Instructions:
e Answer all questions part 1 to 3.
e All relevant materials available in this drive link:
https://drive.google.com/drive/folders/1BztDoOqLjzDDgXWUG7xaylAwZIhR3bB3?usp=d
rive_link

e Use MATLAB, and please share all relevant scripts/code and outputs. (as a drive link if
necessary)

Modern Roboties: Analysis and Control
Project

Part 1 In this part, we will use the kinematic car model presented in [1, Section 4.1.1]
(references are listed on the last page of this document). You will first create a Simulink
diagram, then implement two closed-loop control laws.

(a)

(b)

(d)

The dynamics of the system are governed by

L =wvcosf

Yy = wvsinf 1
e (1)
=3 an-y

Set up a Simulink subsystem which inputs rear wheel velocity v and steering angle ~,
and outputs the planar position (x,y) and heading angle . Take ¢ = 1 m. Provide a
screenshot of your Simulink design, including the contents of any subsystems you used.

Create a closed-loop control system to move to a desired point. This system inputs a
desired planar position (e, Yret), computes the reference heading

Brer = atan2 (yref — Y, Trel — .I‘)

then employs the control

V= kv \/(xref - ?r)Q + (yI"E'f - y)Q
¥ = ky(fres © 0)

where Gf &0 is the shortest path from rer to # on the unit circle — this is discussed in
the course notes. Using an initial state of (zo, yo, 6h) = (0,0, 7/4), tune the control gains
k, and k. to drive the car to the reference (desired) position (Zye, Yrer) = (10, —8) m.
Provide a plot of the states (z,y, #) and inputs (v,) as well as the values of the control
gains you used.

Using the same initial and desired state as (b), tune the gains k, and k. to make the
vehicle drive continuously around the goal without reaching it — this is known as a limit
cycle. Provide the values of the gains used along with a plot of z versus y (i.e. overhead
position of the car) for your limit cycle.

We will now implement a controller proposed by [2] allowing the kinematic car to move
to a desired 2D pose (Zres, Yrer, Orer) . Introduce the new input w through

v = atan2(wl, v) (2)
which transforms (1) into
x =wvcosf
y =wvsinf (3)

-

Define the set of variables

p =V (s —)2+ (yror— 1)’
¢ = atan2(yhet — Y, Tret —)
o—=¢—>0
B=0¢— Ot

Using the nonlinear feedback control law

v = kypcosa
sin @ cos «
w=kya+k,—(a+3)

o
with &y > 0, by > 0 can be shown (see course notes) to make (3) converge asymptot-
ically to (@ier, Yrer; Orer). Note because our actual system (1) employs input ~ instead
of w, we employ the above result in (2) to obtan ~. Implement the above-described
design in Simulink (you may wish to use the MATLAB Function block found in Library
Browser under Simulink -> User-Defined Functions for the control law). Provide
a screenshot of your design, plus a print-out of your MATLAB function if you used it.

(e) Using the design in (d) and initial pose (zo, yn, #) = (0,0, 0), use your design to drive
to the following final configurations, tuning gains k,. k, to get smooth performance:
(1) (xrefs Yref, eref) — (51 8. 0)

(11) (xrefs Yref eref) = (_101 —4, —?T/Z)
For each run, provide plots of the vehicle states (z, y, #) and inputs (v, y) plus the values
of control gains you used for each run.

(f) During your gain tuning for this second design, did the system perform a limit cycle?

google drive

Part 2 Load the satellite Simulink diagram provided to you on o This system inputs
torques Ty, T2, 73 about its three body-fixed axes, and outputs attitude R € SO(3) and
body-frame angular velocity w” € R?. Note the output attitude is a matrix signal which gets
converted to Euler angles (¢, 6, ') using a custom MATLAB Function block named R2e.

(a) First run the system in open-loop mode, inputting a step input of magnitude 0.1 N m
along an individual axis, then scoping the output angular velocity vector w”. You should
observe a “cross-coupling” effect between the output axes. What is the cause of this?
How could the satellite be structurally re-designed to avoid this effect?

