
1

2

Assignment 3: Ajax, JSON, Responsive Design and Node.js

Stock Search (AJAX/JSON/HTML5/

Bootstrap/Angular /Node.js/Cloud Exercise)

1. Objectives

● Get familiar with the AJAX and JSON technologies
● Use a combination of HTML5, Bootstrap and Angular on client side
● Use Node.js on server side
● Get familiar with Bootstrap to enhance the user experience using responsive design
● Get hands-on experience of Cloud services hosting NodeJS/Express
● Learn to use popular APIs such as the Finnhub API, Polygon.io API and Highcharts API
● Learn how to manage and access a NoSQL DBMS like MongoDB Atlas, in the cloud

2. Background

2.1.AJAX and JSON

AJAX (Asynchronous JavaScript + XML) incorporates several technologies
● Standards-based presentation using CSS
● Result display and interaction using the Document Object Model (DOM)
● Data interchange and manipulation using XML and JSON
● Asynchronous data retrieval using XMLHttpRequest
● JavaScript binding everything

together See the class slides on D2L

Brightspace.

JSON, short for JavaScript Object Notation, is a lightweight data interchange format. Its
main application is in AJAX web application programming, where it serves as an
alternative to the use of the XML format for data exchange between client and server.
See the class slides on D2L Brightspace.

2.2.Bootstrap

Bootstrap is a free collection of tools for creating responsive websites and web
applications. It contains HTML and CSS-based design templates for typography, forms,
buttons, navigation, and other interface components, as well as optional JavaScript
extensions. To learn more details about Bootstrap please refer to the lecture material on
Responsive Web Design (RWD). We recommend using Bootstrap 5.3.2, Angular 17, and
ng-bootstrap16.x.x in this assignment. See the RWD class slides on D2L Brightspace for
the list of dependencies between these various versions.

3

2.3.Cloud Services

2.3.1.Google App Engine (GAE)

Google App Engine applications are easy to create, easy to maintain, and easy to scale
as your traffic and data storage needs change. With App Engine, there are no servers
to maintain. You simply upload your application and it’s ready to go. App Engine
applications automatically scale based on incoming traffic. Load balancing,
microservices, authorization, SQL and NoSQL databases, memcache, traffic splitting,
logging, search, versioning, roll out and rollbacks, and security scanning are all
supported natively and are highly customizable.

To learn more about GAE support for Node.js visit this page: https://cloud.google.com/

appengine/docs/standard/nodejs/

2.3.2.Amazon Web Services (AWS)

AWS is Amazon’s implementation of cloud computing. Included in AWS is Amazon Elastic
Compute Cloud (EC2), which delivers scalable, pay-as-you-go compute capacity in the cloud,
and AWS Elastic Beanstalk, an even easier way to quickly deploy and manage applications in the
AWS cloud. You simply upload your application, and Elastic Beanstalk automatically handles
the deployment details of capacity provisioning, load balancing, auto-scaling, and application
health monitoring. Elastic Beanstalk is built using familiar software stacks such as the Apache
HTTP Server, PHP, and Python, Passenger for Ruby, IIS for .NET, and Apache Tomcat for Java.

To learn more about AWS support for Node.js visit this page: https://

aws.amazon.com/getting-started/projects/deploy-nodejs-web-app/

2.3.3.Microsoft Azure

Microsoft Azure is a cloud computing service created by Microsoft for building, testing,
deploying, and managing applications and services through a global network of

Microsoft-managed data centers. It provides software as a service (SaaS), platform as a service
(PaaS) and infrastructure as a service (IaaS) and supports many different programming
languages, tools, and frameworks, including both Microsoft-specific and third-party software and
systems.

To learn more about Azure support for Node.js visit this page: https://

docs.microsoft.com/en-us/javascript/azure/?view=azure-node-latest

https://cloud.google.com/appengine/docs/standard/nodejs/
https://cloud.google.com/appengine/docs/standard/nodejs/
https://aws.amazon.com/getting-started/projects/deploy-nodejs-web-app/
https://aws.amazon.com/getting-started/projects/deploy-nodejs-web-app/
https://aws.amazon.com/getting-started/projects/deploy-nodejs-web-app/
https://docs.microsoft.com/en-us/javascript/azure/?view=azure-node-latest
https://docs.microsoft.com/en-us/javascript/azure/?view=azure-node-latest
https://docs.microsoft.com/en-us/javascript/azure/?view=azure-node-latest

4

5

2.4.Angular

Angular is a toolset for building the framework most suited to your application
development. It is fully extensible and works well with other libraries. Every feature can
be modified or replaced to suit your unique development workflow and feature needs.
Angular combines declarative templates, dependency injection, end-to-end tooling, and
integrated best practices to solve development challenges. Angular empowers
developers to build applications that live on the web, mobile, or the desktop.

For this homework, Angular 17+ can be used, but Angular 17 is recommended. To
learn more about Angular, visit this page:

https://angular.io/

2.5.Node.js version 20

Node.js is a JavaScript runtime built on Chrome's V8 JavaScript engine. Node.js
uses an event-driven, non-blocking I/O model that makes it lightweight and efficient.
Node.js package ecosystem, npm, is the largest ecosystem of open-source libraries
in the world.

To learn more about Node.js, visit:

https://Node.js.org/en/

Also, Express.js is strongly recommended. Express.js is a minimal and flexible Node.js
web application framework that provides a robust set of features for web and mobile
applications. It is in fact the standard server framework for Node.js.

To learn more about Express.js, visit:

http://expressjs.com/

Important Note: All APIs calls should be done through your Node.js server

https://angular.io/
https://nodejs.org/en/
http://expressjs.com/

6

3. High-Level Description

In this exercise you will create a webpage that allows users to search for stocks using
the Finnhub API and display the results on the search page. The application evolves
from the previous homework.

A user will first open a page as shown below in Figure 1, where the user can enter a stock ticker
symbol and select from a list of matching stock symbols using “autocomplete.” A quote on a
matched stock symbol can be performed. The description of the Search Box is given in Section

3.1. Instructions on how to use the API are given in Section 4. All implementation details
and requirements will be explained in the following sections.

There are 4 routes for this application:
a) Home Route [‘/’] redirected to [‘/search/home’]– It is the default route of this

application.

b) Search Details Route [‘/search/<ticker>’] – It shows the details of the <ticker>

searched

c) Watchlist Route [‘/watchlist’] – It displays the watchlist of the user.

d) Portfolio Route [‘/portfolio’] – It displays the portfolio of the user.

