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Abstract
Synthetic minority oversampling methods have been proven to be an efficient solution for tackling imbalanced data

classification issues. Different strategies have been proposed for generating synthetic minority samples. However, noisy

samples which may cause the overlapping of minority and majority classes have not yet been properly treated for reducing

their influence on the performance of a classification model. A new method, named Importance-SMOTE, is proposed in

this paper. In this method, only borderline and edge samples in minority class are oversampled. The synthetic minority

samples are generated proportionally to the importance of the minority samples which is calculated according to the

composition and distribution of its nearest neighbors. The positions of the synthetic minority samples are determined by the

relative importance of the paired neighbors. The proposed method is expected to obtain a more precise estimation of the

true decision surface and reduce the influence of noisy samples. Various public imbalanced datasets and a real case study

are considered in the experiments to prove the effectiveness of the proposed method.

Keywords Imbalanced data · Minority oversampling · Noisy samples · Sample importance · Overlapped distribution

1 Introduction

Imbalanced data means that the prior probabilities of dif-

ferent classes are significantly different (López et al. 2013).

In an imbalanced dataset, the class with a relatively high

prior probability is named majority class or negative class,

and the class with a relatively low prior probability is

named minority class or positive class. In supervised

learning, imbalanced data may deteriorate severely the

performance of a standard classification model. The deci-

sion surface may be biased toward the majority class,

resulting in a low classification accuracy on the minority

class (Rivera 2017; Japkowicz 2000). Imbalanced data

exists in many practical problems. For example, the col-

lected health monitoring data from a braking system in a

high-speed train include as much as 28,837 samples on

normal conditions (i.e., majority class) and only 159

samples on faulty conditions (i.e., minority class) (Liu et al.

2017). The defectives of a flight software for one orbiting

satellite occupy only 0.41% of the recorded events (Liu

et al. 2014). In an imbalanced data, the minority class is

usually of more interest for practitioners. For a practical

problem, the sources of imbalance can be diverse. For

example, the high reliability of the system brings low

failure rate. The number and operation time of the system

are limited; thus, few failures may occur.

In the last decade, many solutions have been proposed

for classification issues related to imbalanced data. These

methods can be categorized into (López et al. 2013):

● Data-level methods: In which the original dataset is

processed to reduce the imbalance of the prior distri-

bution and, then, the imbalanced dataset is fed into a

conventional classification model (He and Garcia 2009;

Shilaskar and Ghatol 2019).

● Algorithm-level method: In which a specific classifica-

tion model is modified to make it less sensitive to class

imbalance issues (Hassib et al. 2019; Zhai et al. 2018).

● Cost-sensitive learning: This method gives higher cost

to the misclassification of a minority sample and lower

cost to that of a majority sample and the overall cost is
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Modify the dataset to balance class distribution by oversampling or undersampling before training a standard classification model.

Adapt a classification model to be less sensitive to class imbalance by changing its parameters or decision-making process.

Assign higher misclassification costs to minority class samples during model training to encourage better handling of imbalanced data.










minimized for building the classification model (Khan

et al. 2018; Li and Maguire 2011).

The previous methods can be adopted individually or

jointly with the others for tackling class imbalance issues.

Re-sampling method is an efficient and effective data-

level method as the resampled data can be used in any data-

driven classification method. Oversampling minority sam-

ples and undersampling majority samples are two popular

directions for re-sampling the original dataset. However,

undersampling majority samples can lead to the loss of

useful information. Thus, oversampling minority samples

has been widely adopted. One of the most famous over-

sampling methods is the synthetic minority oversampling

techniques (SMOTE) proposed in MacIejewski and Ste-

fanowski (2011). Various modifications have been pro-

posed for improving the efficiency and effectiveness of the

original SMOTE method.

It has been pointed out in many published works that

imbalance is not the only challenge, and that, disjuncts,

noise and overlapping problems are also the main reasons

for the degradation of traditional classification models with

imbalanced data (He and Garcia 2009; Branco et al. 2016;

Laurikkala 2001). Noise may introduce the overlapping

and outliers. In the state-of-the-art SMOTE variants, the

noisy samples, especially those in the borderline region, are

categorized considering the composition of the nearest

neighbors. This categorization is quite simple and trivial,

and may not reflect the possible difference between dif-

ferent noisy samples. In this paper, a variant of SMOTE

method, named Importance-SMOTE, is proposed for

tackling noisy imbalanced data. As pointed out in Krawc-

zyk (2016) and (Fernández et al. 2017), it would be

interesting to analyze the structure of the class. Considering

the number of samples from the same class among its

nearest neighbors, each sample in the dataset is categorized

into borderline, noise and safe samples, as shown in Fig. 1

Considering the distribution of the nearest neighbors, the

safe samples are further divided into inner and edge sam-

ples. Two popular binary classification methods, i.e.,

k nearest neighbor (KNN) and classification and regression

tree (CART), are adopted in this work as the classification

model (Tuncer et al. 2020; Tuncer and Dogan 2019). The

main contributions include:

● Sample importance calculation method based on com-

position and distribution of its nearest neighbors;

● Improving the efficiency of minority oversampling

process by oversampling only the borderline and edge

minority samples;

● Generation of synthetic samples considering the relative

importance of the paired neighbors from minority class

or from both minority and majority classes;

● Comparisons with several SMOTE variants on various

public datasets.

The remaining of the paper is structured as follows.

Related works on SMOTE variants are reviewed in Sec-

tion 2. The proposed method is detailed in Section 3 with

the borderline and edge samples identification, importance

calculation and synthetic samples generation. In Section 4,

the proposed method is verified on 26 public datasets and

one real dataset on high-speed train, in comparison with

eight state-of-the-art synthetic minority oversampling

methods. Some conclusions and perspectives are given in

Section 5.

2 Related works

SMOTE generates synthetic minority samples along the

line between a minority sample and one of its k nearest

minority samples. Suppose xþ is a minority sample and

xþknn is chosen from its k nearest neighbors in minority class

with equal probability, a new synthetic sample xþnew is

generated by

xþnew ¼ xþ þ a � xþknn � xþ
� � ð1Þ

where a is a random value between 0 and 1. The over-

sampling can be carried out in the original feature space or

the reduced feature space, e.g., reduced feature space of

principal component analysis (Fernández et al. 2018).

