
### MEC1223/AEE1001 Engineering Mechanics Individual Project (15% of the Module Mark) AY2023/24, Trimester 2

| Name               |                                              |
|--------------------|----------------------------------------------|
| Student ID         |                                              |
| Date of Submission | Submission Week 10 Friday (15 Mar), 11:59 PM |

#### Q1. <u>Axial Loading of Stepped Rod (30 Marks)</u>

A stepped rod *ABCD* consisting of solid circular segments is subjected to three axial forces, as shown in Figure Q1. Solve the problem using both analytical solutions and finite element analysis. Use the Excel sheet provided to determine the dimensions of the stepped rod and applied forces.

- (A) Develop Finite Element (FE) Models to determine the stresses and displacements in each of the segments of the loaded stepped rod. Use 3 mesh sizes, coarse, medium and fine, in your analysis (size of fine mesh should not be greater than 10mm).
- (B) Determine the stresses and displacements in each of the segments of the loaded stepped rod using analytical solutions. Include the axial load diagram.



#### Figure Q1

# Note: Use the Excel sheet provided to determine the values of the load and the dimensions.

| 11 | √ : X √ fx                     | $\frown$ |       |       |               | ursor he<br>e the din | •    |       |       |        |                                             |
|----|--------------------------------|----------|-------|-------|---------------|-----------------------|------|-------|-------|--------|---------------------------------------------|
| A  | $\sim$ : $\times \sim Jx$<br>B | С        | D     | E     | F             | G                     | Н    | I     | J     | К      | Do not use these<br>data!!! This is just an |
|    |                                |          |       | Step  | oped Rod unde | er Axial Loads        |      |       |       |        | example.                                    |
|    | Material                       | L1       | L2    | L3    | d1            | d2                    | d3   | F1    | F2    | F3     |                                             |
|    |                                | ()       | ()    | ()    | ()            | (1111)                | ()   | (KIV) | (111) | (1.14) |                                             |
|    | Structural Steel               | 660.0    | 400.0 | 220.0 | 100.0         | 61.0                  | 40.9 | 86.3  | 27.4  | 35.6   | <b>.</b>                                    |

Write the results of your FE and Analytical Solutions using the template shown in Table 1. Briefly discuss your results and compare the results of the FE models and analytical solutions.

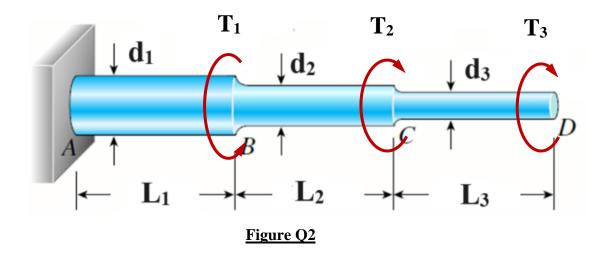
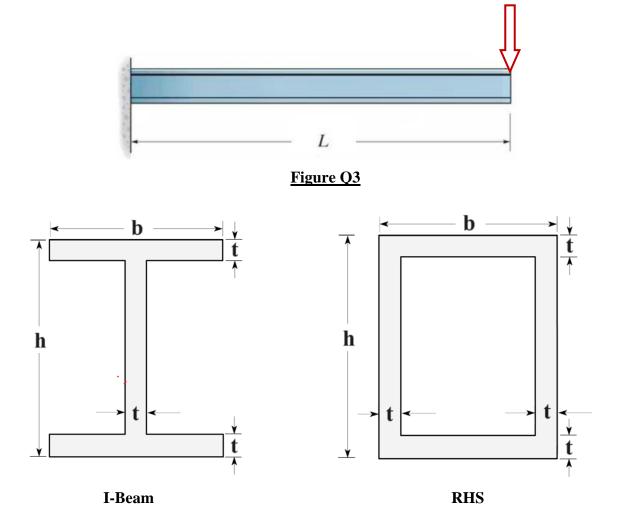

| Parameter    |    | F           | Analytical |           |          |
|--------------|----|-------------|------------|-----------|----------|
|              |    | Coarse Mesh | Medium     | Fine Mesh | Solution |
| Stress       | AB |             |            |           |          |
| MPa          | BC |             |            |           |          |
|              | CD |             |            |           |          |
| Displacement | AB |             |            |           |          |
| mm           | BC |             |            |           |          |
|              | CD |             |            |           |          |

Table 1: Axial Loading

#### Q2. Torsion of Cantilevered Shaft (25 Marks)

Using the geometry developed in Q1, apply torsional loads to the geometry as shown in Figure Q2. Solve the problem using both analytical solutions and finite element analysis. Use the Excel sheet provided to determine the applied torque

- (A)Develop Finite Element (FE) Models to determine the shear stress in each of the segments of the loaded stepped rod. Use 3 mesh sizes, coarse, medium and fine, in your analysis. (size of fine mesh should not be greater than 10mm)
- (B) Determine the shear stress in each of the segments of the loaded stepped rod using analytical solutions (Include the torque diagram). Compare your results with the analytical solutions.




| Table 2: T | orsion |
|------------|--------|
|------------|--------|

| Parameter |    | F           | Analytical |           |          |
|-----------|----|-------------|------------|-----------|----------|
|           |    | Coarse Mesh | Medium     | Fine Mesh | Solution |
| Stress    | AB |             |            |           |          |
| MPa       | BC |             |            |           |          |
|           | CD |             |            |           |          |

