
ECE 202 Fall 2023 Computational Tools for ECE

Last Updated: November 5, 2023

Project 1: Power series expansion of A cos(wt)
Overview:	In	this	project,	you	will	apply	calculus	to	rewrite	a	sinusoidal	function	of	time	as	a	truncated	
power	series	using	the	Taylor	series	expansion.		Along	the	way,	you	will	learn	about	robust	methods	of	
developing	scripts.		Once	you	are	finished,	you	will	also	learn	about	the	limitations	of	a	power	series	
expansion.		You	should	complete	each	phase	before	moving	on	the	next	phase.		This	means	you	need	to	
get	started	early.	

You	should	read	the	entire	assignment	before	starting	Phase	1,	so	that	you	know	what	to	expect.	
Consider	the	function	f(t)	=	7	cos(20t),	where	the	coefficient	of	t	is	the	angular	frequency	in	rad/s,	and	t	
is	in	seconds.	We	can	rewrite	this	function	as	an	infinite	power	series:	

	

Phase 1. Getting a relatively simple script working (as quickly as possible).
[25pts]	Plot	a	power	series	expansion	for	f(t),	from	t	=	0	to	t	=	0.5s,	using	truncated	sums,	starting	with	
the	first	non-zero	term,	then	the	first	two	non-zero	terms,	etc.,	up	to	the	first	6	non-zero	terms.	

DESIGN	SPECIFICATIONS	
1. You	should	derive	a	general	expression	for	the	non-zero	coefficients,	an.	(Include	your	hand	

calculation	as	a	separate	PDF	to	be	uploaded	and	completed	before	writing	the	script.)	
2. You	should	use	an	array	for	the	coefficients	(an).		These	coefficients	should	be	output	to	the	

Command	Window	in	a	way	that	is	relatively	easy	to	read	and	understand,	even	though	the	
range	of	values	will	be	from	“normal”	to	very	large.	

3. You	should	create	6	functions	to	plot.		These	should	be	defined	as	efficiently	as	possible	without	
using	a	FOR	loop.		(Using	a	FOR	loop	will	come	in	a	later	phase.)	

4. The	figure	should	have	a	meaningful	title,	a	grid,	and	proper	axis	labels.		
5. Change	the	vertical	axis	to	cut	off	some	of	the	very	high	and	very	low	values,	but	still	make	sense	

in	terms	of	the	given	function.		
6. For	now,	you	should	not	be	concerned	with	font	sizes,	line	widths,	or	a	legend.		You	also	should	

not	define	variables	for	A,	w,	tmin,	tmax,	N	(intervals	or	points),	or	the	number	of	non-zero	
terms.		(These	are	coming	in	later	phases.)	

For	Spec	#1,	you	should	use	a	Taylor	series	expansion	about	t	=	0,	i.e.,		

	

where	 	is	the	nth	derivative	of	f(t)	evaluated	at	t	=	0.		Make	a	table	with	three	columns:	n,	𝑓(")(𝑡),	
and	 .		(DO	NOT	change	the	definition	of	n.		You	should	end	up	with	two	expressions,	one	for		
n	=	even	and	another	for	n	=	odd.)		Even	though	it	is	called	a	“hand	calculation”,	you	should	not	compute	
anything;	instead,	leave	everything	in	terms	of	7	and	20.	

For	Specs	#2	and	#3,	you	should	set	up	an	array	of	n	values	corresponding	to	the	non-zero	coefficients.		
Note	that	there	is	an	efficient	way	of	creating	the	array	of	n	values.		Use	dot	operations	to	create	the	
array	of	an	values	in	one	expression.		Then,	you	should	use	the	format shortG	command	near	the	
beginning	of	the	script,	so	that	the	output	is	meaningful	for	this	wide	range	of	values.		

f (t)= an ⋅t
n

n=0

∞

∑

f (t)= f (n)(0)
n! ⋅tn

n=0

∞

∑

f (n)(0)
f (n)(0)

ECE 202 Fall 2023 Project 1:
Computational Tools for ECE Power series expansion of A cos(wt)

Last Updated: November 5, 2023

Phase 1. (continued)
Also	for	Spec	#3,	you	will	need	to	think	about	an	efficient	way	of	defining	the	functions	(without	using	a	
FOR	loop).		It	will	help	to	have	the	array	of	n	values,	as	you	will	be	using	it	three	times,	once	for	defining	
the	coefficients,	once	for	the	coefficients	in	the	six	functions	you	are	creating,	and	once	for	the	exponent	
of	t	(also	when	you	are	creating	the	six	functions).		
For	Spec	#4,	a	meaningful	title	should	include	the	given	function	being	approximated	by	the	power	
series	and	the	number	of	non-zero	terms	in	the	truncated	series.		The	“context”	should	mention	“Phase	
1”,	so	that	this	can	be	changed	as	you	proceed	through	this	project.		You	likely	need	a	multiline	title.		