However, SMOTE may causes over-generalization by

oversampling the minority samples without any consider-

ation of the nearest majority samples. And the over-gen-

eralization may lead to overlapping between classes (Wang

and Japkowicz 2004). The other drawbacks of SMOTE

include the creation of too many minority samples which

do not facilitate the learning of the minority class, and the
Fig. 1 Illustration of different types of samples in an imbalanced

dataset
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introduction of noisy minority samples in the area

belonging to the majority class.

Improvements and modifications have been made in the

following work to improve the effectiveness and efficiency

of SMOTE. The improvements and modifications are

generally made from three aspects:

● The first is by selecting the informative minority

samples xþ and reduce the over-generalization problem.

● The second is by changing the selection process of xþknn
to increase the usefulness of the synthetic samples in the

data-driven models.

● The third is by modifying the generation rule of the

random value a to increase the separability of minority

and majority samples.

● The fourth is by integrating oversampling approaches

with undersampling ones.

● The fifth is to relabel the majority samples.

Some of the successful and popular modifications of

SMOTE are reviewed in this paragraph. Borderline-

SMOTE proposed in Han et al. (2005) oversamples only

the minority samples near the borderline. The borderline

minority samples are identified by the number of majority

samples among their k nearest neighbors. One limitation of

Borderline-SMOTE is its capability for differentiating

borderline and noisy samples. Some noisy samples may be

judged as borderline samples and oversampled, reducing

the classification accuracy. On the other hand, this strategy

may not always be capable of identifying all the borderline

samples. ADAptive SYNthetic sampling approach (ADA-

SYN) proposed in He et al. (2008) generates more syn-

thetic samples with the minority samples that are more

difficult to classify. The classification difficulty of a

minority sample is defined as the number of the majority

samples among its k nearest neighbors. A precondition of

ADASYN is that the minority samples do not contain any

noise or outliers. Otherwise, these noise and outliers in

minority class located close to or overlapped with the

majority class are overgeneralized to deteriorate the mod-

el’s performance. Safe-level SMOTE proposed in

Bunkhumpornpat et al. (2009) generates synthetic samples

along the line between a minority sample and one of its

nearest minority neighbors. The synthetic samples are

closer to the sample with larger safe-level. The safe-level

of one minority sample is defined as the number of

minority samples among its k nearest neighbors. In (Barua

et al. 2014), majority weighted minority oversampling

technique (MWMOT) is proposed for learning from

imbalanced datasets. Informative minority samples to be

oversampled are the minority samples among the nearest

neighbors of the majority borderline samples. The

possibility of an informative minority sample to be over-

sampled is the multiplication of a closeness factor and a

density factor. Synthetic samples are generated between an

informative minority sample and another minority sample

from the same minority cluster. Reference (Nekooeimehr

and Lai-Yuen 2016) proposes adaptive semi-unsupervised

weighted oversampling (A-SUWO) for improving the

performance of SMOTE. The minority samples are clus-

tered with semi-supervised hierarchical clustering

approach. The oversampling size of one minority sample is

dependent on its Euclidean distance to the majority class.

Reference (Piri et al. 2018) proposes a synthetic informa-

tive minority oversampling (SIMO) algorithm to improve

the performance of SVM models on imbalanced dataset.

The informative minority samples are the minority data

points misclassified by a SVM model trained on the orig-

inal imbalanced dataset. Then, the informative minority

data points are oversampled to optimize the G-mean value

on the training dataset. Similarly, critical data that are more

frequently misclassified in validation set are considered

more important for classification in Napierała and Ste-

fanowski (2015). Reference (Xu et al. 2017) proposes

fuzzy-SMOTE which applies oversampling in the minority

samples according to their fuzzy membership degrees. The

minority samples with small fuzzy membership degrees are

more likely to be oversampled. As the fuzzy membership is

calculated on the centroids of different classes, it may not

suit the datasets with complex between-class boundary.

And the noise and outliers are more likely to be over-

sampled, causing a high false alarm rate. Reference (Last

et al. 2017) proposes to combine K-means method and

SMOTE for oversampling the minority samples. K-means

method can cluster the minority dataset into a proper

number of clusters and, then, each cluster is oversampled

with respect to its density. Similar idea is used in Cieslak

et al. (2006), and the proposed method is named Cluster-

SMOTE. SMOTE-IPF proposed in Sáez et al. (2015)

considers the noisy and borderline examples influencing

the classification performance on imbalanced data. As the

first step, the imbalanced data are oversampled by SMOTE.

Then, iterative-partitioning filter (IPF) is used to detect and

eliminate the noisy samples. For this objective, an

ensemble model is formed by IPF, and the samples that are

misclassified by the ensemble with majority voting

scheme are judged as noisy samples.

Some of the previous methods try to maximize the clas-

sification accuracy on the minority samples. For ADASYN

and SIMO, in order to correctly classify all the minority

samples, much accuracy on majority samples is sacrificed in

the case of overlapping. Thus, it is very important to differ-

entiate the importance of different minority samples as in

fuzzy-SMOTE and safe-level SMOTE. In (Napierala and

Stefanowski 2012) and (Stefanowski et al. 2014), minority
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samples are categorized to safe, borderline, rare and noise.

Different types of minority samples impose different influ-

ence on the classificationmodel in the experiment carried out

in Skryjomski and Krawczyk (2017). Thus, it is very

important to recognize and model the difference of minority

samples’ influence on the classification results. However, in

these methods, minority samples are differentiated rather

simply with respect to the composition of their k-nearest

neighbors and may not reflect the precise importance of a

minority sample. The noisy samples may make the situation

even worse. In most of the previous minority oversampling

methods, they assume that the data is noise-free. This

assumption restricts the applications of the proposed meth-

ods. In this paper, a new synthetic minority oversampling

method (named Importance-SMOTE) is proposed.