#### Q3. Cantilever Beam in Bending (45 Marks)

- (a) Develop a finite element model for a cantilever beam. Use an I-beam or Rectangular Hollow Cross-section (RHS)
- (b) Determine the dimensions, e.g Length and the cross-sectional dimensions using the Excel sheet.
- (c) Apply a concentrated load at the free end of the cantilever beam. The load can be determined using the Excel Sheet.
- (d) Solve the stress and deflection using both Finite Element using Ansys (consider 10mm mesh sizes in your FE model) and analytical solutions (include Shear-Force and Bending Moment Diagrams). Compare your results and discuss results.
- (e) Increase the height h by 25% and retain the other dimensions. Using analytical solutions, calculate the new stress and deflection. Discuss what you observe.



| Parameter                    | FEA using ANSYS | Analytical Solution |
|------------------------------|-----------------|---------------------|
| Stress (MPa)                 |                 |                     |
| Displacement/Deflection (mm) |                 |                     |

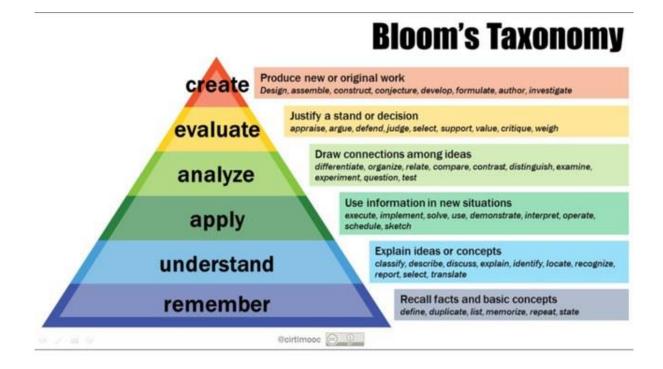
#### Present the following for each problem.

#### 1. Schematic Diagram/Free Body Diagram

#### 2. Analytical Solution

- Show your work to arrive at the solutions, e.g stress and/or displacement.

#### 3. Finite Element Model


- Include mesh (best result), method of meshing, Boundary Conditions (Loads and Supports)
- Contour plots of stress and deformation of best results (lower % difference with analytical solution)

#### 4. Results and Discussions

- Discuss your results and evaluate the accuracy of the FE results compared with the analytical/experimental results.

#### **<u>SIT Student Disciplinary Policy</u>**

Students of SIT are expected to hold themselves to the highest standard of integrity at all times. Where a student is alleged to have committed an act of misconduct, SIT may take appropriate disciplinary actions in accordance with the Student Disciplinary Policy. Students may receive appropriate counselling during the course of disciplinary hearings and actions. Students may also appeal against the decision and sanctions imposed by the disciplinary bodies.



Center for Teaching. (n.d.). Retrieved August 22, 2016, from https://cft.vanderbilt.edu/guides-sub-pages/blooms-taxonomy/

## Rubrics

| Grade Range<br>(Highest to Lowest)         | Α                                                                                                                                                 | В                                                                                                                               | С                                                                                                                               | D                                                                                                                           | Е                                                                                                                                                   | F                                                                                                                            |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Descriptor                                 | Excellent                                                                                                                                         | Very Good                                                                                                                       | Good                                                                                                                            | Satisfactory                                                                                                                | Weak                                                                                                                                                | Poor                                                                                                                         |
| Writing                                    | Exceptionally clear,<br>precise and concise<br>English. Excellent spelling<br>& grammar, few typos.                                               | Clear and well written,<br>easy to understand, and<br>mostly free of errors.                                                    | Most of the text is clear<br>and easily understood.<br>There are some issues with<br>grammar and spelling.                      | The text can be understood<br>but some elements are not<br>entirely clear. A sizeable<br>volume of errors is<br>noticeable. | Hard to understand much<br>of the text. Significant<br>spelling errors and<br>grammatical flaws.                                                    | The volume and nature of<br>the grammatical errors,<br>combined with poor<br>writing makes this report<br>difficult to read. |
| Presentation<br>& Figures                  | Professional standard of<br>presentation. All<br>illustrations are well<br>formatted and presented.                                               | A clear and consistent<br>presentation style<br>making it easy to read.<br>Most of the figures are<br>clear and well presented. | There are some minor<br>flaws in the presentation<br>and the clarity of the<br>figures, but overall a well<br>presented report. | A number of basic errors<br>present – inconsistent use<br>of styles, margins etc.<br>Figures are satisfactory.              | Significant flaws in the<br>presentation detracting<br>from the overall<br>impression of the report.<br>Flawed figures – badly<br>drawn and untidy, | Unacceptable<br>presentation: untidy and<br>inconsistent use of styles.<br>Figures are messy and<br>unclear.                 |
| Organisation and<br>Structure              | Structure is entirely<br>correct with all sections<br>correctly placed. Reading<br>contents gives clear<br>overview.                              | A well organised report<br>with all sections<br>logically placed<br>enhancing<br>understanding of work.                         | A report which is<br>sufficiently well organised<br>to make reading report<br>easy.                                             | There may be some issues<br>with the structure, but<br>these don't detract from<br>overall quality.                         | There are flaws in the way<br>the report is structured<br>which damages the overall<br>quality of the report.                                       | Serious flaws in structure<br>which makes it difficult to<br>read and understand the<br>report.                              |
| Technical Content &<br>Quality of Analysis | Well informed and<br>authoritative discussion of<br>a significantly complex<br>technical problem.<br>Excellent breadth and<br>depth of knowledge. | Clear and reasoned<br>arguments indicating a<br>very good grasp of a<br>difficult technical<br>problem.                         | Arguments presented are<br>of a reasonable technical<br>level, and have been well<br>considered and clearly<br>stated.          | The arguments presented<br>are of reasonable technical<br>depth and show a<br>satisfactory understanding.                   | Only limited critical<br>discussion of the technical<br>problem studied. Suggests<br>limited understanding of<br>problem.                           | Very little evidence of<br>critical discussion of<br>technical work or results.<br>Superficial understanding<br>of problem.  |