(b) Now implement the linear proportional-derivative control law
11 =K (bret — &) + k(=)
T2 = k;(eref - 9) + ;‘31129(_9)
T3 = kl';p (T.ﬂ'ref T '1;""‘) - kel? (_U{')

where the Euler angle time derivatives (@6' 1;'}] can be obtained from

¢ 1 singtanf cos¢tand wr?
61 = |0 cos @ — sin @ ws
W 0 singsecf cospsec| |wl

2

Provide a screenshot of your design. What is the reason for including a derivative
feedback action?

(c¢) Starting from initial conditions R(0) = I = (¢(0),6(0),%(0)) = (0,0,0), tune the
linear control gains in order for the system to stabilize an attitude of (@wf, bref, Vrer) =
(r/6,7/6,7/6). Provide plots of (i) Euler angles versus time and (i) torque inputs
versus time during this maneuver.

(d) Using the same control gains as (c), try stabilizing (@yef, Gret, Uret) = (27/3,27/3,27/3).
Explain what you see happening. Can performance be improved by re-tuning the
controller gains?

(e) Now replace the linear closed-loop control with the nonlinear controller described in [3],
3
b T
T=—Kw — KPZO[@B?; X (. Re;)
i=1

where K, K, € R**3 are positive-definite matrices (for instance diagonal matrices with
positive, non-zero entries), w” € R? is the angular velocity vector as before, a; € R™ are
positive, non-zero and distinet scalars, e] = [1 0 O]T etc, and Ryer, R € SO(3) are the
desired and actual attitude, respectively. Suggestion: use the MATLAB Function block
to implement your control law. Provide a screenshot of your design and a print-out of

your MATLAB code if you used it.

(f) Tune the nonlinear controller to stabilize R, corresponding to (&ref, Oref, Wret) = (7/6,7/6, 7/6).
Provide plots of Euler angles versus time during this maneuver. How does performance
compare with the linear control from (c)?

(g) Now runthe nonlinear controller using Rye corresponding to (e, Oret, Ures) = (27/3, 27 /3, 27/3).
Provide nine plots (you can use MATLAB'’s subplot command) of the individual en-
tries of R and R, versus time. Based on these plots, does vour closed-loop system
work properly?
google drive

Part 3 Load the quadcopter Simulink diagram provided on link This system is a 6 DoF
rigid-body with inputs f; (thrust along b; vector) and 7,., 7,, 7, (torques about roll, pitch and
yaw axes, respectively), and outputs R € SO(3) (attitude), w (angular velocity vector in the
body-fixed frame), and p, v (position and velocity with respect to the ground-fixed North-
East-Down frame). Remark f; < 0 corresponds to an upward thrust due to b3 pointing down,
and that R is converted to roll-pitch-yaw Euler angles (¢, #,) in the diagram. You will need
to manually rotate the Simscape visualization perspective to orient the third reference axis
into the down position.

(a) Implement the linear closed-loop control described in [1, Section 4.2]. This control
consists of three proportional-derivative controllers working in tandem: The lateral
and longitudinal control)

Tr = kf(éref - 65) - k?@

Ty = kp (6o — 0) — k16

(b)

b

where (?5 6 are obtained from w? as in the satellite controller, and (@yef, Oref) are computed

by
(.bref = kg(plat,ref - plat) - k(}?vlat
Gref — _k;(plon,ref - plon) T kégvlon
where o |
Pat] _ [—siny cosy] [pw
Pion| | cosv sind| |pg
and

|:plat_._rcf:| - Rw |:p.’\.-"rcfj| 1 [-Tllat} _ Hﬁr |:-?-‘_-’\..'<I
Plon.ref " LPE.ret Vlon " |VE
with [py pE]T, [0y ??E]T the vehicle position and veloeity in the NED frame, and
[PNret PExeil! the reference trajectory in the NED frame; the yaw control
1y = ky (Yra ©¢) — k0

where . is the reference yaw angle of the vehicle and & is the same operator as in
Part 1b; and the altitude control

ft=k (pprs —PD) — kPvp —my

where f; < 0 represents an upwards thrust, pp and vp are the vehicle’s position and
velocity along the down axis, m = 1.216 kg is the mass of the vehicle, and g = 9.81 m;’siz.
Provide a screenshot of your design.