When a user initially opens your web page, the initial search page should look like in Figure 1.

Figure 1: Initial Search Page

7

3.1.Search Page / Homepage

3.1.1.Design

You must replicate the Search Bar displayed in Figure 1 using a Bootstrap form. The
Search Bar contains three components.

1. Stock Ticker: This is a text box, which enables the user to search for valid
stocks by entering keywords and/or accepting a suggestion of all possible
tickers. Notice the “helper” text inside the search box.

2. Search Button: The “Search” button (which uses the widely used search icon),
when clicked, will read the value from the textbox and send the request to the
backend server. On a successful response, details for that stock will be
displayed.

3. Clear button: The ‘clear’ (cross marked) button, would clear out the currently
searched results page and show the initial search page.

3.1.2.Search Execution

Search can be executed in the following ways:
1. Once the user enters a ticker symbol and directly presses the Return key or

clicks on the “Search” button, without using the auto-complete suggestion, your
application should make an HTTP call to the Node.js script hosted on GA/AWS/
Azure back end (the Cloud Services). The Node.js script on Cloud Services will
then make a request to the Finnhub API services to get the detailed information.
If the entered ticker is invalid and no data is found, an appropriate error message
should be displayed. If valid stock data is found, the search results should be
loaded.

2. Once the user starts typing a ticker symbol, autocomplete suggestions (See
Section 3.1.3 below) will populate below the search bar. A matched ticker can be
selected. Upon clicking the dropdown selection, the search should start
automatically, and execute identically as described in the previous paragraph.

3.1.3.Autocomplete

A Search Bar allows a user to enter a keyword (Stock ticker symbol) to retrieve
information. Based on the user input, the text box should display a list of all the matching
company’s ticker symbols with the company’s name (see Figure 2). The autocomplete JSON data
is retrieved from the Finnhub Search API (refer to Section 4.1.4).

The autocomplete response is filtered using the criteria: type= ‘Common Stock’, Symbol doesn’t
contain ‘.’(dot)

These are examples of calling this API:

https://finnhub.io/api/v1/search?
q=<COMPANY_NAME>&token=<API_TOKEN> # or

https://finnhub.io/api/v1/search?q=%253CCOMPANY_NAME%253E&token=%253CAPI_TOKEN
https://finnhub.io/api/v1/search?q=%253CCOMPANY_NAME%253E&token=%253CAPI_TOKEN

8

The autocomplete function should be implemented using Angular Material. Refer to Section

5.3 for more details.

Figure 2: Autocomplete Suggestion

3.2.Search Results Page

3.2.1.Details of Searched Stock

After the user executes a search for a ticker, a page should route to /search/<ticker>
path (example: /search/AMZN). The following components need to be displayed on
successful search:

● Symbol, company name, trading Exchange (such as NASDAQ), and a Buy
button on top left, The Sell button should appear alongside the Buy button only
when the portfolio has purchased stocks of a company. See Figure 3.3;

● Last price, change, percent change, and date/time, on top right. The change
items should be preceded by appropriately colored arrows;

● Company Logo and Indication of open / closed market in the top-center;

● Summary, Top News, Charts and Insights tabs.

IMPORTANT NOTE: If the user navigates to the watchlist route or the portfolio route,
and navigates back to the search results page, the previously searched stock results

https://finnhub.io/api/v1/search?q=<SYMBOL>&token=<API_TOKEN>

For example:
https://finnhub.io/api/v1/search?q=apple&token=<API_TOKEN>

https://finnhub.io/api/v1/search?q=%253CSYMBOL%253E&token=%253CAPI_TOKEN
https://finnhub.io/api/v1/search?q=apple&token=%253CAPI_TOKEN

9

should remain on

10

the search/<ticker> route. Also, results data should be retrieved from a state/service
and not be fetched from a new search API call.

Please refer to Figures 3.1, 3.2, 3.3 below.

Figure 3.1: Search Details page overview (Market is Closed)

Figure 3.2: Search Details page overview (Market is Open)

11

Figure 3.3: Search Details page overview (Dynamic Sell button when the portfolio
has purchased stock of the company)

● When the user clicks on the star icon, the white star turns yellow, and that ticker
should be stored in MongoDB Atlas. A self-closing alert should be displayed at
the top and that stock should be visible on the Watchlist Page (see Section 3.3).

● When the user clicks on the Buy button, a modal window should open. which will
display the details (stock symbol, current price, money in wallet, input for quantity
of shares to buy and total price for the shares), as shown in Figure 3.5. Note that:

o The Buy button should be disabled if the user inputs a quantity < 1 or the
quantity field is empty or the quantity leading to total more than money in
wallet (see Figure 3.5);

o The Buy button will be enabled once the user enters a number greater
than 0 and suitable quantity up to total equals (or less than) money in the
wallet (see Figure 3.4).

● The Sell option is available on the homepage only when there is at least 1
quantity of stock available in the portfolio. Upon clicking the Sell button, similar
behavior as the buy transaction should be implemented, along with the constraint
being able to sell only the stocks owned.

● Error messages should be shown for an attempt to buy more than the possible
quantity of stocks using the money in wallet/attempt to sell more than the number
of stocks owned in Portfolio. See Figure 3.5 for reference.

● A self-closing transaction alert message should be shown for both buy and sell
transactions as in Figure 3.4a.

12

Figure 3.4: Buy Button enabled for valid input

Figure 3.4a: Alert for buying stock successfully

13

Figure 3.5: Buy button disabled for invalid input

For details and screenshots of similar sell transactions, refer to Section 3.4
(Portfolio). As described, the page contains two major panels:

1) Stock Details: This panel displays all the values mentioned in Table 3.1. Last
Timestamp should be only displayed beside the Market status if “Market is
Close.”

Table 3.1 – Stock Details

Fields Sample Values API reference

Ticker VMW From table 4.1, use ‘ticker’ key

Company’s Name VMware Inc. From table 4.1, use ‘name’ key

Exchange Code New York
Stock
Exchange, Inc

From table 4.1, use ‘exchange’
key

Last Price 126.99 From table 4.3, use ‘c’ key

Change 1.09 From table 4.3, use ‘d’ key

Change Percentage 0.86% From table 4.3, use ‘dp’ key

Current Timestamp 2022-02-17
09:02:21

From table 4.3, use ‘t’ key

Market Status Open/Close Calculation from timestamp

14

2) Material Tabs – This component helps users see different stock data on the
same page, and the content of the tabs is detailed in the following sections.