The work in Noorhalim et al. (2019) shows that sam-

pling method may greatly benefit the performance of

imbalanced data classification, by improving class bound-

ary region. In the proposed method, as the first step, the

borderline and edge samples from both minority and

majority classes are identified. Unlike Borderline-SMOTE,

in Importance-SMOTE, both the borderline and edge

samples from minority class are oversampled with proba-

bilities proportional to their importance. The importance of

a minority/majority sample is calculated with respect to the

composition and distribution of its nearest neighbors. The

synthetic samples are generated between a minority sample

and one of its k nearest neighbors, taking into consideration

of their importance. Different from the previous minority

oversampling methods, nearest neighbors from both the

minority and majority classes are considered for generating

new minority samples, i.e., xþknn in Eq. (1) can be a minority

sample or a majority sample. Different methods are con-

sidered for deciding the position of the synthetic minority

sample considering the class label and importance of the

randomly selected nearest neighbor. The generated

minority samples are expected to represent more precisely

the distribution boundary of the minority class.

The experiment concerns two synthetic imbalanced

datasets and various public imbalanced datasets. KNN and

CART are considered for training the classification model

on the oversampled datasets. Statistical tests including

Friedman test and Wilcoxon signed rank test are used for

comparing the results of the proposed method and the

benchmark methods.

3 Importance-SMOTE

The proposed method is composed of three steps: border-

line and edge samples identification, sample importance

calculation and synthetic minority samples generation, as

shown in Fig. 2. In this section, these three steps are

explained in details.

3.1 Borderline and edge samples identification

The borderline samples are selected using k nearest

neighbor method, as in Han et al. (2005). The majority and

minority samples which have both minority and majority

samples among their k nearest neighbors are judged as

borderline samples.

Edge samples defining the border of a minority class are

also very important to justify the distribution region of the

minority class. They can be identified following the method

proposed in Li and Maguire (2011). The edge samples are

identified among the minority samples which have all the k

nearest neighbors from minority class. Suppose a minority

sample is xþ and its k nearest neighbors from minority

class are noted, separately, as xknn;i; i ¼ 1; 2; . . .; k. The first

step is to calculate the normal vector vn of the tangent

plane, as shown in Fig. 3.

The normal vector vn is calculated as the sum of the unit

vectors from xþ to its nearest neighbors. The equation is as

follows:

Fig. 2 Pseudocode of Importance-SMOTE
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vn ¼
Xk
i¼1

vui ð2Þ

with vui ¼ xknn;i�xþ

kxknn;i�xþk and �k k being the norm of a vector.

The second step is to calculate the number of nearest

neighbors located on the high-density side of the tangent

plane. If the minority sample xþ is an edge sample, most of

its nearest neighbors should be on the high-density side of

the tangent plane, as shown in Fig. 3. In the figure, all its

nearest neighbors are on the same side of the tangent plane,

and, thus, xþ in the figure is an edge sample. By counting

the number of nearest neighbors on the high-density side,

one can identify the edge samples. If the dot product (noted

as di as in (3)) between vui and the normal vector vn is

positive, the corresponding nearest neighbor is on the high-

density side of the tangent plane.

di ¼ vui :v
n ð3Þ

Equation (4) gives the percentage of the k nearest

neighbors with a positive dot product in (3). A threshold q
(smaller than but close to 1) can be given as criterion for

judging the edge samples. If p� q, the corresponding

minority sample xþ is identified as an edge sample.

p ¼ 1

k

Xk
i¼1

di � 0ð Þ ð4Þ

The pseudo-code for identifying borderline and edge

samples are given in Fig. 4.

3.2 Sample importance calculation

This part introduces the importance calculation for bor-

derline samples, edge samples and noisy samples from

minority and majority classes.

The importance calculation of borderline samples has

been reported in a previous work (Liu and Zio 2018). In

(Liu and Zio 2018), the objective is to properly weighting

the samples that may become support vectors in a support

vector machine model, and noisy samples are eliminated

before training. In this work, edge samples and noisy

samples are need to be properly treated. Edge samples are

important for defining the distribution region of the

minority class. To avoid the loss of information in minority

class, the importance of noisy minority samples is not

crudely assumed to be zero. However, the noisy majority

samples are eliminated directly from the training dataset.

3.2.1 Importance calculation for borderline samples

The importance of the selected borderline samples is cal-

culated according to the composition and distribution of

their nearest neighbors.

The importance function g xð Þ in (5) which is a mono-

tone decaying function of a distance measure d calculates

the importance of a borderline sample:

Fig. 3 Illustration of normal vector vn of the tangent plane with short

solid arrow being the unit vectors

Fig. 4 Pseudo-code for borderline and edge samples identification
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g xð Þ ¼ 2

1þ exp bdð Þ ð5Þ

with b being the steepness parameter of the decay and d

being a distance measure including two elements, i.e., d1

and d2:

d ¼ h d1; d2
� � ð6Þ

with h �; �ð Þ describing the relation between d1; d2 and d, d1

and d2 characterizing the composition and distribution of

the nearest neighbors of a borderline sample. The value of

d represents the closeness of a sample to other samples of

the same class. The importance function converts the dis-

tance to a smooth fuzzy value. From (5), one can observe

that a smaller value of d derives higher importance of the

corresponding borderline sample. Different from Border-

line-SMOTE which considers only the composition of the

nearest neighbors to categorize minority samples, the dis-

tribution of the nearest neighbors is also considered in

Importance-SMOTE. An example is given in Fig. 5. The

six nearest neighbors of two minority samples x1 and x2
include both three minority samples. Borderline-SMOTE

judges these two samples in the same category. However,

the distributions of their nearest neighbors show that it is

more important to classify correctly x1 than x2, as the

nearest neighbors of x1 from the majority and minority

classes are clearly separated around x1.

The first element d1 in (7) reflects the closeness of a

borderline sample to the other samples from the same class.

It is trivial to assign higher importance to the borderline

sample with more samples from the same class among its

nearest neighbors. Suppose the numbers of minority and

majority samples among the k nearest neighbors of a

borderline sample x are noted, separately, as Np and Nn

with Nn ¼ k � Np, the value of d
1 is calculated as follows:

d1 ¼
eNp

Nn
; for a majority borderline sample

Nn

Np
; for a minority borderline sample

8><
>:

ð7Þ

where e is a balancing factor for imbalanced data equal or

larger than 1. For example, consider a data point xþ from

the minority class and a data point x� from the majority

class have both only half of the k nearest neighbor from the

minority class. The distance measure in (7) shows that the

importance of xþ is higher than that of x�. This is for

balancing the different prior probabilities in imbalanced

datasets. And the correct classification of xþ is more

important than x�.
The second part d2 of (6) characterizes the distribution

of the nearest neighbors of a borderline sample, including

their separability and alignment, because two data points

from the same class with the same composition of their

near neighbors may not always have the same importance.

