
1. Dissolution of a Slowly Rotating Sphere: Consider the quasi-steady
dissolution of a slowly rotating sphere of a sparingly soluble solid A in
a large body of an initially pure liquid B at rest far from the sphere.
The solid A has an equlibrium solubility in the liquid B of ωeqA << 1.
Presume that the solid very nearly maintains its spherical shape as it dis-
solves, and that the instantaneous radius of the sphere, R(t) , can be
considered constant for the purpose of this analysis (quasi-steady assump-
tion). Use a spherical-polar coordinate system (see Figure A-3 (b) in
Appendix A of Deen). The sphere rotates slowly about the z axis with
angular frequency ω ([=] 1

T ) low enough that the "creeping flow" (i.e.
inertia-free) approximation applies for the velocity distribution

v ' (0, 0, vφ(r, θ))

vφ(r, θ) ' ωR3

r2
sin θ

We want to predict the average rate of dissolution of A into the liquid
phase as expressed by an average Sherwood number Shave

Shave =
kaveR

ρDAB

where kave is the average mass transfer coeffi cient, defined by∫ π

0

∫ 2π

0

nAr|r=RR
2 sin θdθdφ = 4πR2kaveωeqA [=]

M

T

(a) Apply the steady state FCMT model in the trace limit to this system
to find the species A continuity equation in the liquid phase. Write
down a set of boundary conditions, assuming local chemical equilib-
rium at the sphere surface and assuming axisymmetry wrt φ. What
do these auxiliary conditions suggest about the solute mass fraction
distribution ωA = ωA(r, θ, φ) ? Simplify the model accordingly.

(b) Scale the model from a). using

r̄ =
r

R
; ω =

ωA
ωeqA

and find a (quasi) steady solution for ω(r̄).

(c) Determine Shave. How does rotation of the sphere affect the rate
of dissolution according to this model? Justify your answer..

2



2. Sedimentation of Charged Colloidal Particles. Sedimentation in
aqueous media typically involves charged species. A common scenario is
the sedimentation of charged colloidal particles in an aqueous electrolyte
solution. Here we develop a simple model for the steady-state distribution
in a gravitional field assuming Z (> 0) valent colloidal particles, with
Z >> 1 , suspended at trace levels with their monovalent counterions
(anions) in water, and no additional added elecrolyte (i.e. "salt free"
conditions). Denote with subscripts 1, 2, and 3 the cationic colloidal
particles, the anionic counterions and water, respectively. The colloidal
particles (i = 1) are much larger than the anionic counterions or water
(V̄1 >> V̄j ; j = 2, 3 where V̄j means the molar volume).

(a) Starting with Eqns (6.32) and (6.45) in V&O for binary systems,
one can develop the ff expressions for the molar diffusion fluxes of
the trace solutes (i = 1, 2) wrt the volume average velocity v†, J†i =
ci
(
vi−v†

)
, combining ordinary diffusion, pressure diffusion and forced

diffusion (migration) contributions

lim

x1 → 0
J†1 = −D∞13∇c1 + s∞1 c1

1

ρ
∇p− c1D∞13

ZF

RT
∇φel ; s∞1 = D∞13

V̄1

RT

(
ρ0

1 − ρ0
3

)
lim

x2 → 0
J†2 = −D∞23∇c2 + s∞2 c2

1

ρ
∇p+ c2D

∞
23

F

RT
∇φel ; s∞2 = D∞23

V̄2

RT

(
ρ0

2 − ρ0
3

)
where

lim

xi → 0
Di3 = D∞i3 constant

lim

xi → 0
si (ρi) = s∞i constant ; s∞i = D∞i3

V̄i
RT

(
ρ0
i − ρ0

3

)
with ρ0

i meaning the density of pure i. Show that these equations
are dimensionally consistent (i.e. all terms have the same units).