IMPORTANT NOTE: All numerical values should be rounded off to 2 decimal places.

Data mentioned in the Stock Details section and Summary Tab, should auto-update
every 15 seconds, when the stock market is open.

15

3.2.2.Summary Tab

This tab contains a summary of the stock, which includes:

o Details, as follows:
▪ Calculate if the market is open, using the timestamp key in Table

3.2. The value of ‘t’ is the last timestamp at which the stock details
are available. Assume the market is closed if more than 5 minutes
has elapsed from this ‘t’ value. Assume the market is open, if
otherwise.

▪ If the market is open: display all the fields mentioned in Table 3.2
and Table 3.3, as shown in Figure 3.2.

▪ If the market is closed: Display all the fields mentioned in Table 3.2
and Table 3.3, as shown in Figure 3.1.

o About the Company: values from Table 3.3.

o Chart for the last Working Day:

▪ See Section 4.1.2 to obtain hourly stock price data using resolution
‘5’ and show variation for the last 6 hours.

▪ If the market is open: show stock price variation from current time.

▪ If the market is closed: show stock price variation from when the
market was closed. (i.e., last working day).

Table 3.2: Fields used inside Summary Tab (Part 1)

Fields Sample
Values

API reference

High Price 128 From table 4.3, use ‘h’ key

Low Price 124.90 From table 4.3, use ‘l’ key

Open Price 125 From table 4.3, use ‘o’ key

Prev. Close 125.90 From table 4.3, use ‘pc’ key

Timestamp 1645218002 From table 4.3, use ‘t’ key

Fields Sample Values API reference

IPO Start
Date

2007-08-14 From table 4.1, use ‘ipo’ key

16

Table 3.3: Fields used inside Summary Tab (Part 2)

Industry Technology From table 4.1,
use
‘finnhubIndustry’ key

Webpage https://www.vmware.com/ From table 4.1, use
‘weburl’
key

Company
Peers

MSFT, ORCL, NOW, VMW From table 4.8, use
response list

https://www.vmware.com/

17

Important Note: The list of company peers should be clickable links which should
navigate to the search results of that ticker.

3.2.3. Top News Tab

This tab shows top news for the given stock ticker symbol (see Figure 3.6 and Figure
3.7). In particular:

o Show cards which contain Image and Title.
▪ For Image use ‘image’ key from Table 4.5.

▪ For Title use ‘title’ key from Table 4.5.
o When clicking on a card, open a Modal window as shown in Figure 3.7.

For details regarding Modal check Section 5.3. Modal contains all the fields
mentioned in Table 3.4.

o Users can share the news articles on Twitter and Facebook. For details on
how to use it, check Section 4.2. Twitter and Facebook should open in a
new browser tab, if clicked.
▪ In Twitter, it should create a post having following content:

● Title of the news article
● URL of the news article.

▪ In Facebook, it should create a post, which contains the URL of the
news Article.

o Inside modal, when the user clicks on ‘here’ in ‘For more details click here’, it
should open the URL for the article in a new browser tab.

Table 3.4: Fields used inside modal of Top News Tab

Fields API reference

Source From Table 4.5, use ‘source’ key.

Published Date From Table 4.5, use ‘datetime’ key.

Title From Table 4.5, use ‘headline’ key.

Description From Table 4.5, use ‘summary’ key.

URL From Table 4.5, use ‘url’ key.

18

Figure 3.6: Top News Tab overview

Figure 3.7: Top News Detailed Modal overview.

3.2.4. Charts Tab

This tab uses HighCharts to display historical stock market data on the related
stock. In particular:

19

o See Figure 3.8 for reference using Section 4.1.3 implementation.
o For more details regarding Highcharts see Section 5.5.
o Display SMA and Volume by Price charts for data of the last 2 years.

Figure 3.8: Charts tab overview.

3.2.5. Insights Tab

This tab uses a table that contains fields as mentioned in Table 3.5 and HighCharts to
display recommendation trends and company earnings data on the related stock. In
particular:

o See Figure 3.9 for reference using Section 4.1.7 and Section 4.1.9.
o Aggregate the response data from Section 4.1.7 for all MSPR data and

display it in the table.
o For more details regarding Highcharts see Section 5.5.

Fields API reference

Total - MSPR From Table 4.7, aggregate the values of the ‘mspr’
key.

Positive – MSPR From Table 4.7, aggregate all positive values of the
‘mspr’
key.

Negative – MSPR From Table 4.7, From Table 4.7, aggregate all
negative
values of the ‘mspr’ key.

20

Table 3.5: Fields used inside table of Insights Tab

Total – Change From Table 4.7, aggregate the values of the ‘change’
key.

Positive – Change From Table 4.7, aggregate all positive values of the
‘change’
key.

Negative – Change From Table 4.7, From Table 4.7, aggregate all
negative
values of the ‘change’ key.

21

IMPORTANT NOTE: ‘Total’ calculation to be made appropriately for all fields from the
array of response obtained (see Section 4.1.7).

Figure 3.9: Insights tab overview.

Figure 3.9a: Company Earning chart with non-null values

22

IMPORTANT NOTE: Display an error message, as shown below, if the user did not
enter any input in the search box or no data is found for the entered input. Use the
company profile response to determine no data.

Figure 3.10: Error Alert.

3.3.Watchlist Menu

This menu will display all the stocks that are added to the watchlist by the user. This
watchlist will be maintained in MongoDB Atlas. For more details on MongoDB Atlas, see
section 5.4 and Figure 3.11.

● If the change is positive, the color of the ‘c’, ‘d’ and ‘dp’ keys should be green
● If the change is negative, the color of the ‘c’, ‘d’ and ‘dp’ keys should be red
● If there is no change, the color of the ‘c’, ‘d’ and ‘dp’ keys should be black.
● When clicking on the close button on the right-top corner of the card (the “x”), it

should remove the stock from the watchlist and display an updated watchlist.
● When clicking on the card, it should open the details route of that ticker (stock).
● If the watchlist is empty, it should display the alert as shown in Figure

3.12. ‘c’, ‘d’ and ‘dp’ key should be used from Table 4.3.

NOTE: ‘percentage change’ should be rounded off to 2 decimal places.

Upon clicking any area of the watchlist card, the user should be navigated to the search
details page of that stock. Initially a loading “spinner” is displayed until the watchlist is
pulled from the database.