In order to characterize quantitatively this difference,

normal vectors introduced in the previous section is

adopted. Suppose the k nearest neighbors of a borderline

sample x are noted as xj; j ¼ 1; 2; . . .; k, and the first Np

neighbors are from the minority class and the rest are from

the majority class: the normal vectors of the neighbors

from the two classes are calculated as

vþ ¼ 1

Np

XNp

j¼1

xj � x

kxj � xk

v� ¼ 1

k � Np

Xk
j¼Npþ1

xj � x

kxj � xk

ð8Þ

Then, the value d2 is calculated as

d2 ¼
�

vþ
kvþk ;

v�
kv�k

�þ 1

kvþk � kv�k þ e
; ð9Þ

with �;�ih being the inner product, e being a small pos-

itive value. Thus, d2 is always a positive value. The inner

product of two normal vectors is the cosine of the angle

between the two normal vectors. With the same norm of

the two normal vectors, i.e., kvþk ¼ kv�k, the nominator

shows that higher separability of the samples from two

classes gives a smaller value of d2 and, thus, a larger

importance value with (5). Similarly, with the same angle

between these two normal vectors, the denominator shows

that higher density the nearest neighbors from the same

class gives a larger norm of the normal vector and a smaller

value of d2.

Finally, the distance di in (5) is expressed asFig. 5 Illustration of different local distributions of nearest neighbors

(empty and solid circles represent data points from two classes,

respectively)
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di ¼ c � d1n þ 1� cð Þ � d2n ð10Þ
with d1n , d

2
n being the normalized value of d1, d2 given by

Eqs. (7) and (9) and c being a positive value between 0 and

1, weighting the importance of the two elements.

3.2.2 Importance calculation for edge samples

Edge samples from majority classes are not considered in

the work, since the main objective is to generating syn-

thetically minority samples. Unlike some previous work

where only borderline samples are oversampled, edge

minority samples are also considered in this work, since

they characterize the distribution region of minority class.

Since edge minority samples have no majority samples

in its neighborhood, its importance is calculated with (5)

but the distance d is determined by q=ð1þ pÞ with p of (4).

As p� q and q\1, the distance d is positive and smaller

than 0.5.

3.2.3 Importance calculation for noisy samples

Noisy samples are the ones which are not among the

nearest neighbors of any other sample of the same class.

For example, a minority noisy sample does not fall into the

nearest neighbors of any minority samples.

For a noisy minority sample, its importance should be

very small and its distance d is fixed as a constant value (e.

g. 2), while a noisy majority sample is eliminated directly

from the training dataset. The different strategies for

assigning distance values for noisy samples from different

classes originate from the following considerations about

imbalanced dataset: (1) noisy majority samples are highly

possible to be true noise as discussed in Napierala and

Stefanowski (2016); (2) noisy minority samples are not

eliminated to keep the maximal information, but its

importance is kept low to reduce its influence in case that it

is a true noisy sample. The synthetic minority generation

process introduced in the next section guarantees also the

control of its influence.

The unknown parameters for importance calculation

include k in KNN, the steepness parameter b in (5), the

balancing factor e in (7) and the parameter c in (10).

3.3 Synthetic minority samples generation

Synthetic minority samples are generated with Eq. (1). The

important steps are to select proper xþ and xþknn and the

calculation of a. In this work, xþ is selected from the

minority borderline and edge samples in Bþ and Eþ.
However, the probability of each sample to be selected is

not uniform. It is proportional to its importance given by

Eq. (5). The benefit of oversampling minority edge samples

is that the distribution range of minority class is tight and

clear and, thus, the data-driven methods can capture easily

the classification hyperplane.

As shown in Fig. 6, Fig. 6a shows the original imbal-

anced data, in which the solid blue dots represent minority

samples and the empty dots are majority samples. In

Figs. 6b an c, the red solid dots are the newly generated

minority samples, and the same number of minority sam-

ples are generated in these two figures. In Fig. 6b, by

oversampling all the minority samples, the newly generated

samples are evenly distributed in the region of the minority

class. In Fig. 6c, by oversampling only the borderline and

edge samples in the minority class, the synthetic minority

samples are located on the borderline and edge of the

minority class. The minority samples generated with the

borderline and edge samples are more useful in defining the

region of the minority class, which may improve the

classification accuracy.

In SMOTE and some other methods, xþknn is selected

from the nearest minority neighbors of xþ. In importance-

SMOTE, xþknn is selected form the nearest neighbors in both

minority and majority samples with equal probability. The

minority samples are usually sparse, the borderline

between minority and majority class can be more precise

by taking into consideration the nearest neighbors in

majority class for generating synthetic minority samples.

This idea is illustrated in Fig. 7 where the red solid dots are

the synthetic minority samples.

In Fig. 7, five nearest neighbors of the minority sample x

are selected to generate six synthetic minority samples.

Figure 7a considers only the minority samples as xþknn in

Eq. (1), and Fig. 7b considers both minority and majority

samples. One can observe that synthetic minority samples

in Fig. 7b can characterize more clearly the borderline

between minority and majority classes around x, while in

Fig. 7a, the newly generated minority samples may con-

tradict the true borderline. Note that in Fig. 7b, the position

of the newly generated minority sample is very important.

Thus, in this work, xþknn in Eq. (1) can be a majority or

minority sample from the nearest neighbors of a borderline

or edge sample of minority class, and a new strategy is

proposed for the calculation of the position of synthetic

minority samples. The positions of the synthetic minority

samples are decided by a. If xþknn is a majority sample, the

value of a is calculated as Eq. (10):

a ¼ l � rand 0;min 1; g xþð Þ=g xþknn
� �� �� � ð11Þ

with l being a positive value smaller than 1. Otherwise, it

is calculated as Eq. (11):

a ¼ rand 0;min 1; g xþknn
� �

=g xþð Þ� �� � ð12Þ

Importance-SMOTE: a synthetic minority oversampling method for noisy imbalanced data 1147
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Note that when xþknn is a majority sample and its

importance is larger than that of xþ, a would be much

smaller than 1 and the synthetic minority sample would be

closer to the minority sample xþ. Even if the importance of

xþknn is relatively smaller, the synthetic minority sample is

still kept away from the majority sample with a proper

distance, as a is always smaller than l. This is to keep the

separability of the majority and minority samples. When

xþknn is a minority sample, the generated synthetic minority

sample is closer to the sample with larger importance

between the paired samples xþknn and xþ.
Since noisy minority samples have small importance,

they are less probable to be oversampled. Even if they are

selected to be oversampled, the position of the synthetic

minority sample is close to its nearest minority sample and

far from the nearest majority sample.