Using your control from (a) and zero initial conditions (representing a take-off configura-

tion with the drone pointing north), tune your gains to stabilize [py e PEret PDref Uret] =

1 1 —2 =n/2]ie ahover 2 m above the ground facing E. Your gains should be
tuned to avoid any significant overshoots. Provide plots of position (as py, pg and pp)
and attitude (as ¢, @ and) versus time during this maneuver.

Starting from an initial hover at [py(0) pgp(0) pp(0)] =[0 0 — 2] with attitude
[¢(0) 6(0) ¥(0)] =[0 0 0], tune the gains to track a figure-8 trajectory in space
described by the parametric curves

PN ref(t) = lag sin(2mt /T.)
PEret(t) = (Im/2) sin(4nt /t.)
Poret(t) = (—h/2)sin(nt/t,) — 2
where Iy =2 m, [, =1 m are the major and minor diameters of each lobe, h =2 m is

the total vertical height of the trajectory, and . = 10 s is the time required to complete
one full circuit. Use the reference yaw angle

Vet (t) = atan2 [(d/dt)pE rei(t), (d/d)pn rei(t)]

which points the vehicle in the direction of travel, and where the time derivatives can
be obtained by analytically differentiating the parametric curves. The initial condi-
tion on pp can be specified by going inside the quadcopter subsystem, double-clicking

4

(d)

the 6-DOF Joint, expanding Z Prismatic Primitive (Pz) — State Targets —
Specify Position Target (this should be enabled), and then entering the desired
pp(0) into the Value field.

Provide a screenshot of your design. Plot positions p and reference positions py.s versus
time, attitude (¢, #,v) and reference attitude (@ret, fref, Urer) vVersus time, and control
inputs (7, 7, 7y, ft) versus time, for 0 < ¢ < t. i.e. one complete circuit. Note you can
unwrap the ¢/ data prior to plotting in order to remove jumps of 27. The controller
gains should be tuned to provide accurate tracking and avoid overshoots.

Now replace the linear control from (a) by the geometric tracking control law proposed
in [4]. First, calculate the vector

= k’p(pref - p) + kt'(pref - T") + mﬁref — mges € RS

where k., k, € R are positive constants, pret = [PNjet PE vt p_Drref:IT andp=[py pe pp|"

are the desired and actual position vector in the world frame, pyf = (d/dt)pres and v
are the desired and actual velocity vector in the world frame, pyer = (d2 /dt2)pmf 18 the
desired acceleration vector in the world frame, and m is the mass of the vehicle and
g is the acceleration due to gravity as in (a). Note that pref and pref are obtained by
analytic differentiation of the parametric curve ps given in (¢). The thrust input f; is
calculated as

Jfi =2 Reg

where R € SO(3) is the current attitude of the drone and e3 = [0 0 1]7. As before,
ft < 0indicates an upward thrust. The remaining three inputs 7., 7, 7, are employed to
point the body-fixed frame vector by in the direction —z as follows. Define the reference
(desired) attitude matrix R € SO(3) as

B = ['L‘l V2 vﬂ

The right-most column w3, which represents the third body-fixed axis of the drone at
its reference attitude expressed in ground-frame coordinates, is assigned as

&y

RE

Columns vy and wvs, representing the ground-frame coordinates of the first and second
body-fixed axes of the drone at its reference attitude, lie in the plane normal to v3. We
will employ the reference yaw angle 1/, to find their direction using the following series
of calculations. First, calculate the vectors