23

Figure 3.11: Watchlist menu page

Figure 3.12: Watchlist Empty Alert

3.4.Portfolio Menu

This menu will display all the stocks that have been bought by the user (i.e., the current
portfolio of the user). This portfolio will be maintained in the MongoDB Atlas. For more
details on MongoDB Atlas, see Section 5.4 and Figure 3.13.

24

To simulate real-world stock trading and allow the user to incur profits/losses, a wallet
feature should be implemented. Initialize the cash balance in the wallet to be
$25,000.00 using MongoDB Atlas. Users will use this cash balance to trade stocks.

Update the money spent and gained during buy and sell transactions, accordingly. The
initial price of stock when buying it, and the current change in price should be used to
update the balance in the wallet for profit and loss. Initially a loading spinner is displayed
until the portfolio is pulled from the database.

In particular:

● If the current rate is greater than the rate at which user bought it, then color of the
‘Change’, ‘Current Price’ and ‘Current Total’ keys should be green;

● If the change is negative, the color of the ‘Change’, ‘Current Price’ and ‘Current
Total’ keys should be red;

● If there is no change, the color of the ‘Change’, ‘Current Price’ and ‘Current Total’
keys should be black;

● When clicking on the Buy button, a modal should open as shown in Figure 3.15.
The Buy button inside the modal should be disabled if the quantity entered by
the user is not valid, as shown in Figure 3.14. Valid input should be (a) greater
than 0, with (b) quantity that produces a total less than available cash in the
wallet and (c) must be non-empty;

● When clicking on the Sell button, a modal should open as shown in Figure 3.17 and

3.18. The Sell button inside the modal should be disabled if the quantity entered
by the user is not valid. Input is Valid if, 0<input<=Quantity and must be non-
empty. Quantity is described in Table 3.6;

● When clicked on card’s header part, it should open the search details route of
that ticker (stock);

● If the portfolio is empty, it should display the alert as shown in Figure 3.14.

‘c’ key should be used from Table 4.3 for ‘Current Price’. ‘Current Change’ and ‘Current
Total’ should be calculated as shown in Table 3.5.

Quantity Total Number of stocks bought by the
user. It
Should be more than 0, otherwise
remove it from the portfolio in MongoDB
Atlas.

25

Table 3.6: Fields used in Portfolio Cards.

Alerts should be displayed for successful buy and sell transactions, which should auto-close.

Figure 3.13: Portfolio

Total Cost Total cost is the sum of the total cost paid
for all the purchases of the stock. For
Example, if user has bought 10 stocks
of AAPL in past, at the rate of 200, and
today if user buys another 10 stocks of
AAPL at the current price, i.e. 300, then
the Total Cost for the user will be
(10*200) + (10*300) = 5000.
So Quantity is 20 and Total Amount is
5000.

Average Cost per Share (Total Cost / Quantity)

Current Price ‘c’ key from the table 4.3

Change (Average Cost per Share – Current
Price) of
the stock. Here, Current Price is ‘c’ key
from the table 4.3

Market Value (Current Price * Qty), here Current
Price is
‘c’ key from Table 4.3 and Qty is the
number of stocks present in the user's
portfolio.

26

Figure 3.14: Portfolio Empty Alert

Figure 3.15: Modal for Buying Stock

27

Figure 3.16: Input is invalid in Modal for Buying Stock

Figure 3.17: Modal for Selling Stock

28

Figure 3.18: Input is invalid in Modal for Selling Stock

Figure 3.19: Auto closing alert message for buying more stocks from portfolio section

29

Figure 3.20: Auto closing alert message for selling stocks from portfolio section

3.5.Responsive Design

The following are a few snapshots of the web app opened with Google Chrome is
simulating a mobile device.

30

31

32

You must watch the video carefully to see how the page looks on mobile devices. All
functions must work on mobile devices.
One easy way to test for mobile devices is to use Google Chrome Responsive Design
Mode and Safari Develop – User Agent menu. An iPhone 12 Pro is used in the video.

5. Navbar

The Navigation bar must be present on top of the page, and visible at all times, as
shown in all the figures above. You can use Bootstrap to create a navbar. It consists of
following menu options:

1. Search
2. Watchlist
3. Portfolio

6. Footer

The Footer must be present at the end of each page, as shown in above figures. It
should contain following line:

“Powered by Finnhub.io”

33

4. API’s description

4.1.Finnhub API calls, similar to Assignment 2

In this assignment, we will use the Finnhub API. A comprehensive reference about this
API is available at:

https://finnhub.io/docs/api/introduction

4.1.1.Company’s Description

Reference: https://finnhub.io/docs/api/company-profile2

For Company’s Description, use the following API. For more details refer Figure 4.1:

https://finnhub.io/api/v1/stock/profile2?symbol=<TICKER>&token=<API_Key >

URL parameter in API Call:

● Ticker: Ticker symbol of the stock. E.g.: MSFT
● Token: The API access Token. It is private, please do not

share with anyone. See Assignment 2.

An example URL constructed from the parameters will look like this:

https://finnhub.io/api/v1/stock/profile2?symbol=AAPL&token=<API_Key >

Response:

Response Keys Details

country Country Name

currency Currency Symbol

exchange Company’s Exchange

name Company’s Name

ticker Company’s Symbol

ipo Company’s Start Date

marketCapitalization Company’s MarketCap

shareOutstanding Company’s Shares

logo Company’s Logo

phone Company’s Contact No.

weburl Company’s Website Url

finnhubIndustry Company’s Industry

https://finnhub.io/docs/api/introduction
https://finnhub.io/docs/api/company-profile2
https://finnhub.io/api/v1/stock/profile2?symbol=%253CTICKER%253E&token=%253CAPI_Key%2520%253E
https://finnhub.io/api/v1/stock/profile2?symbol=AAPL&token=%253CAPI_Key%2520%253E

34

Table 4.1: Details regarding Company’s Description API call

	

35

Figure 4.1: Response received for Company’s Description API call

4.1.2.Company’s Historical Data

You should extract the content of Time Series Data from the returned JSON object to
construct a chart which is responsible for displaying (close) price and volume. The chart
is provided by HighCharts. Find more information about HighCharts at:

https://www.highcharts.com/demo https://

www.highcharts.com/demo/stock/area https://

www.highcharts.com/demo/stock/candlestick-and-volume

The historical data for the ticker can be obtained from Polygon.io “Aggregate (Bars)”

Service. Please refer to the API documentation at:

https://polygon.io/docs/stocks/get_v2_aggs_ticker stocksticker range
multiplier timespa n from to

for more details on the Service.