4 Experiments

4.1 Experiment setup

In this section, two synthetic datasets and 26 Keel public

datasets (Bach et al. 2017) with different Imbalance Ratios

(IR) are adopted to test the effectiveness of the proposed

approach, in comparison with the benchmark methods.

Most datasets are from real-world problems. Table 1

summarizes the characteristics of Keel public datasets.

Except the classical IR, the adjusted IR is also listed in

Table 1. The adjusted IR is calculated with Eq. (12), where

Ndf is the number of discriminative features determined by

the Pearson correlation test, and k is the parameter that

controls the importance of the penalty term (Zhu et al.

2020). By considering the capability of the features in

discriminating different classes, the adjusted IR is believed

to better reflect the imbalanced data classification difficulty

than conventional IR.

Adjusted IR ¼ IR� k log Ndfð Þ ð13Þ
Other characteristics listed in Table 1 include the

number of borderline samples, the number of edge samples

and the number of noise samples in majority and minority

in majority and minority classes, respectively. They are

calculated with a k value of 5 for the training datasets.

These characteristics, especially those on minority class,

can in a certain level reflect the distributions of the data-

sets. For example, in datasets with small numbers of bor-

derline samples and noisy samples in minority class (such

as ecoli-0-1_vs_5), the majority and minority classes are

more separable; in datasets with a small number of edge

samples and a large number of borderline samples (such as

Fig. 6 Illustration of differences between oversampling all minority samples b and only borderline and edge samples in minority class c

Fig. 7 Illustration of minority

samples generation with respect

to a minority samples and

b both minority and majority

samples
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Table 1 Characteristics of the keel datasets used in this paper

Dataset #attributes #instances IR Adjusted

IR

#borderline

samples in

majority

class

#borderline

samples in

minority

class

#edge

samples in

majority

class

#edge

samples in

minority

class

#noise

samples in

majority

class

#noise

samples in

minority

class

03subcl5-

600–5-30-

BI-

fivefold

2 600 5 5.00 118 64 199 5 1 10

ecoli-0–1-4-

7_vs_2-3–

5-6

7 336 10.59 9.56 21 16 215 4 1 3

ecoli-0–1-4-

7_vs_5-6

6 332 12.28 11.25 15 14 221 4 1 2

ecoli-0-

1_vs_5

6 240 11 9.84 6 3 163 10 0 2

ecoli-0–2-3-

4_vs_5

7 202 9.1 7.94 8 4 132 10 0 2

ecoli-0–2-6-

7_vs_3-5

7 224 9.18 8.22 17 11 137 4 0 3

ecoli-0–3-4-

6_vs_5

7 205 9.25 8.09 10 3 132 11 0 2

ecoli-0–3-

4_vs_5

7 220 9 7.84 8 3 132 11 0 2

ecoli-0–6-

7_vs_3-5

7 222 9.09 7.93 16 11 138 3 0 4

ecoli067-5 6 220 10 8.90 16 10 137 4 0 3

ecoli2 7 336 5.46 4.50 31 16 186 22 2 3

glass-0–1-

5_vs_2

9 172 9.12 9.12 43 9 81 0 0 5

glass-0–1-

6_vs_2

9 192 10.29 10.29 36 8 104 0 0 6

glass4 9 214 15.47 14.31 16 9 144 0 0 1

haberman 3 306 2.78 2.78 110 51 62 0 1 14

led7digit-0–

2-4–5-6–

7-8-

9_vs_1

7 443 10.97 9.58 12 12 313 0 0 18

paw02a-

600–5-0-

BI-

fivefold

2 600 5 5.00 41 33 229 30 1 1

paw02a-

600–5-30-

BI-

fivefold

2 600 5 5.00 82 42 214 17 1 6

pima 8 768 1.87 0.99 228 177 167 17 4 20

poker8-6 10 1477 85.88 85.88 14 10 1151 0 0 4

shuttle-c2-

vs-c4

9 129 20.5 19.62 0 4 96 0 0 1

vehicle1 18 846 3.25 3.47 247 148 253 15 3 10

winequality-

red-4

11 1599 29.17 29.17 133 11 1102 0 0 31

yeast-0–2-

5–7-

9_vs_3-6–

8

8 1004 9.14 8.11 79 37 628 33 2 8
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haberman), the minority class is surrounded by majority

class or is heavily overlapped with majority class.

The experimental process is composed of four steps as

shown in Fig. 8. These steps are explained in detail in the

following paragraphs.

1. Since the Keel public datasets include the data partition

for fivefold cross-validation, the first step in Fig. 6 is to

select onefold as test dataset and the rest as training

dataset. The whole process is repeated five times to

iteratively test each fold.

2. The second step is to oversample separately the

minority samples with the proposed method, i.e.,

Importance-SMOTE, and the benchmark methods,

including ROSE (random over sampling examples)

(Menardi and Torelli 2014), SMOTE, ADASYN,

A-SUWO, Borderline-SMOTE, Cluster-SMOTE,

SOMTE-IPF and safe-level SMOTE. The parameters

in these methods are tuned with grid search method.

For parameters tuning, 20% of minority and majority

samples in the training dataset are randomly selected,

for testing the performance of each possible parame-

ters’ combination. The test is repeated for ten times to

reduce the randomness, and the best parameters values

are the combination with the best average performance

characterized by the sum of F-measure and G-mean.