Ccos 't.f}ref — sin h' ref cos h' ref

0] |1
va = R3(Uref)er = [SinUrer €08 0| |0] = | Sin thye
|0 0 1] 0] | 0
[costUhet —sintnes 0] [O] [— sin et
v = R3(Uer)ea = [sintlpes oSt 0] [1] = | costhes
| 0 0 1 _U_ | 0

Note that vy is perpendicular to both v3 and va, while vy i1s perpendicular to both vg
and vg. The first relationship uniquely determines vy except when wvs || vy (singularity
type “A”), and the second relationship uniquely determines v; except when vs || vp
(singularity type “B”); however, these two singularities will never occur at the same
time. We thus compute the vector norms ||vz X va| and |[vg X vs||, then perform
calculations corresponding to the larger of the two values, namely

. U3 X UA
if |lusXwval >|lvpxvs||l = wm=-—"—— wv1=v2X13
||'1J3 X 'L'AH
or
- g X U3
it ||y xug|>|lvaxvs|]|=v1=—=, m2a=v3X0
|lug X vs||

The result of the above calculations is the reference attitude matrix Ry = [-vl U9 t.‘g].
Next define the attitude and angular velocity errors

ep= %s—* (RT Ryt — RL4R)

ref

T : i
ey = R Bigrtper —

where w € R? is the angular velocity vector of the drone expressed in the body-fixed
frame, and wye; = [0 0 U]T as discussed in the notes. The torque inputs are then
calculated as

Ty
Tp| = krer + kwew +wXxIw+1 [RTHrefwref - S(W)RTHrefWref}
Ty

where kg, k, € R are controller gains, Z is the mass moment of mertia matrix of the
drone, in our case
0.0202 0 0.004
I=1| 0 0.027 0 kg m?
0.004 0 0.0356

and W= [0 0 0]7 as discussed in the notes.

Implement the above-discussed nonlinear control in Simulink. Provide a print-out of
your controller code within the MATLAB Function block.

Test your nonlinear control design with the Figure-8 reference trajectory from (c), using
the initial conditions [px(0) pge(0) pp(0)] =0 0 —4] and [#(0) @(0) #(0)] =
[0 7 0] — note this represents an initially upside-down drone. The initial height is
specified as in section (c). To specify the initial attitude, go into the drone subsystem,
double-click the 6-DOF Joint, expand Spherical Primitive (8), then set the values
as follows:

Field Value
Specify Position Target [Enabled]

Priority High (desired)
Value Rotation Sequence
Rotation About Base Axes
Sequence X-Y-7

Angles [0 pi 0] rad

Provide plots of positions p and pys versus time, attitudes (¢, 6,1)) versus time, and
control inputs (f;, 7., 7, 7,) versus time for two complete circuits 0 < ¢ < 2t,, as well
as the values of controller gains k,, k,, kg, k. you used to obtamn a stable closed-
loop system response. Could the linear control law from (a) be used to perform this
experiment? Why or why not?

References

[1] Peter Corke. Robotics, Vision and Control: Fundamental Algorithms in MATLAB, vol-
ume 118 of Springer Tracts in Advanced Robotics. Springer, second edition, 2017.

[2] Michele Aicardi, Giuseppe Casalino, Antonio Bicchi, and Aldo Balestrino. Closed loop
steering of unicycle-like vehicles via Lyapunov techniques. IEEE Robotics & Automation

Magazine, 2(1):27-35, March 1995.

[3] Nalin A. Chaturvedi, Amit K. Sanyal, and N. Harris McClamroch. Rigid-body attitude
control: Using rotation matrices for continuous, singularity-free control laws. [EEE

Control Systems Magazine, 31(3):30-51, June 2011.

[4] Taeyoung Lee, Melvin Leok, and N. Harris McClamroch. Geometric tracking control of a
quadrotor UAV on SE(3). In Proceedings of the 49th IEEE Conference on Decision and
Control, pages 5420 5425, Atlanta, GA, December 2010.