(b) Use the diffusion flux laws from a). to model the steady final state
of one directional sedimentation of the charged particles in a closed
vertical column of height H. Employ a Cartesian coordinate system
with origin on the bottom of the column and the x direction pointing
upwards against gravity. Assume no volume change on mixing, and
local electrical neutrality Find the differential equations governing
the steady density distributions of the colloidal particles c1(x) and
their counter-ions, c2(x). Give a suffi cient set of auxiliary conditions
needed to solve for c1(x), c2(x) and φel(x).

(c) Scale the system resulting from part b). using

x̄ =
x

H
; c̄i =

ci
ci0

; φ̄ =
φelF

RT

where ci0 are the initial uniform (trace) concentrations of the col-
loidal particles and counterions (note Zc10 = c20) and show that
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the scaled colloid particle density distribution, c̄1(x̄) for Z >> 1
is very nearly

c̄1 '
Pe2

1− e−Pe2 e
−Pe2x̄ ; Pe2 =

s∞2 gH

D∞23

=
V̄2

RT

(
ρ0

2 − ρ0
3

)
gH

How does this result compare with the case of uncharged colloidal
particles, i.e. does the charge on the colloidal particles increase or
decrease the extent of segregation of the particles? Justify your an-
swer. (Hint: what is Z for the uncharged case? )
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3. Limiting Current in a Well-Stirred Galvanostatic EC Cell with
an Ionic Liquid Elecrolyte: Consider a galvanostatic EC cell with a
ternary ionic liquid electrolyte consisting of i = 1 inert cation (Z1 = 1)
, i = 2 inert anion (Z2 = −1) and i = 3 reactive cation (Z3 = 1).
Assume the cell is well stirred with "bulk" mole fractions xi,∞, except for
a stagnant layer of thickness δ adjacent to the cathode surface where a
heterogeneous reduction occurs I+

3,solution + e→ I3,solid associated with
the (experimentally controlled) current i . Assume a one directional
steady-state process and use RCC with the origin on cathode and δx
pointing into the ionic liquid.

(a) Employ the Stefan Maxwell constitutive laws to work this problem
These are developed in section 6.5 of V&O where the following "linear
phenomenological force-flux" relations are given for a ternary mixture
of uncharged fluids under isothermal, isobaric conditions

− 1

RT
∇µ1 =

x2

D12
(v1−v2) +

x3

D13
(v1−v3)

− 1

RT
∇µ2 =

x1

D12
(v1−v2) +

x3

D23
(v1−v3)

Here the µi are molar (local) chemical potentials, and the three
independent Dij are the Stefan-Maxwell diffusivities. To adapt
these to a ternary ionic liquid mixture and include migration effects,
one can, in principle, substitute the molar electrochemical potential

µi → µei = µi + φ̄i = µi + ZiFφ
e

where Zi is the valence and F is Faraday’s constant. A necessary
condition for the validilty of this substitution is that µei obey the
Gibbs Duhem equation. Show that this is true for an electrically
neutral mixture.

(b) If we adopt that chemical part of µei obeys

µi = RT ln [xiγi] + µ0
i (T, p)

with constant γi show that

−
[
∇ lnx1 + Z1

F

RT
∇φe

]
=

x2

D12
(v1−v2) +

x3

D13
(v1−v3)

−
[
∇ lnx2 + Z2

F

RT
∇φe

]
=

x1

D12
(v1−v2) +

x3

D23
(v1−v3)

(c) Show that for the 1-d steady EC cell, the equations in b) reduce to

d

dx
lnx1 +

F

RT

d

dx
φe =

ix
cD13F

d

dx
lnx2 −

F

RT

d

dx
φe =

ix
cD23F
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Use these, with c assumed constant, appropriate boundary condi-
tions, and local electrical neutrality, to find that the limiting current
obeys

ilx = c
D13D23

(D23 +D13) δ
F ln (1− 2x3,∞)

Discuss the limiting cases

x3,∞ → 0

x3,∞ → 1
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