In precious works, the optimal parameters values are

searched among few candidates (Nekooeimehr and Lai-

Yuen 2016; Kovács 2019). They may even be pre-fixed in

the experiments (He et al. 2008; Barua et al. 2014). For

rigorousness and considering the searching space of pre-

vious work, in the experiments of this work, the best

number of nearest neighbors for generating synthetic

minority samples is selected from Japkowicz (2000); Liu

et al. 2017; Liu et al. 2014; He and Garcia 2009; Shilaskar

and Ghatol 2019; Hassib et al. 2019; Zhai et al. 2018; Khan

et al. 2018; MacIejewski and Stefanowski 2011; Krawczyk

2016). Fifteen base classification and regression tree

(CART) classifiers are used to evaluate the synthetic

minority samples in SMOTE-IPF. The number of clusters

in Cluster-SMOTE is chosen from Rivera (2017); Jap-

kowicz 2000; Liu et al. 2017; Liu et al. 2014; He and

Garcia 2009; Shilaskar and Ghatol 2019; Hassib et al.

2019; Zhai et al. 2018). The number of nearest neighbors

for identifying noise and for determining the weight of

each minority sample, and the number of folds for clus-

tering minority samples in A-SUWO are from vectors

(Japkowicz 2000; Liu et al. 2017, 2014; Shilaskar and

Ghatol 2019; Zhai et al. 2018; Li and Maguire 2011;

Branco et al. 2016; Krawczyk 2016) and (Rivera 2017;

Japkowicz 2000; Liu et al. 2017, 2014; He and Garcia

2009; Shilaskar and Ghatol 2019), respectively. The value

for density estimation in ADASYN is from vector (Jap-

kowicz 2000; Liu et al. 2017, 2014; He and Garcia 2009;

Shilaskar and Ghatol 2019; Hassib et al. 2019; Zhai et al.

2018; Khan et al. 2018; MacIejewski and Stefanowski

2011; Krawczyk 2016). For Importance-SMOTE, the

steepness parameter b in (5), the balancing factor e in (7)

and the parameter c in (10) are tuned separately from

vectors [0.1, 0.3, 0.5, 0.8, 1.2], (López et al. 2013; Rivera

Table 1 (continued)

Dataset #attributes #instances IR Adjusted

IR

#borderline

samples in

majority

class

#borderline

samples in

minority

class

#edge

samples in

majority

class

#edge

samples in

minority

class

#noise

samples in

majority

class

#noise

samples in

minority

class

yeast-0–3-5-

9_vs_7-8

8 506 9.12 9.12 97 23 265 2 1 15

yeast-0–5-

6–7-

9_vs_4

8 528 9.35 9.35 74 31 303 1 0 9

Fig. 8 Illustration of the experimental process
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2017; Japkowicz 2000; Liu et al. 2017) and [0.1, 0.2, 0.4,

0.6, 0.8].

1) The oversampled training dataset is fed to the

classification models in the third step. The classifi-

cation models considered in this paper include

k-nearest neighbors’ method (KNN) and standard

CART provided by MATLAB with the functions

fitcknn and fitctree. KNN and CART are two mature

and popular classification approaches which have

been used as benchmark methods in numerous works.

2) The fourth step is to calculate the performance of

each classification model on test datasets with respect

to F-measure and area under the precision-recall

curve (noted as AUC(PRC)). F-measure is a popular

and effective performance metric for characterizing

classification performance on imbalanced datasets,

reflecting the capability in balancing precision and

recall (Branco et al. 2016). The AUC(PRC) is more

informative than the AUC under the true positive

rate–false positive rate curve in binary classification,

as pointed out in Saito and Rehmsmeier (2015). AUC

reflects the robustness of the method with respect to

the classification decision boundary. Two perfor-

mance metrics are considered in this paper, since

single performance metric is not sufficient when

handling imbalanced classification problem (He and

Garcia 2009).

4.2 Results on synthetic imbalanced datasets

Two synthetic imbalanced are generated for testing the

effectiveness of Importance-SMOTE. Four hundreds sam-

ples are generated in the space of [0, 1]9[0, 1]. With

predefined borderlines between the two classes, the sam-

ples inside the borderlines are labeled?1, i.e., minority

samples, and the others labeled -1. The synthetic imbal-

anced dataset 1 is a conventional dataset with minority

samples located at the center of the figure, as shown in

Fig. 9. And for the synthetic imbalanced dataset 2, the

minority samples are in four disjoint regions, as shown in

Fig. 10. Since these are synthetic data, the borderlines

between the majority and minority samples are known and

marked black in these Figures. With a noise level of 10%, a

total of 40 samples from majority and minority classes are

injected with noise.

The experiment in this part repeats only the second step

of Fig. 8, i.e., minority oversampling. The aim is to show

the effectiveness of different oversampling method for

noisy imbalanced data.

Table 2 reports the information (including numbers and

percentages (in brackets) of synthetic minority samples

inside and outside the true borderlines) of the synthetic

minority samples generated by different oversampling

methods. Note that ROSE generates both synthetic

minority and majority samples from the original training

datasets, but synthetic majority samples are not counted in

the table. From the table, one can observe that in general,

safe-level SMOTE, SMOTE-IPF and Importance-SMOTE

proposed in this work outperform the other benchmark

methods with a low percentage of synthetic minority

samples outside the borderlines.

Safe-level SMOTE may classify the minority samples

into different safe levels with respect to the number of

majority samples among their nearest neighbors. Noisy

samples are given a low safe level and, thus, few synthetic

minority samples are generated around the noisy ones.

SMOTE-IPF may eliminate the noisy samples in the

synthetic dataset. Thus, the influence of noisy samples in

the original datasets can be partly neutralized.

ROSE generates synthetic samples with respect to a

probability distribution centered on the selected sample and

dependent on a matrix of scale parameters. In case of noise,

the probability distributions of a pair of a minority sample

and a majority sample which are close enough may over-

lap. Thus, the generated minority and majority samples are

also overlapped. As shown in Figs. 9 and 10, the synthetic

minority and majority samples are overlapped and may

exceed the definition region of the original training dataset,

i.e., [0 1] � [0 1]. With the borderlines composed of

straight-line segments, the probability distribution which is

normally isotropic cannot properly model the local prop-

erty. Thus, ROSE does not work properly on these syn-

thetic imbalanced datasets, as shown in Figs. 9 and 10.

SMOTE may generate synthetic minority samples with

respect to noisy samples outside the borderlines and, thus,

producing useless synthetic samples. These samples may

even reduce the performance of the classification model

trained on the oversampled training dataset.

