
CS520 Computer Architecture
Project 1 – Spring 2024

Due date: 3/13/2024

1. RULES

(1) All students must work alone. Cooperation is not allowed.
(2) Sharing of code between students is considered cheating and will receive appropriate action in
accordance with university policy. The TAs will scan source code through various tools available to us for
detecting cheating. Source code that is flagged by these tools will be dealt with severely.
(3) You must do all your work in C programming language. C++ is not allowed.
(4) You are not allowed to add more C files and libraries.
(5) Your code must be compiled on remote.cs.binghamton.edu or the machines in the EB-G7 and EB-Q22.
This is the platform where the TAs will compile and test your simulator. They all have the same software
environment.

2. Project Description

In this project, you will construct a 1-cycle processor simulator that simulates test programs.

3. 1-Cycle Processor Simulator

1-Cycle Processor
(Fetch, Decode, Execution,

Writeback)

Register File

Write Read

Instructions

The 1-cycle processor fetches, decodes, and executes one instruction every cycle with 64 integer
registers. The processor supports 4 to 6 bytes varying-length instructions, which consist of an opcode
and operands. The operand is either a 2B immediate number or a register address. The first operand
specifies a destination register that contains the result if the instruction produces a result. The other
operands contain the necessary numbers for the conducted operation. The processor supports 3
different instruction lengths as follows.

Type Opcode Operand 1 Operand 2 Operand 3

Inst-4B
Opcode (1 byte) Register (1 byte) Register (1 byte) Register (1 byte)

Opcode (1 byte) Register (1 byte) Immediate (2 bytes)

Inst-5B Opcode (1 byte) Register (1 byte) Register (1 byte) Immediate (2 bytes)

Inst-6B Opcode (1 byte) Register (1 byte) Immediate (2 bytes) Immediate (2 bytes)

The 1B opcode has the following format.

2-bit instruction length 2-bit instruction group 2-bit instruction type 2-bit reserved

For example, an opcode 0001 1000 (0x18) indicate:

00: 4B instructions
01: arithmetic instruction
10: multiplication
00: reserved

Instruction: The processor supports 6 types of instructions, 4 arithmetic instructions (add, sub, mul, and
div) and 2 others (set and ret). Each arithmetic instruction has 3 different formats with varying lengths.
The processor only supports integer arithmetic operations with 64 integer registers (R0 – R63), each
with a 4B size. All numbers between 0 and 1 are discarded (floor).

Mnemonic
(1B)

Opcode
Description

Destination (1B) Left Operand (1B or 2B) Right Operand (1B or 2B)

set 0x01
set Rx, #Imm Set an immediate value to register Rx

Register Rx Immediate value (2B)

add 0x10
add Rx, Ry, Rz Compute Rx = Ry + Rz

Register Rx Register Ry (1B) Register Rz (1B)

add 0x50
add Rx, Ry, #Imm Compute Rx = Ry + immediate valve

Register Rx Register Ry (1B) Immediate value (2B)

add 0x90
add Rx, #imm, #Imm Compute Rx = immediate valve + immediate valve

Register Rx Immediate valve (2B) Immediate value (2B)

sub 0x14
sub Rx, Ry, Rz Compute Rx = Ry – Rz

Register Rx Register Ry (1B) Register Rz (1B)

sub 0x54
sub Rx, Ry, #Imm Compute Rx = Ry - immediate valve

Register Rx Register Ry (1B) Immediate value (2B)

sub 0x94
sub Rx, #imm, #Imm Compute Rx = immediate valve - immediate valve

Register Rx Immediate valve (2B) Immediate value (2B)

mul 0x18
mul Rx, Ry, Rz Compute Rx = Ry × Rz

Register Rx Register Ry (1B) Register Rz (1B)

mul 0x58
mul Rx, Ry, #Imm Compute Rx = Ry × immediate valve

Register Rx Register Ry (1B) Immediate value (2B)