API Sample:

GET: /v2/aggs/ticker/{stocksTicker}/range/{multiplier}/{timespan}/{from}/{to}

https://api.polygon.io/v2/aggs/ticker/AAPL/range/1/day/2023-01-09/2023-07-09?adjusted=true&
sort=asc&apiKey=ctO8iVF_Gi19afBovU1ZSr6UIxqt8Fr3

https://www.highcharts.com/demo
https://www.highcharts.com/demo/stock/area
https://www.highcharts.com/demo/stock/area
https://www.highcharts.com/demo/stock/area
https://www.highcharts.com/demo/stock/candlestick-and-volume
https://www.highcharts.com/demo/stock/candlestick-and-volume
https://polygon.io/docs/stocks/get_v2_aggs_ticker__stocksticker__range__multiplier___timespan___from___to
https://polygon.io/docs/stocks/get_v2_aggs_ticker__stocksticker__range__multiplier___timespan___from___to
https://polygon.io/docs/stocks/get_v2_aggs_ticker__stocksticker__range__multiplier___timespan___from___to

36

When constructing the HTTP request required to obtain the Company Stock Chart, you
need to provide 6 values:

1. The first value, the stockTicker the user entered in the form.

2. The second value, the multiplier, is the size of the timespan multiplier. Should be a 1.

3. The third value, the timespan, should be day.

4. The fourth value, the from date, is the start of the aggregate time window. Either

a date with the format YYYY-MM-DD or a millisecond timestamp. This should be
6 months and 1 day prior to the current date. You can use Python DateUtils’s
“relativedelta” to calculate the date. Please
refer to https://dateutil.readthedocs.io/en/stable/relativedelta.html
for more details.

5. The fifth value, to, is the end of the aggregate time window. Either a date with the
format YYYY-MM-DD or a millisecond timestamp. It should be the current date
(Today’s date).

6. The sixth value, the query string, should contain
“adjusted=true&sort=asc&apiKey=YOUR_KEY”, where the apiKey is your Api Key that
you created. Do not use the limit parameter, as it will conflict with the from/to
dates. Limit will default to 5,000, which is enough for 6 months of data.

Note: The Service only accepts dates in UNIX timestamps so you will need to convert
dates to UNIX epoch time.

The response of this HTTP request is a JSON-formatted object. Figure 4.2 shows a
sample response from the request. You need to parse this JSON object and extract
some fields as required.

Figure 4.2: Sample JSON response from Polygon.io API’s Aggregate (Bars) Endpoint

https://dateutil.readthedocs.io/en/stable/relativedelta.html

37

The data obtained from the API can then be mapped to the HighCharts dataset using
the mapping below.

Table 4.1: Mapping JSON data and HighCharts data

Note: Map each returned array element for each attribute, by its index. For example, for
date (timestamp) t[0], close price is c[0] and volume is v[0].

For mapping the Stock price data to data for HighCharts, create an array of data points
(x1, y1) where x1 will be the date and y1 will be the corresponding close stock price for
that day. This array will then act as an input dataset for your HighCharts. Please refer to
links in Assignment 2 for more details.

Similarly create another array of points (x2, y2) where x2 will be the date and y1 will be
the volume for that day. This array will be the second input for your HighCharts. Since
you will be plotting Stock Price vs Date and Volume vs Date you will have two
different datasets and two y-axis and a single x-axis.

Initially, the chart shows the historical stock price (in blue line with filling the area below,
two digits after decimal) and volume (in gray bar) for the past six months by an interval of
one day. Figure 4.3 shows an example of the Stock Price/Volume chart.

Chart Data Data from polygon.io Aggregate (Bars) service JSON

response

Date The value of key “t”. The time stamp is given in the Unix
epoch
time.

Stock Price The value of key “c”

Volume The value of key “v”

38

Figure 4.3: An Example of Chart showing Stock Price/Volume for 6 months

The title of the chart for showing price/volume is “Stock Price <Ticker> (YYYY-MM-
DD)”, where “YYYY-MM-DD” is today’s date. The subtitle of the chart should be
“Source: Polygon.io” and should hyperlink to the Polygon.io website: https://
polygon.io/. The title of the Y-axis is “Stock Price” when showing the stock price and the
other Y-axis is “Volume”.

The X-axis changes on the basis of the zoom level 6 months, 3 months, 1 month, 15
days, and 7 days. Please refer to Section 3 for references on how to change the chart
data on the basis of the zoom level. Figure 4.4 shows an example of the Stock Price/
Volume chart for 15 days zoom level. Ensure that the volume bars are small enough to
not overlap the quote line chart.

https://polygon.io/
https://polygon.io/
https://polygon.io/
https://polygon.io/

39

Figure 4.4: An Example of Chart showing Stock Price/Volume for 15 days

4.1.3.Company’s Latest Price of Stock (Stock Quote)

Reference: https://finnhub.io/docs/api/quote

For Company’s Latest Price, use the following API. For more details refer to Figure 4.5: https://

finnhub.io/api/v1/quote?symbol=<TICKER>&token=<API_KEY>

URL parameter in API Call:

● Ticker: Ticker symbol of the stock. E.g.: MSFT
● Token: The API access Token. It is private, please do not

share with anyone.

An example URL constructed from the parameters will look similar to this:

https://finnhub.io/api/v1/quote?symbol=MSFT&token=<API_KEY>

Response: We receive an array of objects, where each object contains following keys.
We only need the following keys from the response.

Response Keys Details

c current price

https://finnhub.io/docs/api/quote
https://finnhub.io/api/v1/quote?symbol=%253CTICKER%253E&token=%253CAPI_KEY
https://finnhub.io/api/v1/quote?symbol=%253CTICKER%253E&token=%253CAPI_KEY
https://finnhub.io/api/v1/quote?symbol=MSFT&token=%253CAPI_KEY

40

Table 4.2: Details regarding Company’s Latest Price API call.

Market Status must be open if the difference between current Timestamp (current
Timestamp will be created using new Date() in javascript) and ‘timestamp’ key is less than
60 seconds.