Borderline-SMOTE has similar problem with SMOTE

for noisy imbalanced data. It may determine the noisy

samples as borderline ones and, thus, generates minority

samples deteriorating the classification models.

The performance of Cluster-SMOTE is influenced by

noisy samples, especially in the synthetic imbalanced

dataset 2. As shown in Fig. 10, many synthetic minority

samples are located outside the borderlines. This is caused

by the fact that the clusters with noisy minority samples are

very likely to generate minority samples around the noisy

ones.
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ADASYN may generate more synthetic minority sam-

ples around the noisy minority ones, in order to correctly

classify the noisy ones.

A-SUWO faces similar problem as Cluster-SMOTE.

When two or more noisy minority samples are accidentally

clustered, A-SUWO tends to generate more minority

samples close to the noisy ones. Thus, the performance of

the classification model can be reduced.

Importance-SMOTE proposed in this work follows a

similar idea of safe-level SMOTE and sample importance

is introduced. Different from safe-level SMOTE, sample

importance in this work is determined by the composition

of its nearest neighbors and their distribution around the

sample. Like Borderline-SMOTE where samples inside the

class are not oversampled, the borderline and edge samples

are oversampled in Importance-SMOTE, and they are

selected randomly with probabilities proportional to their

sample importance. Thus, Importance-SMOTE does not

have the same problem of noisy imbalanced data as

Borderline-SMOTE. Most of the synthetic minority sam-

ples are generated with true minority samples inside the

borderlines. Few synthetic samples are generated around

the outliers (single minority sample surrounded by majority

ones). This is benefited from the fact that outliers have a

low probability to be selected during the synthetic minority

samples generation process.

Another interesting phenomenon that can be observed

from Figs. 9 and 10 is that synthetic minority samples

Fig. 9 Experimental results on synthetic imbalanced dataset 1
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generated with the noisy minority samples, although

inevitable in the proposed method, are quite close to the

noisy samples. This is due to the fact that the generation of

synthetic minority samples with Importance-SMOTE con-

siders not only the minority samples in the neighborhood

but also the majority samples, and that the location of a

synthetic minority sample is determined by the relative

importance of the paired samples. Thus, for a noisy

minority sample, its sample importance is relative much

lower than the majority samples in its neighborhood and,

Fig. 10 Experimental results on synthetic imbalanced dataset 2

Table 2 Numbers and percentages (%) of synthetic minority samples inside and outside the borderlines generated by different oversampling

methods

Datasets ROSE SMOTE Safe-level

SMOTE

SMOTE-

IPF

Cluster-

SMOTE

Borderline-

SMOTE

A-SUWO ADASYN Importance-

SMOTE

Dataset 1 Inside 270 (45.0) 251 (80.5) 270 (86.5) 240 (87.0) 242 (77.6) 92 (29.5) 115 (38.2) 107 (74.3) 274 (87.8)

Outside 330 (55.0) 61 (19.5) 42 (13.5) 36 (13.0) 70 (22.4) 220 (70.5) 186 (61.8) 37 (25.7) 38 (12.2)

Dataset 2 Inside 156 (26.0) 262 (76.6) 320 (93.6) 262 (86.8) 150 (43.9) 125 (36.6) 201 (58.8) 205 (79.5) 322 (94.2)

Outside 444 (74.0) 80 (23.4) 22 (6.4) 40 (13.2) 192 (56.1) 217 (63.4) 131 (41.2) 53 (20.5) 20 (5.8)

The bolded values are the results given by the proposed method
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with (10), the position of the synthetic minority sample is

located closely to the noisy minority sample. Thus, from

Figs. 9 and 10, one may observe clearly that the synthetic

minority samples generated with Importance-SMOTE are

centered closely to the noisy minority samples, which

means that their influence on the distribution region of

majority samples is reduced. By contrary, the concentration

effect around the noisy minority samples are not that clear

in the benchmark methods.

In conclusion, Importance-SMOTE is an effective

oversampling method for these two synthetic noisy

imbalanced datasets.

4.3 Results on Keel public datasets

In this part, 26 Keel public imbalanced datasets are

retained for evaluate statistically the performance of the

proposed oversampling method. Statistical comparisons

with the benchmark methods are also carried out.

Friedman test (Demšar 2006) is adopted for testing

statistically if the performance of different methods are

significantly different, considering their ranks. Since

Friedman test considers only the mean rank of different

methods, not the relative difference in classification per-

formance metrics. Wilcoxon signed rank test (Rey and

Neuhäuser 2011) is, then, adopted for comparing statisti-

cally the performances of the proposed method and each

benchmark method considering the F-measure and AUC

(PRC).

In Friedman test, the null hypothesis is that the perfor-

mance differences of all the considered methods are not

significant. And the alternative hypothesis is that the per-

formance differences are significant. For k methods and n

rank results, Friedman test calculates the statistic value FF

which is the dependent of k, n and mean ranks of all

methods which are shown in Table 3. The calculation

process can be found in Demšar (2006). If the statistic

value is larger than the critical value Fðk� 1; ðk� 1Þðn�
1ÞÞ at a certain significance level, the alternative hypothesis
is accepted. If the null hypothesis is rejected, the critical

difference is adopted for pairwise comparisons. If the mean

rank difference of two methods are higher than the critical

difference, significant difference exists among their per-

formance in the experiments.

Since two classification methods (i.e., KNN and CART)

and two performance metrics (i.e., F-measure and AUC

(PRC)) are considered in this experiment, comparisons are

separately carried out for KNN with F-measure, KNN with

AUC(PRC), CART with F-measure, CART with AUC

(PRC). The statistic values FF in this experiment are

18.315, 18.425, 18.305 and 18.390, respectively. In this

experiment, the significance level is chosen to be 0.05, and

the critical value is 0.3388. It is obvious that significant

differences exist among the oversampling methods in this

experiment. The critical difference value is 2.378 for the

experiments in this work. From Table 3, one may observe

that the proposed method is significantly better than ROSE,

SMOTE, SMOTE-IFP and A-SUWO with respect to

F-measure and KNN in the experiments. The proposed

method performs better with respect to F-measure, in

comparison with AUC(PRC). Considering AUC(PRC), the

proposed method is not significantly better than the

benchmark methods.