mul 0x98
mul Rx, #imm, #Imm Compute Rx = immediate valve × immediate valve

Register Rx Immediate valve (2B) Immediate value (2B)

div 0x1C
div Rx, Ry, Rz Compute Rx = Ry ÷ Rz

Register Rx Register Ry (1B) Register Rz (1B)

div 0x5C
div Rx, Ry, #Imm Compute Rx = Ry ÷ immediate valve

Register Rx Register Ry (1B) Immediate value (2B)

div 0x9C
div Rx, #imm, #Imm Compute Rx = immediate valve ÷ immediate valve

Register Rx Immediate valve (2B) Immediate value (2B)

ret 0x00
ret (exit the current program)

0x00 0x00 0x00

Memory: The memory map file (mmap#.in) contains a snapshot of the system's 64KB main memory,
indicating that all data and instructions are encoded in a binary code format. The file position 0 to 65535
is mapped to the main memory address 0 to 65535. The data at the file position presents the data in the
corresponding location of the main memory. The programs are mapped to the text area of the memory,
address 0 to 999. The instructions are stored in the memory in order starting from 0.

Text

Data

0

1000

65535

Instructions

4. Validation and Other Requirements

4.1. Validation requirements

Your simulator should print all the register values, execution cycles, and the number of instruction types
on the screen. Sample outputs are provided on the websites. Your simulator does not need to create log
files (test#.log); those are provided to help your debugging.

You must run your simulator and debug it until it matches the simulation outputs. Your simulator must
print the final contents in the register and performance results correctly.

Your output must match both numerically and in terms of formatting, because the TAs will “diff” your
output with the correct output. You must confirm correctness of your simulator by following these two
steps for each program:

1) Redirect the console output of your simulator to a temporary file. This can be achieved by placing “>
your_output_file” after the simulator command.

2) Test whether or not your outputs match properly, by running this unix command:
“diff –iw <your_output_file> <posted_output_file>”

The –iw flags tell “diff” to treat upper-case and lower-case as equivalent and to ignore the amount of
whitespace between words. Therefore, you do not need to worry about the exact number of spaces or
tabs as long as there is some whitespace where the sample outputs have whitespace. Both your outputs
must be the same as the solution.

3) Your simulator must run correctly not only with the given programs. TA will validate your simulator
with hidden programs.

4) Since the correct answers are already provided, we will treat submissions that print exact outputs
without correct implementations as cheating.

4.2. Compiling and running simulator

You will hand in source code, and the TA will compile and run your simulator. As such, you must be able
to compile and run your simulator on machines in EB-G7 and EB-Q22. This is required so that the TAs
can compile and run your simulator. You can also access the machine remotely with the same
environment at remote.cs.binghamton.edu via SSH. A make file is provided with two commands: make
and make clean.

The simulator receives one argument: a memory map. The input memory map contains a program that
it simulates. The below command must generate your simulation output. The simulation results must be
printed on the terminal (standard output).

e.g., sim mem1.in (input)

5. What to submit

You must hand in two c files, cpu.c, and cpu.h. Please do not include other files including your outputs.
Please follow the following naming rule.

LASTNAME_FIRSTNAME_project1.tar.gz

You also need to submit a cover page with the project title, the Honor Pledge, and your full name as an
electronic signature of the Honor Pledge. A cover page is posted on the project website.

6. Late submissions/Penalties

Late submission is only allowed the first five days after the due date, with a penalty. Also, no extension
will be allowed.

Various deductions (out of 100 points):
-8 points for each date late during the first 5 days.

Up to -20 points for not complying with specific procedures. Follow all procedures very carefully to
avoid penalties.

Cheating: Source code that is flagged by tools available to us will be dealt with according to University
Policy. This includes a 0 for the project and other disciplinary actions. Note that we are not only using a
tool. We check your codes for ourselves and flag the codes that look suspicious as cheating.

