.
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Fig. 8 Flattened samples (showing all δ) for the DLR-F12 test case,
42� 83 points.
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C. Aerodynamic Loads Model for RAE2822

The final test case is another example of aerodynamic loads
modeling, this time representative of a structural loads analysis
application. A rigid structure is considered here for simplicity,
although unsteady loads might be considered by applying a
secondary correction. Also, the problem ofmodeling the global loads
(integrated over the whole geometry) on an airfoil is considered,
which again is a notable simplification over the real problem, which
requires modeling distributed loads for components such as the
fuselage, wingbox, flaps, and slats, sufficient for a beam stick model
for a full three-dimensional configuration. For three-dimensional
configurations, either a separate approximation for the relationship
between global and distributed loads would need to be defined or
separate models constructed for different components (which would
likely not lead to consistent results).
The reference data are derived from MSES, a two-dimensional

Euler solver with coupled boundary-layer method that offers fast
execution time. The geometry is an RAE2822 airfoil [48], and CL,
CD, and CM have been mapped for incidence, Mach number, and
Reynolds number values in the ranges �−6;�12 deg�, �0.4; 0.8�, and
�106; 107�. Asmentioned, this is a somewhat reduced problem, but the
data include transonic conditions and incidences beyond stall,
leading to some particularly nonlinear features in the responses. A
regression model was fitted to the CFD data (which included 11,000
simulations) to remove noise and obtain a complete dataset, filling in
for many post-stall incidences where the solver would not converge.
Again, the reference data were given a resolution of 493 points for
accurate RMSE calculation.

The lift, drag, and pitchingmoment coefficients are shown in Fig. 9
for a Reynolds number of 106. Variation inRe leads to a slight change
inCLmax andCMmin, but the responses are significantly less sensitive
with respect to this parameter direction compared with either
incidence or Mach. Because of the nonlinearity of the data, a budget
of roughly 500 points was chosen, which was an amount sufficient to
achieve a satisfactory model with a stratified factorial (SF) design
using 13 × 8 × 5 points (α, M, Re) biased in incidence and Mach
using knowledge of the shape of the response, whichwas then used to
compare against 500 OLHS points. The adaptive methods were
started with 83 and 166 initial OLHS points, with the MaxMSE/EIF
method using 50 (10%) update points for expected improvement,
split evenly between minimization and maximization ofCL,CD, and
CM, but excluding maximization of CD because this maximum CD
occurs in the domain corner at maximumMach and incidence. Also,
to reduce the computational cost of generating the models, the RBF
and Kriging model parameters were tuned only once every 10 update
points.
Figures 10 and 11 show the final RBF and Kriging models and

residuals, and Figure 12 shows the RMSE convergence of the
different methods. It can be seen that the curvature-based sampling
achieves notably faster error convergence than MaxMSE sampling
for this test case. However, the final 50 EIF samples significantly
reduce the RMSE of the Kriging models, such that the final result is
very similar, or even slightly better. Both adaptive methods are
significantly more accurate than the pure OLHS designs, which
themselves are significantly more accurate than the manually
stratified designs. Figure 13 shows the sample locations for the

Table 2 Final results for the DLR-F12 test case, all configurations

Method RMSE Max error

CL CD CM CL CD CM

R-FF (53) 0.02896 0.00350 0.04655 0.16451 0.02337 0.23258
R-OLHS (125) 0.01120 0.00179 0.01407 0.09937 0.01704 0.15275
K-FF (53) 0.03107 0.00375 0.04090 0.18250 0.02399 0.20772

K-OLHS (125) 0.01627 0.00185 0.01946 0.12497 0.01787 0.19189
R-OLHS/C (42� 83) 0.00943 0.00141 0.01221 0.05750 0.01013 0.07206
K-OLHS/M/E (42� 83) 0.01560 0.00179 0.01596 0.07961 0.07206 0.08554

