Multi-Task Machine Learning

Understanding Social Networks
Leveraging Local Node Features for Structural Profiling

Motivation

With the ever-increasing prevalence of complex network data spanning various domains such
as social networks, biological networks, transportation networks, and more, there arises an
urgent need to comprehensively analyse and understand the fundamental structure of these
intricate networks. This analysis plays a pivotal role in acquiring invaluable insights and
facilitating astute decision-making processes. Moreover, it holds immense potential in enabling
personalization, targeted interventions, bolstering security measures, optimising system
performance, and driving advancements in research and knowledge.

Problem Statement
This project aims to harness the power of machine learning techniques to delve into the intricate
world of graph analysis, specifically focusing on
1. Link Prediction: Predict connections within the graph.
2. Influence Prediction: Forecast the influence of nodes within the network.
3. Community Detection: Determine if two nodes belong to the same network community.
4. Clustering: Cluster nodes based on their local properties.

While you may be new to these topics, this project is designed to encourage your curiosity and
innovative spirit. Embrace this opportunity to dive deep into graph theory, utilise local node
features, and innovate in these exciting areas of network analysis. Dive into in-depth literature
reviews, navigate new topics, and refine your ideas through regular guidance.

This endeavour holds tremendous potential across various domains, be it for targeted
marketing, community detection initiatives, or the deeper comprehension of complex social
dynamics.

Introduction

A plethora of features can be derived from any given graph. Some of the features are given
here. Local and global features are both valuable for extracting insights from graph data. The
extraction of features from graphs can encompass various characteristics such as node degree,
centrality measures, neighbourhood information, and more. However, local features are
particularly advantageous due to their simplicity in extraction. By focusing on individual nodes
and their immediate surroundings, local features involve less computational complexity
compared to analysing the entire graph structure. This ease of extraction makes local features a
preferred choice in many graph analysis tasks.

In this project, we will utilize local features only. Leveraging local features for graph machine
learning tasks offers other notable advantages. Local features also provide interpretability,
allowing for an easier understanding of node behaviour and characteristics. Additionally, local


https://towardsdatascience.com/feature-extraction-for-graphs-625f4c5fb8cd

features exhibit robustness, as they remain relatively stable even when the graph structure
changes. They also enable scalability by enabling parallelized feature extraction for efficient
processing of large-scale graphs. Lastly, the generalizability of local features ensures their
applicability across different graph datasets and facilitates the transferability of trained models.

Our focus solely lies on understanding the interplay between nodes within their local context.
We will use engineered features derived from the neighbourhood of the nodes within a range of
2-3 hops. The objective is to uncover relationships between nodes, identifying patterns,
similarities, and potential connections.

Pr

2
*%

R
%

2
*%

Data Collection: In this project, we will utilise one of the social networks from the
Stanford SNAP repository, which provides a collection of real-world network datasets.
We will use the Facebook dataset for this project. Use the file facebook_combined.txt’
for generating the graph.

Graph Representation: Convert the collected graph data into a suitable format for
analysis using relevant Python libraries. Choose an appropriate representation, such as
an adjacency matrix or an edge list, based on the characteristics of the graph and the
specific analysis requirements. Python libraries like NetworkX and igraph can be
employed for efficient graph manipulation and representation.

Feature Engineering: Derive informative features by extracting pertinent information
from the local properties of the graph nodes. This process involves considering
various features such as node degree, centrality measures, neighbourhood
characteristics, and other relevant local structural properties that can effectively
differentiate nodes. Creating an exhaustive and well-informed feature list for this task is
crucial, leveraging online articles and research papers as valuable resources for
gathering insights on deriving local node features from network data.

Data Preparation: Prepare the feature-engineered data. This may involve normalisation
or scaling of the features, handling missing values, or any other necessary
preprocessing steps to ensure the data is suitable for applying ML algorithms.

Evaluation: Assess the quality of individual tasks by employing appropriate evaluation
metrics.

Interpretation and Analysis: Analyse the obtained results to gain insights into the
structural properties shared by the nodes. Interpret the results in the context of the
problem domain.

Documentation and Reporting. Document the methodology, results, and findings of the
analysis process. Prepare a comprehensive report summarising the problem, approach,


https://snap.stanford.edu/data/#socnets
https://snap.stanford.edu/data/ego-Facebook.html

experiments conducted, and conclusions drawn. Communicate the insights and potential
applications of the analysis.

Cautions and Recommendations

K2
0.0

R
0.0

2
*%

Utilise local features only.

Begin by executing your code on a small dataset as an initial step. A sample dataset is
provided for reference.

It is important to note that visualising a network becomes challenging and
computationally intensive when the number of nodes exceeds 500. Avoid investing
excessive time in generating visualisations under such circumstances.

Consider using the PyCaret package for running ML algorithms.

Additional Pointers for Similar Projects

-> Domain Knowledge: Cultivate a profound understanding of the domain(s) from which the

Note:

graph data originates. This knowledge will empower you to make informed decisions
about feature selection, result interpretation, and validation.

Data Preprocessing: Master essential data preprocessing techniques, including data
cleaning, outlier handling, and normalisation. This will enhance the quality and reliability
of your analysis results.

Visualisation Techniques: Explore a variety of visualisation methods tailored for graph
data, such as network visualisation and feature distribution plots. Leverage visualisations
to unveil patterns, comprehend the graph's structure, and effectively communicate your
findings.

Handling Large-Scale Graphs: Acquire strategies for addressing the challenges
associated with large-scale graphs. Familiarise yourself with techniques like graph
sampling, partitioning, and parallel processing to analyse and scale computations
efficiently.

Ethical Considerations: Develop a keen awareness of the ethical aspects involved in
working with graph data, particularly regarding privacy and sensitive information. Apply
appropriate data anonymization techniques and adhere to ethical guidelines.

In the realm of graph-related tasks, there has been a notable shift towards Graph Neural
Networks (GNNs). GNN-based methodologies commonly necessitate comprehensive
knowledge of the entire network. However, our goal is to harness local network structure
information. You have the option to investigate pre-trained alternatives for Graph Neural
Networks that are capable of fulfilling this objective.


https://networkrepository.com/soc-karate.php