Figure 4.5: Response received for Company’s Latest Price API call

4.1.4.Autocomplete

Reference: https://finnhub.io/docs/api/symbol-search

For Autocomplete, use the following API. For more details refer Figure 4.6:

https://finnhub.io/api/v1/search?q=<QUERY>&token=<API_KEY>

URL parameter in API Call:

● Query: Search query of stock ticker . E.g.: TSL for TSLA
● Token: The API access Token. It is private, please do not

share with anyone.
An example URL constructed from the parameters will look similar like:

https://finnhub.io/api/v1/search?q=AMZ&token=<API_KEY>

Response objects:

d change in price

dp percentage change in price

h high price of the day.

l low price of the day.

o open price of the day.

pc Previous close price

t Timestamp of last stock data

https://finnhub.io/docs/api/symbol-search
https://finnhub.io/api/v1/search?q=%253CQUERY%253E&token=%253CAPI_KEY
https://finnhub.io/api/v1/search?q=AMZ&token=%253CAPI_KEY

41

We receive a response in the form of an array of objects. From those objects we only
need the following keys:

42

Table 4.3: Details regarding Autocomplete Response. API call

Figure 4.6: Response received for autocomplete API call

4.1.5.Company’s News

Reference: https://finnhub.io/docs/api/company-news

For Company’s News, use the following API. For more details refer to Figure 4.7.

Response Keys Details

count number of results

result array of search result

description symbol description

displaySymbol display symbol name

symbol unique symbol used to identify this
symbol
used in /stock/candle endpoint.

type security type

https://finnhub.io/docs/api/company-news

43

https://finnhub.io/api/v1/company-news?symbol=<TICKER>&from=<DATE>&to=<DA
TE>&token=<API_KEY>

URL parameter in API Call:

● Ticker: Ticker symbol of the stock. E.g.: MSFT

https://finnhub.io/api/v1/company-news?symbol=%253CTICKER%253E&from=%253CDATE%253E&to=%253CDATE%253E&token=%253CAPI_KEY
https://finnhub.io/api/v1/company-news?symbol=%253CTICKER%253E&from=%253CDATE%253E&to=%253CDATE%253E&token=%253CAPI_KEY

44

● to: Date in YYYY-MM-DD
● from: Date in YYYY-MM-DD
● Token: The API access Token. It is private, please do not

share with anyone. See Homework 2.
An example URL constructed from the parameters will look similar to this:

https://finnhub.io/api/v1/company-news?symbol=MSFT&from=2021-09-01&to=2021-09
-09&token=<API_KEY>

Response objects:

Table 4.4: Details regarding Company’s News API response

Figure 4.7: Response received for Company’s News API call

Response Keys Details

category News category

datetime Published timestamp in UNIX

headline News headline

id News id

image Thumbnail image URL

related Related stocks and companies
mentioned

source News source

summary News summary

url url of original article

https://finnhub.io/api/v1/company-news?symbol=MSFT&from=2021-09-01&to=2021-09-09&token=%253CAPI_KEY
https://finnhub.io/api/v1/company-news?symbol=MSFT&from=2021-09-01&to=2021-09-09&token=%253CAPI_KEY

45

4.1.6.Company’s Recommendation Trends

Reference: https://finnhub.io/docs/api/recommendation-trends

For Company’s Recommendation Trends, use the following API. For more details refer to

Figure 4.8.

https://finnhub.io/docs/api/recommendation-trends

46

https://finnhub.io/api/v1/stock/recommendation?symbol=<TICKER>&token=<API_KE
Y>

URL parameter in API Call:

● symbol: Ticker symbol of the stock., e.g., MSFT
● token: The API access Token. It is private, please do not

share with anyone. See Homework 2.

An example URL constructed from the parameters will look similar to this: https://

finnhub.io/api/v1/stock/recommendation?symbol=MSFT&token=<API_KEY>

Response objects:

Table 4.5: Details regarding Company’s Recommendation API call

Response Keys Details

Buy Recommendation count of buy category

Hold Recommendation count of hold category

period Update period

sell Recommendation count of sell category

strongBuy Recommendation count of strongbuy
category

strongSell Recommendation count of strongsell
category

Symbol Company symbol

https://finnhub.io/api/v1/stock/recommendation?symbol=%253CTICKER%253E&token=%253CAPI_KEY
https://finnhub.io/api/v1/stock/recommendation?symbol=%253CTICKER%253E&token=%253CAPI_KEY
https://finnhub.io/api/v1/stock/recommendation?symbol=MSFT&token=%253CAPI_KEY
https://finnhub.io/api/v1/stock/recommendation?symbol=MSFT&token=%253CAPI_KEY

47

Figure 4.8: Response received for Company’s Recommendation API call

48

4.1.7.Company’s Insider Sentiment

Reference: https://finnhub.io/docs/api/insider-sentiment

For Company’s Insider Sentiment, use the following API. For more details refer Figure 4.9:

https://finnhub.io/api/v1/stock/insider-sentiment?symbol=<TICKER>&from=2022-01-01
&token=<API_KEY>

NOTE: ‘from=2022-01-01’ should be used as a default parameter while using company’s
social sentiment API calls, if not used can sometime return empty response.

URL parameter in API Call:

● Ticker: Ticker symbol of the stock. E.g.: MSFT
● From: Date in YYYY-MM-DD (2022-01-01 to be used)
● Token: The API access Token. It is private, please do not

share with anyone. See Homework 2.

An example URL constructed from the parameters will look similar to this: https://

finnhub.io/api/v1/stock/insider-sentiment?symbol=MSFT&token=<API_KEY>

Response objects:

Table 4.6: Details regarding Company’s Insider Sentiment API call

Response Keys Details

data array of entries containing month by
month insider insight data

- symbol Ticker symbol of the stock. E.g.: MSFT

- year year of the data in this entry

- month month of the data in this entry

- change Net buying/selling from all insiders'
transactions.

- mspr Monthly share purchase ratio

symbol Ticker symbol of the stock. E.g.: MSFT

https://finnhub.io/docs/api/insider-sentiment
https://finnhub.io/api/v1/stock/social-sentiment?symbol=%253CTICKER%253E&from=2022-01-01&token=%253CAPI_KEY
https://finnhub.io/api/v1/stock/social-sentiment?symbol=%253CTICKER%253E&from=2022-01-01&token=%253CAPI_KEY
https://finnhub.io/api/v1/stock/social-sentiment?symbol=MSFT&token=%253CAPI_KEY
https://finnhub.io/api/v1/stock/social-sentiment?symbol=MSFT&token=%253CAPI_KEY

49

Figure 4.9: Response received for Company’s Insider Sentiment API call

4.1.8.Company’s Peers

Reference: https://finnhub.io/docs/api/company-peers

For Company’s Peers, use the following API. For more details refer Figure 4.10: https://

finnhub.io/api/v1/stock/peers?symbol=<TICKER>&token=<API_KEY>

URL parameter in API Call:

● Ticker: Ticker symbol of the stock. E.g.: MSFT
● Token: The API access Token. It is private, please do not

share with anyone. See Homework 2.