Table 3 Final results for the DLR-F12 test case, all configurations

Method Min value Max value

CL CD CM CL CD CM

R-FF (53) −1.05946 0.00785 −2.31276 1.79934 0.23572 1.64971
R-OLHS (125) −1.05286 0.00942 −2.32175 1.80695 0.23594 1.64749
K-FF (53) −1.05635 0.00892 −2.31236 1.80486 0.23594 1.64749

K-OLHS (125) −1.07571 0.00833 −2.31236 1.83251 0.23594 1.66974
R-OLHS/C (42� 83) −1.07772 0.00885 −2.35607 1.83658 0.23798 1.64749
K-OLHS/M/E (42� 83) −1.08903 0.00844 −2.36126 1.83966 0.23779 1.64765

Target −1.08903 0.00844 −2.36126 1.83447 0.23779 1.64819
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Fig. 9 Reference data for the RAE2822 test case, Re � 106.
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minimum of the Reynolds number range. This gives a good
indication of the overall sampling behavior with respect to α andM,
and it can be easily visualized. The curvature-based sampling gives a
particularly nice sample distribution, with many points concentrated
at high Mach number, where there is a sharp feature in pitching
moment due to shock movement, and at high incidence around stall.
Tables 4 and 5 show results for the final interpolations for all

sample configurations. As with the previous test cases, the prediction
of theminimum andmaximumvalues was significantly improved for
theKrigingmodels by adding a small number of EIF samples, but the
adaptiveRBFmodels also performverywell in this regard for this test
case. It can be seen that the results using 83 initial points, or one-sixth
of the total number, are slightly worse than those using 166 points for
both the RBF and Kriging models. This indicates that there is indeed
an optimal number to choose, and that the recommendation of
Forrester et al. ([18] pp. 102–103) to use a fraction of one-third seems
valid here without conducting a more rigorous investigation.
Finally, another way of assessing the performance is to consider

the percentage savings in number of samples required to match the
accuracy of a traditional space-filling approach, using the adaptive
methods. This relates to the amount by which the sample budget

could be reduced, or the potential time saved in building a suitable
model, for real world applications. According to Fig. 12, the RBFand
Kriging methods afford a savings of 20 and 13%, respectively, over
the OLHS design. This is a notable improvement over the traditional
approach.
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Fig. 10 RBF models and residuals for the RAE2822 test case, Re � 106, 166� 334 points.
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Fig. 11 Kriging models and residuals for the RAE2822 test case, Re � 106, 166� 334 points.
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Fig. 12 RMSE convergence for the RAE2822 test case, 500 OLHS and 166� 334 points.
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V. Conclusions

For the purpose of aircraft loads analysis for structural design, or
stability and control analysis, the ability of a surrogate model to
predict aerodynamic coefficients across the flight envelope with
consistent accuracy, and the ability to predict critical loads cases
likely (but not exclusively) appearing at the minima and maxima, are
objectiveswhich should be addressed by the sampling approach. Two
different adaptive sampling strategies for surrogate model generation
have been discussed and compared for a range of test cases, including
analytic functions and two aerodynamic loads modeling examples.
The results give some evidence that curvature-based sampling,

coupledwith a theoretical estimate of modeling error [the radial basis
function (RBF) power function], which grows with distance from the
data sites, leads to models with improved root mean squared error
(RMSE) convergence compared with space-filling designs and
maximum mean squared error/expected improvement function
(MaxMSE/EIF) sampling. This was true for all of the example
problems except in one case, for the analytic Franke’s function, in
which MaxMSE sampling converged faster due to faster exploration
of the domain. There is also some evidence that sampling based on
theoretical modeling error (the Kriging MSE function) with the
addition of a few points allocated to the EIF leads to models with
good RMSE compared with space-filling designs and gives an
improvement in prediction of minimum and maximum values. This
was the case for all of the test cases conducted. Both adaptive
methods performed better than traditional full factorial and optimized
Latin hypercube designs over all of the problems conducted,
sometimes by a considerable margin, which is a necessary condition
that these methods could be of use in certain circumstances.
The ratio of MaxMSE to EIF samples deserves further

