Please note that

- Due date: April 16, Tuesday, by 11:55 pm.
- Late submission is NOT accepted.

Question 1. Let $L : \mathbb{R}^n \to \mathbb{R}^m$ and $T : \mathbb{R}^n \to \mathbb{R}^m$ be linear transformation.

- 1. Show that $S : \mathbb{R}^n \to \mathbb{R}^m$ defined as S(x) = L(x) + T(x) is a linear transformation.
- 2. Let A and B be the matrix representations of L and T respectively. Verify that A + B is the matrix representation of S.
- Question 2. Consider two linear transformations $S : \mathbb{R}^n \to \mathbb{R}^m$ and $T : \mathbb{R}^m \to \mathbb{R}^p$. Define $L : \mathbb{R}^n \to \mathbb{R}^p$ as $L(x) = T(S(x)), x \in \mathbb{R}^n$.
 - 1. Show that L is a linear transformation.
 - Let A and B be the matrix representation of S and T respectively.
 - a) Justify why the matrix product BA is defined.
 - b) Verify that BA is the matrix representation of L.

Question 3. Consider $A, B \in \mathbb{R}^{n \times n}$. Suppose that A and B are similar.

- 1. Show that A^2 and B^2 are similar.
- 2. Show that, for any integer $n \ge 3$, A^n and B^n are similar.
- 3. Show that, if $A^2 = I$, then $B^2 = I$.
- Show that, if A is invertible, then B is invertible and A⁻¹ and B⁻¹ are similar.

1

- 5. Show that there is an invertible matrix S such that $Null(B) = \{x \in \mathbb{R}^n | \exists y \in Null(A), x = S^{-1}y\}.$
- Show that n(A) = n(B) and rank(A) = rank(B).

Question 4. Consider the linear transformation $L: P_3 \rightarrow P_2$ defined as

 $L(a_0 + a_1x + a_2x^2 + a_3x^3) = a_1 + (2a_2 - a_1 - a_0)x + (2a_3 - 2a_1 - a_0)x^2.$

- 1. Find A, the matrix of L in the bases $B = \{1, x, x^2, x^3\}$ and $B' = \{1, x, x^2\}$.
- Verify that, if p ∈ Ker(L), then x = [p]_B ∈ Null(A).
- Find a basis of Ker(L).
- Verify that, if q ∈ L(P₃), then y = [q]_{B'} ∈ Col(A).
- 5. Find a basis of $L(P_3)$.

Question 5. Are the following mappings linear transformations?

a)
$$L: \mathbb{R}^2 \to \mathbb{R}^3, L(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}) = \begin{bmatrix} 0 \\ 0 \\ |x_1 + x_2| \end{bmatrix}.$$

b) $L: P_2 \to \mathbb{R}^2, L(a_0 + a_1x + a_2x^2) = \begin{bmatrix} a_0a_1 \\ a_2 \end{bmatrix}.$

Question 6. Let $L : \mathbb{R}^3 \to \mathbb{R}^3$ be defined as L(x) = Ax, where $A = \begin{bmatrix} 3 & -1 & -2 \\ 2 & 0 & -2 \\ 2 & -1 & -1 \end{bmatrix}$. Consider the basis of \mathbb{R}^3 , $B = \{v_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, v_2 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, v_3 = \begin{bmatrix} 0 \\ -2 \\ 1 \end{bmatrix}\}$. Let $B_0 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$. $\{e_1, e_2, e_3\}$ be the standard basis of \mathbb{R}^3

- 1. Find the transition matrix from B to B_0 .
- Find by two different methods, the matrix of L with respect to the basis B.