An example URL constructed from the parameters will look similar to this: https://

finnhub.io/api/v1/stock/peers?symbol=MSFT&token=<API_KEY>

Response array:

Table 4.7: Details regarding Company’s Peers API call

Response Keys Details

response List of company symbols

https://finnhub.io/docs/api/company-peers
https://finnhub.io/api/v1/stock/peers?symbol=%253CTICKER%253E&token=%253CAPI_KEY
https://finnhub.io/api/v1/stock/peers?symbol=%253CTICKER%253E&token=%253CAPI_KEY
https://finnhub.io/api/v1/stock/peers?symbol=MSFT&token=%253CAPI_KEY
https://finnhub.io/api/v1/stock/peers?symbol=MSFT&token=%253CAPI_KEY

50

Figure 4.10: Response received for Company’s Peers API call

4.1.9.Company’s Earnings

Reference: https://finnhub.io/docs/api/company-earnings

NOTE: If any of the response values are null values for response keys, replace null values
to 0. Sample null response received from Finnhub API (Figure 4.11.1) which should be
handled and replaced with 0.

For Company’s Earnings, use the following API. For more details refer Figure 4.9.1 and
Figure 4.11.2:

https://finnhub.io/api/v1/stock/earnings?symbol=<TICKER>&token=<API_KEY>

URL parameter in API Call:

● Ticker: Ticker symbol of the stock. E.g.: MSFT
● Token: The API access Token. It is private, please do not

share with anyone. See Homework 2.
An example URL constructed from the parameters will look similar to this:

https://finnhub.io/api/v1/stock/earnings?symbol=MSFT&token=<API_KEY>

Response objects:

Response Keys Details

Actual Actual earnings results

Estimate Estimated earnings

Period Reported period

Symbol Company symbol

https://finnhub.io/docs/api/company-earnings
https://finnhub.io/api/v1/stock/earnings?symbol=%253CTICKER%253E&token=%253CAPI_KEY
https://finnhub.io/api/v1/stock/earnings?symbol=MSFT&token=%253CAPI_KEY

51

Table 4.8: Details regarding Company’s Earnings API call

52

Figure 4.11.1: Null Response received for Company’s Earnings API call

Figure 4.11.2: Response received for Company’s Earnings API call

53

4.2.Social Networks

4.2.1.X (formerly known as Twitter)

Refer the following link for details:

https://developer.twitter.com/en/docs/twitter-for-websites/tweet-button/overview

4.2.2.Facebook

Refer the following link for details: https://
developers.facebook.com/docs/plugins/share-button/

5. Implementation Hints

5.1.ng-bootstrap Library

To get started with the ng-bootstrap toolkit, please see:
https://ng-bootstrap.github.io/#/home

ng-bootstrap will work with both Bootstrap 4 and 5, but with a specific version of Angular.
Check compatibility and dependencies at:

https://ng-bootstrap.github.io/#/getting-started

Modules helpful for implementation:

Alerts - https://ng-bootstrap.github.io/#/components/alert/examples
Modal - https://ng-bootstrap.github.io/#/components/modal/examples

5.2.Bootstrap UI Components

Bootstrap provides a complete mechanism to make web pages responsive for different
mobile devices. In this exercise, you will get hands-on experience with responsive
design using the Bootstrap Grid System.

Bootstrap 4.6 grid: https://getbootstrap.com/docs/4.6/
layout/grid/

Bootstrap 5.2 grid: https://getbootstrap.com/docs/5.2/
layout/grid/

Some components that are useful for implementation:

Bootstrap Cards https://getbootstrap.com/docs/4.6/components/card/

https://developer.twitter.com/en/docs/twitter-for-websites/tweet-button/overview
https://developers.facebook.com/docs/plugins/share-button/
https://developers.facebook.com/docs/plugins/share-button/
https://ng-bootstrap.github.io/%23/home
https://ng-bootstrap.github.io/%23/getting-started
https://ng-bootstrap.github.io/%23/components/alert/examples
https://ng-bootstrap.github.io/%23/components/modal/examples
https://getbootstrap.com/docs/4.6/layout/grid/
https://getbootstrap.com/docs/4.6/layout/grid/
https://getbootstrap.com/docs/5.2/layout/grid/
https://getbootstrap.com/docs/5.2/layout/grid/
https://getbootstrap.com/docs/4.6/components/card/

54

55

Bootstrap Navbar	 https://getbootstrap.com/docs/4.6/components/navbar/

5.3.Angular

● Angular Set up
– https://
angular.io/

● Angular Material Installation - https://
material.angular.io/guide/getting-started

● Angular Material Tabs - https://
material.angular.io/components/tabs/overview

● Angular Material Spinner – https://material.angular.io/
components/progress-spinner/overview

● Angular Material Autocomplete - https://
material.angular.io/components/autocomplete/overview

● Angular Routing – https://angular.io/
guide/routing-overview

5.4.MongoDB Atlas

MongoDB Atlas is a source-available cross-platform document-oriented database program. It is
classified as a NoSQL database program. MongoDB Atlas uses JSON-like documents with
optional schemas. For more information, see: https://www.mongodb.com/docs/

MongoDB on Google Cloud: https://www.mongodb.com/mongodb-on-google-cloud
MongoDB on AWS: https://www.mongodb.com/mongodb-on-aws

MongoDB on Azure: https://www.mongodb.com/mongodb-on-azure

Once you set up an account in MongoDB Atlas, you will have to create a project to store your
databases. In a project you will create a database to store collections which hold the watchlist
and protfolio information data in NoSQL format. Below are the steps to set up a project and
create a database.

Follow these steps create a project in which you can store databases for your application.

https://getbootstrap.com/docs/4.6/components/navbar/
https://angular.io/
https://angular.io/
https://material.angular.io/guide/getting-started
https://material.angular.io/guide/getting-started
https://material.angular.io/components/tabs/overview
https://material.angular.io/components/tabs/overview
https://material.angular.io/components/progress-spinner/overview
https://material.angular.io/components/progress-spinner/overview
https://material.angular.io/components/progress-spinner/overview
https://material.angular.io/components/autocomplete/overview
https://material.angular.io/components/autocomplete/overview
https://angular.io/guide/routing-overview
https://angular.io/guide/routing-overview
https://angular.io/guide/routing-overview
https://www.mongodb.com/docs/
https://www.mongodb.com/mongodb-on-google-cloud
https://www.mongodb.com/mongodb-on-aws
https://www.mongodb.com/mongodb-on-azure

56

57

Follow these steps to create a deployment for the project by creating a cluster and providing user
access and network access for the same. This would allow your application, running on a
different server, to connect to MongoDB Atlas in the cloud.