investigation and, potentially, an automatic method for determining
themost appropriate ratio could be developed based on the data.Also,
the number of initial and update samples for both methods could be
investigated further to verify the stated recommendation of using
one-third of the total points as initial points.
A further consideration would be the presence of numerical noise

in the simulation data. To overcome this, theRBFandKrigingmodels
could be adapted by including a regularization parameter (subtracting
a small quantity from the diagonal of the interpolation or correlation

matrix). The MSE/power function and EIF/curvature derivations
could then be adjusted accordingly, and the criteria applied in the
same way. However, the regularization parameter ought to be
optimized to givegood results, and it is not clear how the convergence
of the update schemes would be affected coupled with reoptimiza-
tion, or if one-off optimization at the beginning of the process would
be sufficient. Hence, there are notable challenges to overcome.
Based on the studies conducted, a suggested strategy for similar

applications might be to use a combination of curvature-based
sampling, incorporating the RBF power function/Kriging MSE
function to explore the domain, and expected improvement function
points, added at the end to improve the responses values at extremum
values and further reduce RMSE.

References

[1] Simpson, T.W., Toropov,V.,Balabanov,V., andViana, F.A.C., “Design
and Analysis of Computer Experiments in Multidisciplinary Design
Optimization: A Review of How Far We Have Come—or Not,” 12th

AIAA/ISSMOMultidisciplinary Analysis and Optimization Conference,
AIAA Paper 2008-5802, 2008.

[2] Quiepo, N. V., Haftka, R. T., Shyy, W., Goel, T., Vaidyanathan, R., and
Tucker, P. K., “Surrogate-Based Analysis and Optimization,” Progress
in Aerospace Sciences, Vol. 41, No. 1, 2005, pp. 1–28.
doi:10.1016/j.paerosci.2005.02.001

[3] Han, Z.-H., Zimmermann, R., andGörtz, S., “ANewCokrigingMethod
for Variable-Fidelity Surrogate Modeling of Aerodynamic Data,” 48th
AIAAAerospace SciencesMeeting, AIAAPaper 2010-1225, Jan. 2010.

[4] Ghoreyshi, M., Badcock, K. J., andWoodgate, M. A., “Accelerating the
Numerical Generation of Aerodynamic Models for Flight Simulation,”
Journal of Aircraft, Vol. 46, No. 3, 2009, pp. 972–980.
doi:10.2514/1.39626

[5] Mackman, T. J., and Allen, C. B., “Investigation of an Adaptive
SamplingMethod forData InterpolationUsingRadial Basis Functions,”
International Journal for Numerical Methods in Engineering, Vol. 83,
No. 7, 2010, pp. 915–938.
doi:10.1002/nme.2885

[6] Krige, D. G., “A Statistical Approach to Some Basic Mine Valuation
Problems on the Witwatersrand,” Journal of the Chemical,

Metallurgical and Mining Society of South Africa, Vol. 52, No. 6,
1951, pp. 119–139.

[7] Hardy, R. L., “Multiquadric Equations of Topology and Other Irregular
Surfaces,” Journal of Geophysical Research, Vol. 76, No. 8, 1971,

Table 4 Final results for the RAE2822 test case, all configurations

Method Total points RMSE Max error

CL CD CM CL CD CM

R-SF (13 × 8 × 5) 520 0.01004 0.00066 0.00117 0.06738 0.00821 0.00543
R-OLHS (500) 500 0.00359 0.00056 0.00069 0.05139 0.00930 0.00688
K-SF (13 × 8 × 5) 520 0.02081 0.00079 0.00223 0.12421 0.00889 0.01285
K-OLHS (500) 500 0.00376 0.00045 0.00088 0.05126 0.00662 0.01185

R-OLHS/C (83� 417) 500 0.00262 0.00022 0.00054 0.01898 0.00118 0.00411
K-OLHS/M/E (83� 417) 500 0.00245 0.00018 0.00039 0.02141 0.00143 0.00230
R-OLHS/C (166� 334) 500 0.00227 0.00019 0.00041 0.02255 0.00121 0.00359
K-OLHS/M/E (166� 334) 500 0.00222 0.00019 0.00040 0.01330 0.00117 0.00228