For	Spec	#5,	we	are	expecting	the	truncated	series	to	eventually	become	something	that	looks	like	the	
given	function,	7	cos(20t).		Therefore,	use	the	AXIS	or	YLIM	command	to	choose	Y	limits	from	–10	to	
+10,	or	something	similar.		In	other	words,	without	changing	the	Y	limits,	it	can	be	hard	(or	impossible)	
to	tell	whether	your	figure	is	correct.			But	with	one	of	these	commands,	you	should	just	start	to	see	the	
last	function	looking	like	the	given	function,	at	least	for	the	first	0.1s	or	so.			

You	will	upload	the	hand	calculation	separately,	and	you	should	not	write	the	script	until	it’s	perfect.	
UPLOAD:	Hand	calculation	first	in	part	(a);	once	that	is	correct,	upload	the	script,	Command	Window,	and	
one	figure	(with	all	6	graphs)	in	part	(b).	

Phase 2. Adding features to improve the output.
[12pts]	Once	you	have	a	functioning	script	that	is	perfect,	rename	it	(so	that	you	can	keep	the	old	
one),	and	add	the	following	features	to	make	the	output	much	nicer…	

A. Change	the	format	of	the	coefficients	to	be	easier	to	understand	by	making	a	table	to	output,	
with	two	columns,	one	with	a	list	of	n	values	and	the	other	with	a	list	of	coefficients,	and	
appropriate	column	headings.		

B. Switch	to	ms	for	the	given	time	limits,	and	plot	in	ms,	while	still	using	seconds	to	calculate	
functions	to	plot.					

C. Add	a	horizontal	axis.	
D. All	of	the	graphs	should	be	thicker,	with	the	first	five	graphs	2-3	times	as	thick	as	the	x-axis,	

and	the	last	graph	twice	as	thick	as	the	first	five,	so	that	it’s	easier	to	tell	which	one	it	is.		The	
grid	should	be	darker	than	the	default,	without	being	too	dark.		

E. Make	the	font	sizes	appropriate	for	the	size	of	the	chart.	
F. Add	a	meaningful	legend.		Use	the	last	“n”	value	in	each	truncated	sum	to	label	each	graph	

(with	a	very	short	but	meaningful	phrase).	
G. Position	the	legend	so	that	it	will	NEVER	overlap	any	of	the	plotted	graphs,	including	when	

the	number	of	non-zero	terms	becomes	a	user	input	in	a	later	phase.	
For	feature	A,	use	the	TABLE	command,	with	appropriate	“variable	names”	as	column	headings.		
Choose	a	name	for	the	table	that	makes	the	output	meaningful.	
For	feature	B,	switch	the	beginning	/	ending	times	in	LINSPACE	to	be	in	ms.		You	will	still	need	an	
array	in	seconds	to	compute	the	terms	of	the	power	series,	so	think	about	how	to	do	this	efficiently.			
For	feature	C,	plot	a	black,	horizontal	line	first	(so	that	it’s	underneath	everything),	for	example…	

plot([0,500], [0,0], 'k', 'LineWidth', 1)

ECE 202 Fall 2023 Project 1:
Computational Tools for ECE Power series expansion of A cos(wt)

Last Updated: November 5, 2023

Phase 2. (continued)
For	features	C	and	D,	you	will	need	to	use	one	HOLD ON	and	one	HOLD OFF	command,	so	that	you	can	
have	three	separate	PLOT	commands,	one	for	the	horizontal	axis,	one	for	the	first	five	functions,	and	one	
for	the	last	function.		To	make	the	grid	darker,	use…	

ax = gca; ax.GridAlpha = 0.4;

For	feature	E,	it	helps	to	change	all	of	the	font	sizes	first,	e.g.,	using	ax.FontSize = 16,	then,	use	the	
FontSize	parameter	to	change	the	font	sizes	for	the	title,	legend,	and	axis	labels.		This	will	make	the	font	
size	equal	to	16	points	for	the	numbers	along	the	axes,	and	then	you	can	set	the	rest	of	them	to	whatever	
you	like,	as	long	as	it	comes	after	this	line	of	code.		Typically,	the	axis	labels	and	legend	text	would	be	
about	18pt,	and	the	title	is	the	largest,	about	21pt.		(Scale	these	up	or	down	for	your	figure.)	

