
ECE 202 Fall 2023 Computational Tools for ECE

Project 2:
Hitting a home run, with air resistance

Overview:	In	this	project,	you	use	your	knowledge	of	physics	to	determine	the	net	force	on	a	baseball	
after	it	is	hit,	including	the	nonlinear	effects	of	air	resistance	(drag),	then	use	numerical	techniques	to	
determine	the	time	of	flight,	range,	and	maximum	height.	

***	Read	the	entire	assignment	before	beginning	Phase	1,	so	that	you	know	what	to	expect.	***	
Consider	the	trajectory	of	a	baseball,	hit	at	a	“launch	angle”	of	28°,	with	an	“exit	velocity”	of	116	mph,	as	
shown	below.		Using	a	combination	of	raw	data	and	modeling	software,	its	range	R	was	determined	to	
be	463	ft,	the	maximum	height	H	was	100	ft,	and	the	time	of	flight	T	was	5.3	s.	

	[source:	mlb.statcast]	
We	would	like	to	see	how	close	we	can	get	to	these	values,	first	without	air	resistance,	then	with	air	
resistance,	and	both	using	numerical	techniques.		(Note	that	we	will	be	neglecting	“lift”,	which	occurs	
when	there	is	backspin	on	the	baseball.)	

Phase 1. Comparing the analytic solutions to the numeric, without drag
(and setting up the structure you will need for adding drag in the next phase)

[25	 pts]	 If	 we	 know	 the	 second	 derivative	 of	 a	 function,	 then	 we	 can	 construct	 the	 function,	 as	
demonstrated	in	class.		Specifically,	if	the	time	interval	∆t	is	small	enough,	then	we	can	use	the	second	
derivative	to	find	the	first	derivative	and	then	we	can	use	both	to	find	the	function.		That	is…	

	

then…	
	

In	 this	 project,	 at	 every	 stage,	 we	will	 know	 the	 net	 force	 on	 the	 baseball,	 so	we	 can	 compute	 the	
components	of	 its	acceleration,	ax	and	ay,	where	ax	=	dvx/dt	=	d2x/dt2	and	ay	=	dvy/dt	=	d2y/dt2.	 	This	
means	we	can	use	the	components	of	the	net	force	to	find	x(t)	and	y(t).	

DESIGN	SPECIFICATIONS	
1. Compute	x(t)	and	y(t)	numerically,	using	the	net	force	on	the	baseball,	without	air	resistance,	but	

treating	the	net	force	as	non-constant	(to	make	it	much	easier	to	add	drag	in	the	next	phase),	and	
using	the	analytic	time	of	flight	to	determine	the	upper	limit	of	time	t.	

2. Compare	the	numeric	solutions	to	the	analytic	solutions.		(Design	two	checks,	one	for	x(t)	and	
one	for	y(t),	that	should	return	zero	if	each	is	the	same	as	its	analytic	solution.)	

3. Use	one	FOR	loop	to	compute	both	x(t)	and	y(t).	
4. Use	“feet”	as	the	unit	of	distance	for	x(t)	and	y(t).	
5. Plot	two	trajectories,	y	vs.	x,	one	analytic	and	one	numeric.		Include	a	grid,	a	meaningful	title	and	

legend,	and	proper	axis	labels.		Font	sizes	should	be	appropriate	for	the	size	of	the	figure.	

ʹf (t +Δt)= ʹf (t)+Δt ⋅ ʹ́f (t)

f (t +Δt)= f (t)+Δt ⋅ ʹf (t)+ 12(Δt)
2 ⋅ ʹ́f (t)

ECE 202 Fall 2023 Project 2:
Computational Tools for ECE Hitting a home run, with air resistance

Last Updated: November 6, 2023

Phase 1. (continued)
For	Spec	#1,	you	will	need	to	look	up	the	mass	of	a	baseball,	so	that	you	can	compute	the	components	of	
the	net	force,	then	divide	by	the	mass	to	find	the	components	of	its	acceleration.		You	should	treat	the	
net	 force	 and	 acceleration	 as	NOT	 constant,	 i.e.,	 compute	 their	 components	within	 each	 loop	 of	 the	
numeric	computation,	as	this	will	be	updated	in	the	next	phase	when	we	add	air	resistance.		(This	might	
seem	strange	to	you,	but	it	will	make	adding	air	resistance	much	easier	to	do	in	the	next	phase,	as	the	
drag	force	does	not	depend	on	the	mass.)	
You	should	start	with	the	script	from	class	(Lecture	27).		A	calculation	of	the	analytic	time	of	flight	is	
already	there,	which	sets	the	time	scale	for	everything.		However,	you	should	write	the	rest	of	the	script	
yourself,	as	it	should	be	VERY	different	from	what	is	done	in	class.	

For	Spec	#2,	you	should	construct	two	functions,	each	of	which	should	equal	an	array	of	zeros,	then	for	
each,	use	a	suitable	expression	to	sum	the	values	in	a	way	that	it	is	convincing	when	the	answer	is	zero.		
(We	have	done	this	quite	a	few	times	now.)		It	is	not	necessary	to	plot	these	two	“checking”	functions,	
because	we	are	focusing	on	y	vs.	x,	not	x	vs.	t	or	y	vs.	t.		Instead,	output	one	value	for	x(t)	and	another	
value	for	y(t)	that	capture	the	essence	of	how	close	these	two	numeric	solutions	are	to	their	analytic	
counterparts.	

For	Spec	#3,	constructing	x(t)	and	y(t)	are	independent	of	each	other,	but	that	does	not	mean	you	need	
separate	FOR	loops	to	compute	them.		Both	can	be	computed	within	the	same	loop.			

For	Spec	#4,	it	is	usually	easier	to	convert	to	meters	early	then	convert	back	again	to	feet	at	the	end.	
UPLOAD:	Script,	Command	Window,	figure.	
	

Phase 2. Adding air resistance (drag) and checking when drag is “turned off”
[25	pts]	We	can	show	that	the	force	of	air	resistance	(drag)		
is	proportional	to	the	density	of	air	(rair),	the	cross-sectional	
area	 (A)	of	 the	baseball,	 and	 the	 speed-squared	 (v2)	of	 the	
baseball.		The	direction	of	the	drag	force	is	directly	opposite	
the	velocity	of	the	baseball,	as	shown.		Mathematically…	

	

where	C	 is	 a	 dimensionless	 constant	 (usually	 between	 0.2	
and	0.3	 for	 a	 baseball),	v	 is	 the	 speed	 of	 the	 baseball,	 and		
v	=	(vx,	vy)	is	the	velocity	of	the	baseball.		Therefore…	

	

We	can	now	add	this	to	our	functioning	script	from	Phase	1	and	see	what	happens.	

The	additional	specifications	are:	

6. Update	the	script	to	include	drag,	as	efficiently	as	possible.		Make	C	a	user	input.	
7. Add	minor	grid	lines,	and	make	all	gridlines	more	visible,	to	make	it	easier	to	estimate	values	for	

maximum	height	and	range,	directly	from	the	figure.	

8. Check	that	the	results	are	the	same	as	before	for	C	=	0.		Submit	only	the	Command	Window.	
9. Run	with	C	=	0.38.		Include	a	robust,	meaningful	legend.		Submit	only	the	figure	(y	vs.	x).	

Fdrag =−
1
2C ⋅ρair ⋅A⋅v ⋅v

Fdrag,	x =−
1
2C ⋅ρair ⋅A⋅v ⋅vx 																	Fdrag,	y =−

1
2C ⋅ρair ⋅A⋅v ⋅v y

ECE 202 Fall 2023 Project 2:
Computational Tools for ECE Hitting a home run, with air resistance

Last Updated: November 6, 2023

Phase 2. (continued)
As	in	Project	1,	rename	your	script	before	you	start	editing,	so	that	you	can	keep	the	old	one.		(“Save	
As…”	is	useful	for	this.)	
For	Spec	#6,	look	up	or	estimate	values	needed	for	the	drag	force,	and	compute	the	components	of	the	
net	force	at	each	time	t.		This	is	changing	within	each	iteration	of	the	FOR	loop,	so	that	is	why	we	are	
calculating	it	within	the	loop	rather	than	outside	it.		At	any	particular	time	t,	starting	at	t	=	0,	we	know	
the	location	(x,	y)	and	velocity	(vx,	vy)	of	the	baseball,	which	means	we	can	compute	the	speed	v	and	net	
force	on	it	(Fnet,	x,	Fnet,	y),	as	well	as	its	acceleration	(ax,	ay),	which	in	turn	means	we	can	determine	the	
location	and	velocity	at	t	+	∆t,	and	iterate	until	time	runs	out.		Think	about	how	to	compute	the	drag	
force	efficiently.	

Don’t	be	concerned	that	the	trajectory	of	the	ball	continues	after	it	has	hit	the	ground.		(In	the	next	phase,	
we	will	develop	the	logic	needed	to	determine	when	the	ball	“lands”.)		Note	that	both	trajectories	are	on	
the	same	figure,	i.e.,	the	(analytic)	solution	without	drag	and	the	(numeric)	solution	with	drag.			

For	Spec	#7,	use	grid minor	 to	add	 the	minor	grid	 lines.	 	To	make	 the	grid	 lines	more	visible	use	
ax.GridAlpha	and	ax.MinorGridAlpha	(assuming	you	are	using	ax = gca;	to	make	the	fonts	larger).		
Values	of	0.4	for	GridAlpha	and	0.5	for	MinorGridAlpha	should	work	well.	
Make	sure	to	update	the	title	and	legend	to	match	this	situation.		Specifically,	we	are	no	longer	comparing	
the	analytic	to	the	numeric	solution.		Now	that	we	have	shown	in	Phase	1	that	they	are	equivalent,	so	
we	don’t	need	to	mention	whether	a	solution	is	numeric	or	not.		Instead,	we	are	focusing	on	comparing	
drag	to	no	drag.		Also,	include	the	input	value	of	C	in	the	legend	(and	do	this	robustly).	

UPLOAD:	New	script,	Command	Window,	figure.	

Phase 3. Exporting data and analyzing it in Excel
[12	pts]	Add	code	to	your	script	to	create	an	appropriate	matrix	of	useful	data,	i.e.,	t,	x,	and	y,	then	export	
the	data	to	a	text	file	(.txt	or	.csv)	so	that	you	can	import	it	into	an	Excel	workbook.	

10. In	Excel,	estimate	the	time	of	flight,	maximum	height,	and	range	for	C	=	0.38.	
For	the	time	of	flight,	you	need	to	recognize	when	the	ball	has	“hit	the	ground”.		One	efficient	way	to	do	
this	is	to	compare	each	value	of	y	with	the	next	value.		For	exactly	one	value	of	y,	its	sign	is	different	from	
the	sign	of	the	next	value,	i.e.,	as	y	changes	from	+	to	–,	it	must	pass	through	y	=	0.		Therefore,	create	a	
new	column	of	values	y(t)/y(t+∆t).		The	one	time	that	this	ratio	is	negative	is	a	good	estimate	of	the	time	
of	flight.		You	can	use	the	MIN	function	to	determine	the	only	negative	value	in	this	list	of	ratios,	and	you	
can	use	the	MATCH	function	to	find	its	row	number.		Finally,	you	can	use	INDIRECT(ADDRESS(rowNumber,
columnNumber))	to	access	this	value	of	the	time.	

Think	 about	how	 to	do	 this	 efficiently,	 e.g.,	 by	having	 your	 calculations	 and	 labels	 organized	 in	one	
column	on	the	side	rather	than	on	top,	so	that	you	can	use	whole-column	indexing,	for	example,	A:A	to	
search	all	of	column	A	within	the	MIN	and	MATCH	functions.	

For	the	maximum	height,	you	can	use	the	MAX	function	in	Excel.	

For	the	range,	you	should	access	the	value	of	x	when	the	value	of	y	changes	from	+	to	–.		
Include	your	MATLAB	figure	showing	the	trajectory	using	the	same	data	you	are	analyzing.		Update	the	
figure	from	Phase	2	to	refer	to	this	phase	number.		(A	figure	from	MATLAB	is	better	than	a	figure	from	
Excel,	because	the	MATLAB	figure	has	minor	gridlines.)	

UPLOAD:	New	script,	MATLAB	figure,	first	page	of	formulas,	first	page	of	values.	

ECE 202 Fall 2023 Project 2:
Computational Tools for ECE Hitting a home run, with air resistance

Last Updated: November 6, 2023

Phase 4. Getting MATLAB to do the same as Excel, and comparing results
[13	pts]	You	can	also	estimate	the	time	of	flight,	maximum	height,	and	range	in	MATLAB.		To	determine	
the	time	of	 flight	and	range,	within	each	 iteration	of	 the	FOR	 loop,	you	should	check	each	value	of	y	
against	 the	 previous	 value,	 to	 see	 if	 the	 ball	 has	 hit	 the	 ground.	 	 Then,	 grab	 the	 time	 and	 distance	
information,	and	hold	on	to	it	until	the	iterations	are	complete.		The	MAX	function	can	be	used	to	find	
the	maximum	height	(outside	the	FOR	loop).	

11. In	MATLAB,	estimate	the	time	of	flight,	maximum	height,	and	range	for	C	=	0.38.	
12. Compare	the	results	using	MATLAB	to	the	previous	results	using	Excel	from	Phase	3.		
13. Compute	the	“final”	speed	of	the	baseball,	in	mph,	and	the	energy	lost	due	to	air	resistance,		

in	joules.	

14. Choose	longer	variable	names	to	make	the	output	as	meaningful	as	possible.	
	

For	Specs	#11	and	#12,	the	results	should	be	exactly	the	same	as	before.		Therefore,	include	the	“values”	
page	from	Phase	3,	then	add	a	comment	in	your	script	about	the	results,	saying	whether	or	not	they	are	
the	same.		(No	calculations	of	percent	error	are	needed.)	
For	Spec	#13,	keep	in	mind	that	the	“final”	speed	is	the	speed	of	the	baseball	when	it	lands,	NOT	the	
“last”	speed	after	the	FOR	loop	is	finished.		Therefore,	grab	the	speed	within	the	FOR	loop	at	the	same	
time	that	you	grab	the	time	and	distance	information.		You	should	keep	the	speed	in	m/s,	so	that	it’s	
easier	 to	 compute	 the	 “final”	 kinetic	 energy	 of	 the	 baseball	 in	 J.	 	 To	 find	 the	 energy	 lost	 due	 to	 air	
resistance,	use	the	change	in	kinetic	energy,	as	the	potential	energy	has	not	changed.	
For	Spec	#14,	you	will	not	be	using	any	of	these	variables	in	many	calculations,	so	longer	names	are	
appropriate,	with	unit	abbreviations,	such	as	range_ft	and	energyLost_J.		Be	sure	to	keep	other	variable	
names	short,	e.g.,	the	final	speed	in	m/s	should	be	simply	vF,	so	that	it’s	easier	to	use	in	expressions.		

UPLOAD:	New	script,	Command	Window	output.	

Phase 5. Exploring the results
[25	pts]	Once	everything	is	working,	let’s	explore	the	effects	of	drag,	as	compared	to	the	results	from	
mlb.statcast.	

(a) For	what	value	of	C	is	the	range	within	0.1%	of	463ft	(as	shown	in	the	original	diagram)?	

(b) What	are	the	maximum	height	and	time	of	flight	for	this	value	of	C?	
(c) How	well	or	poorly	do	these	values	compare	to	the	corresponding	values	in	the	original	

diagram?		Be	quantitative.	

(d) What	is	the	“final”	speed,	in	mph?		How	much	energy	is	“lost”,	in	J?	
(e) 	

For	part	(a),	compute	the	percent	error	in	the	range,	then	run	your	script	and	enter	values	of	C	until	you	
are	within	0.1%	of	the	desired	range,	then	clear	the	Command	Window	and	run	it	one	more	time	with	
that	 value	 of	 C.	 	 For	 part	 (b),	 make	 sure	 the	maximum	 height	 and	 time	 of	 flight	 are	 output	 to	 the	
Command	Window.		For	part	(c),	add	efficient,	robust	code	to	compute	the	percent	errors	between	your	
simulated	values	 and	 the	 “known”	values	 in	 the	diagram,	 then	write	 appropriate	 comments	 in	 your	
script.	 	Note	 that	 the	sign	of	 the	percent	error	 is	useful,	 so	don’t	use	 the	ABS	 function,	with	positive	
meaning	the	simulated	values	are	too	large.		For	part	(d),	these	were	calculated	and	output	in	Phase	4,	
so	you	should	not	need	to	do	anything	special.		

UPLOAD:	New	script,	Command	Window.	

ECE 202 Fall 2023 Project 2:
Computational Tools for ECE Hitting a home run, with air resistance

Last Updated: November 6, 2023

Summary
Here	is	a	table	showing	what	you	should	include	in	your	solution	for	each	part.	
	

	
Phase	

	
Script?	

Command		
Window	output?	

ONE	page	of	
formulas?	

ONE	page	of	
values?	

MATLAB		
figure?	

1	 yes	 yes	 no	 no	 1	

2	 yes	 yes	 no	 no	 1	

3	 yes	 no	 yes	 yes	 1	

4	 yes	 yes	 no	 yes	 0	

5	 yes	 yes	 no	 no	 0	

	