Table 5 Final results for the RAE2822 test case, all configurations

Method Total points Min value Max value

CL CD CM CL CD CM
R-SF (13 × 8 × 5) 520 −0.74355 0.00581 −0.10562 1.16445 0.17550 −0.00957
R-OLHS (500) 500 −0.74101 0.00609 −0.10374 1.15691 0.17550 −0.00895
K-SF (13 × 8 × 5) 520 −0.74343 0.00490 −0.10554 1.17030 0.17550 −0.01278
K-OLHS (500) 500 −0.75511 0.00524 −0.10398 1.16634 0.17550 −0.00969

R-OLHS/C (83� 417) 500 −0.75282 0.00642 −0.10572 1.16574 0.17550 −0.00949
K-OLHS/M/E (83� 417) 500 −0.75252 0.00677 −0.10566 1.16614 0.17550 −0.00953
R-OLHS/C (166� 334) 500 −0.75274 0.00680 −0.10514 1.16376 0.17550 −0.00952
K-OLHS/M/E (166� 334) 500 −0.75252 0.00678 −0.10566 1.16614 0.17550 −0.00953

Target −0.75252 0.00678 −0.10566 1.16614 0.17550 −0.00953

MACKMAN ETAL. 807

D
ow

nl
oa

de
d 

by
 B

R
IS

T
O

L
 U

N
IV

E
R

SI
T

Y
 o

n 
A

pr
il 

5,
 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.J
05

16
07

 

http://dx.doi.org/10.1016/j.paerosci.2005.02.001
http://dx.doi.org/10.1016/j.paerosci.2005.02.001
http://dx.doi.org/10.1016/j.paerosci.2005.02.001
http://dx.doi.org/10.1016/j.paerosci.2005.02.001
http://dx.doi.org/10.1016/j.paerosci.2005.02.001
http://dx.doi.org/10.1016/j.paerosci.2005.02.001
http://dx.doi.org/10.2514/1.39626
http://dx.doi.org/10.2514/1.39626
http://dx.doi.org/10.2514/1.39626
http://dx.doi.org/10.1002/nme.2885
http://dx.doi.org/10.1002/nme.2885
http://dx.doi.org/10.1002/nme.2885


pp. 1905–1915.
doi:10.1029/JB076i008p01905

[8] Williams, J. E., and Vukelich, S. R., “The USAF Stability and Control
Digital DATCOM,”Air Force Flight Dynamics Lab., Wright–Patterson
AFB TR-AFFDL-TR-79-3032, 1979.

[9] Drela, M., “A User’s Guide to MSES 3.04,” Dept. of Aeronautics and
Astronautics, Massachusetts Inst. of Technology TR, 2006.

[10] Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P., “Design and
Analysis of Computer Experiments,” Statistical Science, Vol. 4, No. 4,
1989, pp. 409–435.

[11] Giunta, A. A., Wojtkiewicz, S. F. Jr., and Eldred, M. S., “Overview of
Modern Design of Experiments Methods for Computational
Simulations,” 41st Aerospace Sciences Meeting and Exhibit, AIAA
Paper 2003-649, 2003.

[12] Koehler, J. R., and Owen, A. B., “Computer Experiments,” Ghosh, S.,
and Rao, C. R. eds., Handbook of Statistics, Elsevier, New York, 1996,
pp. 261–308.

[13] Simpson, T. W., Lin, D. K. J., and Chen, W., “Sampling Strategies for
Computer Experiments: Design andAnalysis,” International Journal of
Reliability and Applications, Vol. 2, No. 3, 2001, pp. 209–240.

[14] Chaloner, K., and Verdinelli, I., “Bayesian Experimental Design: A
Review,” Statistical Science, Vol. 10, No. 3, 1995, pp. 273–304.
doi:10.1214/ss/1177009939

[15] McKay, M. D., Beckman, R. J., and Conover, W. J., “AComparison of
ThreeMethods for SelectingValues of InputVariables in theAnalysis of
Output from a Computer Code,” Technometrics, Vol. 21, No. 2, 1979,
pp. 239–245.

[16] Johnson, M. E., Moore, L. M., and Ylvisaker, D., “Minimax and
Maximin Distance Designs,” Journal of Statistical Planning and

Inference, Vol. 26, No. 2, 1990, pp. 131–148.
doi:10.1016/0378-3758(90)90122-B

[17] Bates, S. J., Sienz, J., and Langley, D. S., “Formulation of the Audze–
Eglais Uniform Latin Hypercube Design of Experiments,” Advances in
Engineering Software, Vol. 34, No. 8, 2003, pp. 493–506.
doi:10.1016/S0965-9978(03)00042-5

[18] Forrester, A. I. J., Sóbester, A., and Keane, A. J., Engineering Design

via Surrogate Modelling: A Practical Guide, Wiley, Hoboken, NJ,
2008.

[19] Sobol, I. M., “On the Distribution of Points in a Cube and the
Approximate Evaluation of Integrals,” U.S.S.R. Computational

Mathematics and Mathematical Physics, Vol. 7, No. 4, 1967, p. 86112.
doi:10.1016/0041-5553(67)90144-9

[20] Bratley, P., and Fox, B. L., “Algorithm 659: Implementing Sobol’s
Quasirandom Sequence Generator, ACM Transactions on Mathemati-

cal Software, Vol. 14, No. 1, 1988, pp. 88–100.
doi:10.1145/42288.214372

[21] Kollig, T., and Keller, A., “Efficient Multidimensional Sampling,”
Computer Graphics Forum, Vol. 21, No. 3, 2002, p. 557563.
doi:10.1111/cgf.2002.21.issue-3

[22] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.,
Numerical Recipes: The Art of Scientific Computing, 3rd ed.,
Cambridge Univ. Press, Cambridge, U.K., 2007, pp. 404–406.

[23] Jin, R., Chen, W., and Sudjianto, A., “On Sequential Sampling for
Global Metamodelling in Engineering Design,” Proceedings of

DETC'02. ASME 2002Design Engineering Technical Conferences and

Computers and Information inEngineeringConference.Volume2: 28th

Design Automation Conference, Paper DETC2002/DAC-34092,
American Society of Mechanical Engineers, New York, NY, 2002.

[24] Aute, V. C., Abdelaziz, O., and Radermacher, R., “Cross-Validation
Based Single Response Adaptive Design of Experiments for
Deterministic Computer Simulations,” 12th AIAA/ISSMO Multidisci-

plinary Analysis and Optimization Conference, AIAA Paper 2008-
6067, 2008.

[25] Rippa, S., “AnAlgorithm for Selecting aGoodValue for the Parameter c
in Radial Basis Function Interpolation,” Advances in Computational

Mathematics, Vol. 11, Nos. 2–3, 1999, pp. 193–210.
doi:10.1023/A:1018975909870

[26] Tang, C. Y., Gee, K., and Lawrence, S. L., “Generation of Aerodynamic
Data Using a Design of Experiment and Data Fusion Approach,” 43rd
AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2005-
1137, 2005.

[27] Turner, C. J., Campbell,M. I., and Crawford, R. H., “Generic Sequential
Sampling for Metamodel Approximations,” Proceedings of

DETC'03. ASME 2003 International Design Engineering Technical

Conferences and Computers and Information in Engineering

Conference. Volume 1: 23rd Computers and Information in

Engineering Conference, Parts A and B, Paper DETC2003/CIE-
48230, American Society of Mechanical Engineers, New York, NY,
2003.