Follow these steps to create a database and a collection in that database. MongoDB stores data
records as documents (specifically in BSON format) which are gathered in collections. A
database stores one or more collections of documents.

Follow these steps to provide the instructions on how to connect to your MongoDB database
from your application.

58

	 	

Once you have set up the database and the collection, you can connect to the database by adding
the MongoDB node driver to your application. For more information how to add the driver and
run queries on the database, refer to MongoDB Node Driver — Node.js

5.5.highcharts-angular

Refer the following documentation on highcharts-angular and how to use it.

https://www.npmjs.com/package/highcharts-angular https://

www.tutorialspoint.com/angular_highcharts/angular_highcharts_quick_guide.htm

https://github.com/highcharts/highcharts-angular

Chart type references:

https://www.highcharts.com/docs/chart-and-series-types/column-chart#stacked-
column-c hart

https://www.highcharts.com/docs/chart-and-series-types/spline-chart

https://www.highcharts.com/demo/stock/sma-volume-by-price

5.6.Icons

Reference: https://fontawesome.com/search

● https://icons.getbootstrap.com/icons/caret-up-fill/

● https://icons.getbootstrap.com/icons/caret-down-fill/

● https://icons.getbootstrap.com/icons/star/

● https://icons.getbootstrap.com/icons/star-fill/

https://www.mongodb.com/docs/drivers/node/current/
https://www.npmjs.com/package/highcharts-angular
https://www.tutorialspoint.com/angular_highcharts/angular_highcharts_quick_guide.htm
https://www.tutorialspoint.com/angular_highcharts/angular_highcharts_quick_guide.htm
https://github.com/highcharts/highcharts-angular
https://www.highcharts.com/docs/chart-and-series-types/column-chart%23stacked-column-chart
https://www.highcharts.com/docs/chart-and-series-types/column-chart%23stacked-column-chart
https://www.highcharts.com/docs/chart-and-series-types/column-chart%23stacked-column-chart
https://www.highcharts.com/docs/chart-and-series-types/spline-chart
https://www.highcharts.com/demo/stock/sma-volume-by-price
https://fontawesome.com/search
https://icons.getbootstrap.com/icons/caret-up-fill/
https://icons.getbootstrap.com/icons/caret-down-fill/
https://icons.getbootstrap.com/icons/star/
https://icons.getbootstrap.com/icons/star-fill/

59

● https://icons.getbootstrap.com/icons/x/

● https://fontawesome.com/icons/facebook-square?s=brands

● https://fontawesome.com/icons/twitter?s=brands

5.6 Deploy Node.js application on Cloud Services

Since this assignment is implemented with Node.js on Cloud Services, you should
select Nginx as your proxy server (if available), which should be the default option.

6. Files to Submit

In your course homework page on GitHub Pages, you should update the Assignment #3
link to refer to your new initial web page for this exercise. Your files must be hosted on the
same service: Google Cloud, AWS or Azure. Graders will verify that this link is indeed pointing
to one of the cloud services. Additionally, you need to provide an additional link to the URL
of the cloud service where the AJAX call is made with sample parameter values. When
this link is followed, JSON is expected as the output.

Also, submit your source code file to D2L Brightspace. Submit a single ZIP file that includes
both the front-end and back-end code, plus any additional files needed to build your app. The
timestamp of the ZIP file will be used to verify if you have used any “grace days.”

IMPORTANT:

● All explanations and clarifications provided in Piazza related to this homework are part

of the homework description and grading guidelines. So please review all Piazza threads,
before finishing the assignment. If there is a conflict between Piazza and this description
and/or the grading guidelines, Piazza always rules.

● You should not call any of the Finnhub or Polygon.io APIs directly from JavaScript,
bypassing the NodeJS proxy. Implementing any one of them in “client” JavaScript
instead of NodeJS will result in a 4-point penalty.

● Appearance of all views, tables, and charts should be similar to the snapshots in this
document and the reference videos as much as possible.

https://icons.getbootstrap.com/icons/x/
https://fontawesome.com/icons/facebook-square?s=brands
https://fontawesome.com/icons/twitter?s=brands

	Objectives
	Background
	AJAX and JSON
	Bootstrap
	Cloud Services
	Amazon Web Services (AWS)
	Microsoft Azure
	Angular
	Node.js version 20

	High-Level Description
	Search Page / Homepage
	Design
	Search Execution
	Autocomplete

	Search Results Page
	Details of Searched Stock
	Table 3.1 – Stock Details
	IMPORTANT NOTE: All numerical values should be rounded off to 2 decimal places.
	Summary Tab
	Top News Tab
	Charts Tab
	Insights Tab

	Watchlist Menu
	NOTE: ‘percentage change’ should be rounded off to 2 decimal places.

	Portfolio Menu
	Responsive Design
	Navbar
	Footer

	API’s description
	Finnhub API calls, similar to Assignment 2
	Company’s Description
	URL parameter in API Call:

	Company’s Historical Data
	Figure 4.2: Sample JSON response from Polygon.io API’s Aggregate (Bars) Endpoint
	Table 4.1: Mapping JSON data and HighCharts data
	Figure 4.3: An Example of Chart showing Stock Price/Volume for 6 months

	Company’s Latest Price of Stock (Stock Quote)
	URL parameter in API Call:

	Autocomplete
	URL parameter in API Call:

	Company’s News
	URL parameter in API Call:

	Company’s Recommendation Trends
	Figure 4.8.
	URL parameter in API Call:

	Company’s Insider Sentiment
	NOTE: ‘from=2022-01-01’ should be used as a default parameter while using company’s social sentiment API calls, if not used can sometime return empty response.

	Company’s Peers
	URL parameter in API Call:

	Company’s Earnings
	NOTE: If any of the response values are null values for response keys, replace null values to 0. Sample null response received from Finnhub API (Figure 4.11.1) which should be handled and replaced with 0.
	URL parameter in API Call:

	Social Networks
	X (formerly known as Twitter)
	Facebook

	Implementation Hints
	ng-bootstrap Library
	Bootstrap UI Components
	Angular
	MongoDB Atlas
	highcharts-angular
	Chart type references:

	Icons
	5.6 Deploy Node.js application on Cloud Services

	Files to Submit
	IMPORTANT:

