Diagrams & Flowcharts – Respiratory System

Instruction:

26/12/2023

- 1. Write the diagrams/flow charts neatly with proper Labeling in 100page unruled notebook
- 2. Submit your assignment to the respective Table Teacher on time
- 3. Clarify your doubts with teacher concerned.
- 4. Submit Assignment by 24/01/2024

1. WEIBEL'S MODEL OF TRACHEO-BRONCHIAL TREE:

2. <u>MECHANICS OF RESPIRATION / MECHANICS OF BREATHING/ MECHANISM OF</u> <u>BREATHING:</u>

PRESSURE CHANGES DURING VENTILATION

3. LUNG VOLUMES AND CAPACITIES:

4. TIMED VITAL CAPACITY IN NORMAL SUBJECTS, OBSTRUCTIVE AND RESTRICTIVE LUNG DISEASES.

	NORMAL	RESTRICTIVE	OBSTRUCTIVE
FVC	5.0 L	Lower	Norm. or Low
FEV1	3.75L	Lower	Much Lower
FEV1/FVC	70-75%	Higher	Lower
% PREDICTED FVC	80-100%	Lower	Normal

Features	Obstructive Lung Disease	Restrictive Lung Disease
Definition	Partial or complete airway obstruction	Lung parenchymal damage and restriction in lung expansion with stiff lungs, weak musculature or damage to the nerves.
Flow rate	Ļ	1
Airway resistance	1	ļ
Total lung capacity	Normal or 1	1
FVC	11	11
FEV,	11	1
FEV,/FVC	11	Almost normal or 1
Examples	Bronchial asthma, COPD (chronic obstructive pulmonary disease— emphysema, chronic bronchitis, bronchiectasis), cystic fibrosis	Interstitial lung disease, pulmonary fibrosis, sacrcoldosis, obesity, amyotropic lateral sclerosis

5. ALVEOLAR SURFACE TENSION:

6. <u>COMPLIANCE :</u>

7. OXYGEN HEMOGLOBIN DISSOCIATION CURVE:

Factors affecting oxygen -hemoglobin dissociation curve

8. BOHR EFFECT:

Increase in C02/ H⁺ concentration - ---- decreases the affinity of Hb to O2----- unloading of oxygen in tissues.

9. HALDANE EFFECT:

Binding of O2 to Hb ------ release of CO2 from Hb------ occurs in the lungs

THE BASICS OF THE BOHR AND HALDANE EFFECTS			
Bohr Effect	Haldane Effect		
CO_2 and H ⁺ binding to Hb \rightarrow decreased Hb affinity for O_2	Deoxygenation of Hb \rightarrow increased Hb affinity for CO ₂		
Shifts O ₂ -hemoglobin curve RIGHT	Shifts CO2-blood curve LEF		

10.CHLORIDE SHIFT/ HAMBURGER PHENOMENON:

11. VENTILATION-PERFUSION RATIO:

Zone	Alveolar ventilation (L/min)	Perfusion (L/min)	V/P ratio	pO ₂ (mm Hg)	pCO ₂ (mm Hg)	pN₂ (mm Hg)	pH₂O (mm Hg)
Apex	2	0.6	3.3	132	28	553	47
Middle	4	5	0.8	100	40	573	47
Base	6	10	0.6	89	42	582	47

12.<u>RESPIRATORY MEMBRANE:</u>

13. REGULATION OF RESPIRATION:

OVERVIEW OF REGULATION OF RESPIRATION

A. NEURAL REGULATION OF RESPIRATION

Activities of the medullary rhythmicity area. Roles of the medullary rhythmicity area include controlling (a) the basic rhythm of respiration and (b) forceful breathing.

During normal, quiet breathing, the expiratory area is inactive; during forceful breathing, the inspiratory area activates the expiratory area.

Effects of Transections on Breathing Patterns

B.CHEMICAL REGULATION OF RESPIRATION

Summary representing stimulation of chemoreceptors.

© Elsevier. Guyton & Hall: Textbook of Medical Physiology 11e - www.studentconsult.com

Mechanism of action of CO2 on Medullary chemoreceptor

Overview of Chemical Regulation of Respiration

C.RESPIRATORY REFLEXES

1. Hering-Breuer Inflation Reflex

2. Hering-Breuer Deflation Reflex

14. APPLIED ASPECT- ABNORMAL BREATHING PATTERNS:

1. CHEYNE STOKES RESPIRATION:

Normal breathing

Cheyne-Stokes respiration

2. BIOT'S BREATHING:

Normal breathing

Biot's breathing

Example:

Voluntary hyperventilation Sleep Cerebrovascular disease

Example: Meningitis

Different Types of	Abnormal	Breathing
--------------------	----------	-----------

Type of Abnormal Breathing	Description	Causes
Cheyne–Stokes breathing	The person breathes deeply for a short interval and then breathes slightly or not at all for an additional interval	Severe cardiac failure, increased negative feedback gain in respiratory control areas
Biot's breathing	Quick bouts of shallow respiration followed by unpredictable periods of apnea	Lesions in the medulla oblongata
Apneustic breathing	Characterized by a prolonged inspiratory gap with a pause at full inspiration	Caused by lesions at the dorsolateral lower half of the pons
Kussmaul breathing	Characterized by very deep labored regular breathing	Caused by metabolic acidosis or diabetic ketoacidosis

15. HYPOXIA:

16. HIGH ALTITUDE & RELATED DISEASES:

AMS - Acute mountain sickness, HAPE- high altitude pulmonary edema, HACE - high altitude cerebral edema