[28] Jakobsson, S., Anderson, B., and Edelvik, F., “Rational Radial Basis
Function Interpolation with Applications to AntennaDesign, Journal of
Computational and Applied Mathematics, Vol. 233, No. 4, 2009,
pp. 889–904.
doi:10.1016/j.cam.2009.08.058

[29] Shewry, M. C., and Wynn, H. P., “Maximum Entropy Sampling,”
Journal of Applied Statistics, Vol. 14, No. 2, 1987, pp. 165–170.
doi:10.1080/02664768700000020

[30] Keane, A. J., “Statistical Improvement Criteria for Use in Multiobjec-
tive Design Optimization,” AIAA Journal, Vol. 44, No. 4, 2006,
pp. 879–891.
doi:10.2514/1.16875

[31] Jones, D. R., Schonlau, M., and Welch, W. J., “Efficient Global
Optimization of Expensive Black-Box Functions,” Journal of Global

Optimization, Vol. 13, No. 4, 1998, pp. 455–492.
doi:10.1023/A:1008306431147

[32] Mackman, T. J., and Allen, C. B., “Aerodynamic DataModelling Using
Multi-Criteria Adaptive Sampling,” 13th AIAA/ISSMO Multidiscipli-

naryAnalysisOptimizationConference, AIAAPaper 2010-9194, 2010.
[33] Yamazaki, W., Rumpfkeil, M. P., and Mavriplis, D. J., “Design

Optimization Utilizing Gradient/Hessian Enhanced Surrogate Model,”
28th AIAA Applied Aerodynamics Conference, AIAA Paper 2010-
4363, 2010.

[34] Ghoreyshi, M., Badcock, K. J., Da Ronch, A., Marques, S., Swift, A.,
and Ames, N., “Framework for Establishing Limits of Tabular
Aerodynamic Models for Flight Dynamics Analysis,” Journal of

Aircraft, Vol. 48, No. 1, 2011, pp. 42–55.
doi:10.2514/1.C001003

[35] Laurenceau, J., and Sagaut, P., “BuildingEfficient Response Surfaces of
Aerodynamic Functions with Kriging and Cokriging,” AIAA Journal,
Vol. 46, No. 2, 2008, pp. 498–507.
doi:10.2514/1.32308

[36] Kuya, Y., Takeda, K., Zhang, X., and Forrester, A. I. J., “Multifidelity
Surrogate Modeling of Experimental and Computational Aerodynamic
Data Sets,” AIAA Journal, Vol. 49, No. 2, 2011, pp. 289–298.
doi:10.2514/1.J050384

[37] Lophaven, S. N., Nielsen, H. B., and Søndergaard, J., “DACE,AMatlab
Kriging Toolbox, Version 2.0,” Technical Univ. of Denmark TR-IMM-
TR-2002-12, Lyngby, Denmark, 2002.

[38] Lophaven, S. N., Nielsen, H. B., and Søndergaard, J., “Aspects of the
Matlab Toolbox DACE,” Technical Univ. of Denmark TR-IMM-TR-
2002-13, Lyngby, Denmark, 2002.

[39] Wendland, H., ScatteredData Approximation, CambridgeMonographs
on Applied and Computational Mathematics, Cambridge Univ. Press,
Cambridge, England, U.K., 2005.

[40] Fasshauer, G. E., Meshfree Approximation Methods with Matlab,
Interdisciplinary Mathematical Sciences, Vol. 6, World Scientific,
Hackensack, NJ, 2007.

[41] Goovaerts, P., Geostatistics for Natural Resources Evaluation, Oxford
Univ. Press, New York, 1997, pp. 147–152.

[42] Toal, D. J. J., Bressloff, N. W., and Keane, A. J., “Kriging Hyperpara-
meter Tuning Strategies,”AIAA Journal, Vol. 46, No. 5, 2008, pp. 1240–
1252.
doi:10.2514/1.34822

[43] Martin, J. D., and Simpson, T. W., “Use of Kriging Models to
Approximate Deterministic Computer Models,” AIAA Journal, Vol. 43,
No. 4, 2005, pp. 853–863.
doi:10.2514/1.8650

[44] Carlisle, A., andDozier, G., “An off-the-Shelf PSO,” Proceedings of the
Particle SwarmOptimizationWorkshop, Purdue School of Engineering
& Technology IUPUI, Indianapolis, 2001, pp. 1–6.

[45] Mackman, T. J., and Allen, C. B., “Multidimensional Adaptive
Sampling for Global Metamodelling,” 48th AIAA Aerospace Sciences

Meeting, AIAA Paper 2010-1418, 2010.
[46] Franke, R., “Scattered Data Interpolation: Tests of Some Methods,”

Mathematics of Computation, Vol. 38, No. 157, 1982, pp. 181–200.
[47] Fornberg, B., Driscoll, T. A.,Wright, G., andCharles, R., “Observations

on the Behavior of Radial Basis Function Approximations near
Boundaries,” Computers and Mathematics with Applications, Vol. 43,
Nos. 3–5, 2002, pp. 473–490.
doi:10.1016/S0898-1221(01)00299-1

[48] Advisory Group for Aerospace Research and Development, “Experi-
mental Data Base for Computer Program Assessment: Report of the
Fluid Dynamics Panel Working Group 04,” NATO TR-AGARD-
AR-138, 1979.

R. Haftka
Associate Editor

808 MACKMAN ETAL.

D
ow

nl
oa

de
d 

by
 B

R
IS

T
O

L
 U

N
IV

E
R

SI
T

Y
 o

n 
A

pr
il 

5,
 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.J
05

16
07

 

http://dx.doi.org/10.1029/JB076i008p01905
http://dx.doi.org/10.1029/JB076i008p01905
http://dx.doi.org/10.1214/ss/1177009939
http://dx.doi.org/10.1214/ss/1177009939
http://dx.doi.org/10.1016/0378-3758(90)90122-B
http://dx.doi.org/10.1016/0378-3758(90)90122-B
http://dx.doi.org/10.1016/S0965-9978(03)00042-5
http://dx.doi.org/10.1016/S0965-9978(03)00042-5
http://dx.doi.org/10.1016/0041-5553(67)90144-9
http://dx.doi.org/10.1016/0041-5553(67)90144-9
http://dx.doi.org/10.1145/42288.214372
http://dx.doi.org/10.1145/42288.214372
http://dx.doi.org/10.1145/42288.214372
http://dx.doi.org/10.1111/cgf.2002.21.issue-3
http://dx.doi.org/10.1111/cgf.2002.21.issue-3
http://dx.doi.org/10.1111/cgf.2002.21.issue-3
http://dx.doi.org/10.1111/cgf.2002.21.issue-3
http://dx.doi.org/10.1111/cgf.2002.21.issue-3
http://dx.doi.org/10.1023/A:1018975909870
http://dx.doi.org/10.1023/A:1018975909870
http://dx.doi.org/10.1016/j.cam.2009.08.058
http://dx.doi.org/10.1016/j.cam.2009.08.058
http://dx.doi.org/10.1016/j.cam.2009.08.058
http://dx.doi.org/10.1016/j.cam.2009.08.058
http://dx.doi.org/10.1016/j.cam.2009.08.058
http://dx.doi.org/10.1016/j.cam.2009.08.058
http://dx.doi.org/10.1080/02664768700000020
http://dx.doi.org/10.1080/02664768700000020
http://dx.doi.org/10.2514/1.16875
http://dx.doi.org/10.2514/1.16875
http://dx.doi.org/10.2514/1.16875
http://dx.doi.org/10.1023/A:1008306431147
http://dx.doi.org/10.1023/A:1008306431147
http://dx.doi.org/10.2514/1.C001003
http://dx.doi.org/10.2514/1.C001003
http://dx.doi.org/10.2514/1.C001003
http://dx.doi.org/10.2514/1.32308
http://dx.doi.org/10.2514/1.32308
http://dx.doi.org/10.2514/1.32308
http://dx.doi.org/10.2514/1.J050384
http://dx.doi.org/10.2514/1.J050384
http://dx.doi.org/10.2514/1.J050384
http://dx.doi.org/10.2514/1.34822
http://dx.doi.org/10.2514/1.34822
http://dx.doi.org/10.2514/1.34822
http://dx.doi.org/10.2514/1.8650
http://dx.doi.org/10.2514/1.8650
http://dx.doi.org/10.2514/1.8650
http://dx.doi.org/10.1016/S0898-1221(01)00299-1
http://dx.doi.org/10.1016/S0898-1221(01)00299-1