For	feature	F,	there	is	an	efficient	way	to	easily	append	text	to	a	string	using	a	+	sign.		For	instance…	
"n = " + n;

…	returns	a	row	array	of	useful	text	strings.		(You	should	make	the	legend	more	accurate	than	this.)		You	
will	also	need	to	skip	the	x-axis	you	have	plotted	for	feature	C.		To	do	this,	define	the	two	other	plots	as	
objects,	e.g.,	p1	and	p2,	then	include	these	as	a	column	array	in	your	LEGEND	command,	that	is…	

p1 = plot(tms, f1, tms, f2, ...);
p2 = plot(tms, f6, ...);
legend([p1; p2], legendText, ...)

Note	that	there	are	semicolons	at	the	end	of	the	first	two	lines.	

For	feature	G,	use	the	Location	attribute	that	will	put	the	legend	just	outside	the	frame.	
Note	that	Spec	#4	from	Phase	1	must	still	be	met,	which	means	you	should	change	the	“context”	to	refer	
to	“Phase	2”.		Also,	update	the	brief	description	near	the	beginning	of	your	script	to	refer	to	this	phase.	

UPLOAD:	New	script,	Command	Window,	figure.	

Phase 3. Making the script more robust and more general.
[13pts]	Let’s	add	a	specification	that	will	help	make	the	script	easier	to	generalize	in	a	later	phase.		Let’s	
also	add	a	check	that	we	have	not	broken	anything	that	was	working	before…	

6. You	should	not	“hardwire”	or	“hardcode”	anything.	
7. You	should	check	that	the	results	have	not	changed.	

As	before,	rename	your	script	before	you	start	editing,	so	that	you	can	keep	the	old	one.			

For	Spec	#6,	define	variables	for	the	amplitude	and	angular	frequency	of	the	given	sinusoid	(i.e.,	A	and	
w,	as	these	are	given),	the	number	of	non-zero	terms	in	the	truncated	power	series,	the	limits	for	the	
time	axis	(now	in	ms),	and	the	number	of	points	to	plot	(or	intervals).			
Other	parameters	will	depend	on	these,	such	as	the	maximum	value	of	n	(which	depends	on	the	number	
of	non-zero	terms	in	the	truncated	series),	and	the	limits	of	the	vertical	axis	(which	depend	on	the	
amplitude	of	the	given	sinusoid).				
The	title	should	also	be	affected,	that	is,	you	should	not	hardwire	the	number	of	non-zero	terms	that	are	
mentioned	in	the	title,	or	the	values	of	A	and	w.		You	will	need	something	like	SPRINTF	and	%g	to	do	this.		
(You	may	instead	use	STRCAT	and	NUM2STR,	if	you	prefer.)		Recall	also	that	you	should	“continue”	a	line	
to	the	next	line	using	three	dots	(…)	when	it	won’t	fit	onto	one	line.		Update	the	“context”	as	well.	

ECE 202 Fall 2023 Project 1:
Computational Tools for ECE Power series expansion of A cos(wt)

Last Updated: November 5, 2023

Phase 3. (continued)
For	Spec	#7,	you	can	do	a	visual	check	that	the	figure	looks	the	same	as	before	and	add	a	comment	near	
the	end	of	your	script.		In	other	words,	the	output	from	this	phase	should	look	exactly	like	the	output	
from	Phase	2.		

UPLOAD:	New	script,	Command	Window,	figure.	

Phase 4. Making the script more efficient and easier to scale to any number of terms.
[12pts]	The	section	of	code	we	are	using	to	define	the	6	functions	to	plot	is	inefficient	and	will	not	scale.		
That	is,	what	if	we	wanted	to	look	at	10	or	20	non-zero	terms?		I	don’t	think	anyone	would	want	to	deal	
with	10	or	20	lines	of	code,	even	if	they	just	had	to	copy	the	previous	line	and	edit	it.	

Therefore,	let’s	change	the	3rd	specification…	

3b.	 Use	a	FOR	loop	to	create	the	6	functions	to	plot.	
	

Now	that	everything	is	written	using	parameters	(having	made	the	script	robust	in	Phase	3),	it	should	
be	relatively	straightforward	to	add	an	appropriate	section	to	your	script.	

Let’s	use	f	to	store	the	truncated	series.		Start	by	initializing	f	as	an	array	of	zeros	that	matches	the	
dimensions	of	the	time	arrays.		Then,	the	first	line	inside	your	FOR	loop	would	be	something	like…	

f = f + expression_for_the_next_term_in_the_series;

You	should	plot	f	soon	after	defining	it,	so	that	you	don’t	need	to	define	6	functions	separately.		That	is,	
you	define	the	function,	then	plot	it	and	use	it	in	the	next	iteration	of	the	loop,	when	you	redefine	it.		
Remove	all	non-essential	parts	from	the	FOR	loop,	e.g.,	HOLD ON	and	HOLD OFF	can	be	outside	the	FOR	
loop.		
You	will	need	to	think	about	exactly	how	you	are	going	to	make	the	line	thickness	of	the	last	function	
thicker	than	the	rest,	usually	with	IF/ELSE.		(And	check	the	legend	to	make	sure	it’s	correct	as	well.)	

I	also	recommend	that	you	introduce	a	new	variable,	for	example,	k,	that	runs	from	1	to	the	number	of	
non-zero	terms.		You	will	use	k	multiple	times	within	the	FOR	loop.	

You	won’t	be	able	to	use	p1	and	p2	any	more,	but	you	can	use	an	array	to	keep	track	of	the	plots,	so	that	
the	legend	is	still	correct,	for	instance…	

p(k) = plot(tms, f, ...);

…	then	replace	[p1; p2]	in	the	LEGEND	command	with	simply	p,	i.e.,	no	brackets	are	needed.		Make	sure	
to	initialize	p	as	a	column	vector	of	the	appropriate	dimensions	just	before	the	FOR	loop.	

As	a	better	check	(Spec	#7),	compare	the	new	code	to	the	old	code	(from	Phase	3).		Specifically,	add	a	
convincing	check,	that	should	equal	zero	for	the	last	function.		In	other	words,	don’t	remove	the	
“inefficient”	section	of	code	that	you	needed	for	Phase	3.		Instead,	add	a	new	section	that	uses	a	FOR	
loop,	then	use	the	last	function	in	the	new	section	to	compare	to	the	last	function	in	the	old	section.	

UPLOAD:	New	script,	Command	Window,	figure.	

ECE 202 Fall 2023 Project 1:
Computational Tools for ECE Power series expansion of A cos(wt)

Last Updated: November 5, 2023

Phase 5. Letting the user define the parameters.
[13pts]	To	finish	the	script,	we	need	some	additional	specifications…	

8. Allow	the	user	to	input	parameters.			

9. Make	it	relatively	easy	for	someone	to	understand	what	they	are	inputting.			
10. In	your	prompts,	include	units	wherever	appropriate.		

11. Skip	the	check	of	“old”	vs.	“new”	when	the	number	of	non-zero	terms	is	not	equal	to	6.	
12. Add	a	new	calculation	to	compare	the	last	function	to	the	exact	(given)	function.		A	meaningful	

value	is	the	average	magnitude	of	the	deviation.		Include	this	value	in	the	title,	robustly.	
	

It	will	become	too	tedious	to	convert	all	of	the	“givens”	(from	Phase	3)	into	user-defined	variables,	
although,	after	completing	this	phase,	you	will	be	able	to	easily	update	your	script,	if	desired.		Instead,	to	
complete	this	project,	you	should	only	allow	the	user	to	choose	the	number	of	points	(or	intervals)	being	
plotted,	the	number	of	non-zero	terms	(currently	equal	to	6),	and	the	beginning	and	ending	times	
(currently	equal	to	0ms	and	500ms).		Make	sure	that	the	prompts	are	appropriate	and	that	the	output	is	
easy	to	read.		Suppress	output	for	the	INPUT	statements.	

For	Spec	#11,	use	an	IF	statement.			
For	Spec	#12,	define	a	function	(the	“average	deviation”)	that	should	be	an	array	of	small	numbers	
when	the	power-series	approximation	is	a	good	one.		Make	each	element	of	the	array	positive,	so	that	
negative	values	do	not	cancel	positive	values	by	accident	when	you	sum	them.		Find	the	average	of	these	
positive	deviations,	so	that	the	result	does	not	depend	on	the	number	of	points	or	intervals	used	to	plot.		
Choose	an	appropriate	name,	so	that	the	output	is	meaningful.		Update	the	title	appropriately.	

A	visual	check	is	again	useful	here.		Update	the	“context”.		Comment	at	the	end	of	the	script.	

UPLOAD:	New	script,	Command	Window,	figure.	

Phase 6. Understanding the Taylor series.
[25pts]	Now	that	we	have	a	robust,	efficient	code,	with	user-defined	inputs,	we	can	use	it	to	explore	the	
Taylor	series.		

(a) Change	the	number	of	non-zero	terms	until	the	last	function	“looks	like”	the	given	function	
over	the	first	500ms,	by	finding	the	smallest	number	of	non-zero	terms	corresponding	to	
an	average	magnitude	of	deviation	less	than	0.05.		What	is	this	number	of	non-zero	terms?		
(Include	the	Command	Window	and	corresponding	figure.)	

(b) Verify	that	the	average	magnitude	of	deviation	does	not	change	appreciably	when	you	
double	the	number	of	intervals	or	points	being	plotted.		(Use	the	same	number	of	non-zero	
terms	as	you	used	in	(a).		Include	only	the	Command	Window.)		Include	actual	output	
values	of	the	average	deviation	to	justify	your	answer.	

(c) Imagine	that	the	beginning	time	is	–500ms	instead	of	0ms	(but	use	the	same	ending	time	of	
500ms).		Predict	what	you	think	will	be	the	average	magnitude	of	deviation,	using	the	same	
number	of	non-zero	terms	as	you	used	in	(a)	and	(b).		For	instance,	do	you	think	the	
average	deviation	will	be	noticeably	higher,	noticeably	lower,	or	about	the	same	as	it	was	in	
(a)	and	(b)?		Why	do	you	think	so?	

ECE 202 Fall 2023 Project 1:
Computational Tools for ECE Power series expansion of A cos(wt)

Last Updated: November 5, 2023

Phase 6. (Continued)
(d) Check	your	prediction	in	(c)	by	running	your	script.		What	happened?		Why	do	you	think	

this	happened?		Mention	the	output	value	of	the	average	deviation	in	your	justification.		
(Include	the	Command	Window	and	figure.)	

(e) Imagine	that	the	beginning	time	is	0ms,	the	ending	time	is	1000ms,	and	the	time	about	
which	the	Taylor	Series	is	expanded	is	t0	=	500ms	(instead	of	t0	=	0,	as	in	all	previous	
phases).		What	do	you	think	the	average	magnitude	of	deviation	will	be	(for	the	same	last	n	
value	as	part	(d))?		Why?		(There	is	no	output	possible,	as	we	have	not	set	up	this	project	to	
make	t0	a	variable	or	a	user	input.)	

(f) Keep	the	beginning	time	as	0ms	and	the	ending	time	as	1000ms,	then	run	your	script	with	
the	same	number	of	non-zero	terms	as	(a),	(b),	and	(d).		What	happens	during	the	second	
500ms?		Why	do	you	think	this	happens?		What	is	the	significance	of	choosing	t0	=	0	to	
expand	the	Taylor	Series	in	Phase	1?		What	happens	the	farther	you	get	from	t0?		(Include	
the	Command	Window	and	figure.)	

(g) Change	the	number	of	non-zero	terms	until	the	first	1000ms	of	the	approximation	again	
“looks	like”	the	given	function.		How	many	non-zero	terms	do	you	need	now?		(Include	the	
Command	Window	and	figure.)	

Do	not	edit	your	script	from	Phase	5,	except	to	update	the	context	and	description	near	the	beginning,	to	
update	the	title	to	refer	to	this	phase,	and	to	answer	all	of	the	questions	above	at	the	end	of	the	script.			
Make	sure	to	run	it	five	times	as	needed	to	answer	the	questions.		Make	sure	to	make	a	prediction	in	
part	(c)	before	running	the	script	in	part	(d).	
UPLOAD:	New	script,	answers	to	7	questions,	Command	Window	(with	all	5	runs,	including	full	tables	of	
coefficients),	4	figures.	

Summary
Here	is	a	table	showing	what	you	should	upload	to	Gradescope	for	each	phase.	
	

	
Phase	

Hand		
calculation	

	
Script?	

Command		
Window?	

Number	of	
Figure(s)	

Answers	to	
Questions	

1a	 Derivation	of	an	 no	 no	 0	 —	

1b	 —	 yes	 yes	 1	 —	

2	 —	 yes	 yes	 1	 —	

3	 —	 yes	 yes	 1	 —	

4	 —	 yes	 yes	 1	 —	

5	 —	 yes	 yes	 1	 —	

6	 —	 yes	 yes	 4	 7	
	