Considering that Friedman test does not consider the

performance difference of the pairwise methods for com-

parison, Wilcoxon signed rank test is adopted with a sig-

nificance level of 0.05. The null hypothesis is that the

performance difference between Importance-SMOTE and

the corresponding benchmark method on the experiment

datasets follows a symmetric distribution around zero. The

results are shown in Tables 4 and 5. In the tables, the h

value “true” means that null hypothesis is accepted, and

otherwise, the alternative hypothesis is accepted. The p

Table 3 Average ranks of all methods in the experiment with respect to F-Measure and AUC(PRC)

ROSE SMOTE Safe-level

SMOTE

SMOTE-

IPF

Cluster-

SMOTE

Borderline-

SMOTE

A-

SUWO

ADASYN Importance-

SMOTE

KNN

F-

measure

5.462 5.481 3.865 5.462 4.923 4.519 8.423 4.077 2.788

AUC

(PRC)

5.462 5.346 4.885 4.731 4.462 5.404 5.154 5.635 3.923

CART

F-

measure

4.731 5.462 4.346 5.308 5.596 4.942 8.096 4.058 2.462

AUC

(PRC)

6.885 4.423 3.865 5.692 5.404 5.115 4.423 5.423 3.769

The bolded values are the results given by the proposed method
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value means the probability that the accepted hypothesis is

violated.

The comparison results of Wilcoxon signed rank test

show that Importance-SMOTE achieves at least as good

performance as the benchmark methods in the experiment.

The proposed method can give significantly better results

than the benchmark methods with respect to one/two of the

performance metrics.

4.4 Results analysis and exploration

By exploring the experimental results in more details,

several empirical conclusions and remarks can be drawn

from the experiments:

(1) The proposed oversampling method may achieve

better F-measure values and comparable AUC(PRC)

in comparison with the considered benchmark

methods.

This means that the proposed method has advan-

tages in balancing sensitivity and specification in

imbalanced data classification, as indicated by

F-measure. However, it does not show significantly

superior robustness than the benchmark methods in

the experiments. One motivation of the work is to

strength the boundary of the minority class by gen-

erating synthetic minority samples near the border-

line and edge samples. When there is overlapping

between the majority and minority classes with

noise, the oversampling method increase the true

positive rate (recall value) by sacrificing the accu-

racy on majority class, i.e., low true negative rate or

low precision value. The proposed method may

increase the true positive rate with a possibly limited

loss on the true negative rate through oversampling

the borderline and edge samples with larger impor-

tance. If the samples with less importance as the

noise are oversampled without difference, the deci-

sion boundary will be biased to the minority class,

and the precision-recall curve will be like benchmark

Table 4 Results of wilcoxon signed tank test between importance-SMOTE and benchmark methods with KNN

ROSE SMOTE Safe-level SMOTE SMOTE-IPF Cluster-SMOTE Borderline-SMOTE A-SUWO ADASYN

F-measure

h value True True True True True True True False

p value 0.002 0.000 0.048 0.001 0.002 0.047 0.000 0.056

AUC(PRC)

h value False False False True False False True True

p value 0.334 0.051 0.063 0.500 0.390 0.111 0.049 0.045

The bolded ones are the positive outcome of the statistical tests

Table 5 Results of wilcoxon signed tank test between importance-SMOTE and benchmark methods with cart

Methods ROSE SMOTE Safe-level SMOTE SMOTE-IPF Cluster-SMOTE Borderline-SMOTE A-SUWO ADASYN

F-measure

h value True True True True True True True True

p value 2.76e-4 5.34e-5 8.92e-4 6.27e-5 2.16e-5 3.65e-4 6.54e-6 0.011

AUC(PRC)

h value True False False False True True False True

p value 0.001 0.352 0.481 0.053 0.026 0.046 0.109 0.026

The bolded ones are the positive outcome of the statistical tests

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

recall

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pr
ec

is
io

n

benchmark method 1

proposed method
benchmark method 2

Fig. 11 An illustrative figure of the contradiction between F-measure

and AUC(PRC) as performance metrics
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method 2 in Fig. 11. On the other hand, if the

oversampled borderline and edge samples are not

dense enough to represent clearly the distribution

space of the minority class, the decision boundary

will be biased to the majority class as the precision-

recall curve of benchmark method 1 in Fig. 11. For

the analysis above, one main advantage of the pro-

posed method is, with comparable AUC(PRC) val-

ues, the better balance between the true positive rate

and true negative rate in the presence of noise, i.e.,

significantly better F-measure values.

(2) The performance of the proposed oversampling

method is less sensitive to the number of noisy

samples, with respect to F-measure.

With a negative correlation between the number

of noisy samples and the rank of the F-measure value

achieved by the proposed method, its rank on

F-measure is better as the number of noise increases,

verifying the effectiveness of the proposed method

for noisy imbalanced data. By assigning an impor-

tance value to each sample and generating synthetic

minority samples with respect to the sample impor-

tance, the proposed oversampling method may assign

small importance for noisy samples and generates as

less as possible synthetic minority samples around

them.

(3) The performance of KNN is enhanced by oversam-

pling more borderline samples.

With negative correlations between the percent-

age of borderline samples in minority class and the

rank of the proposed oversampling method with

KNN with respect to both F-measure and AUC

(PRC), the performance of the KNN method is

relatively more improved with Importance-SMOTE

than the benchmark minority oversampling methods

as the percentage of borderline samples in minority

class increases. This can be explained by the fact that

the proposed method tries to generate more synthetic

minority samples close to the borderline. With more

synthetic borderline samples, the oversampled

minority class is dense on the borderline region,

making the minority samples less likely to be

misclassified. Since the oversampled samples are

close to the minority borderline samples with larger

importance, the majority borderline samples are not

severely misclassified in the oversampled dataset.

(4) The performance of CART is enhanced by oversam-

pling more edge samples

Similar to point 3), considering the percentage of

edge samples in minority class, the performance of

the CART method is relatively more improved with

Importance-SMOTE than the benchmark oversam-

pling methods. It can be explained by the fact that

the proposed method tries to oversample the minority

edge samples, and that synthetic minority samples

generated around the edge samples are proportional

to the percentage occupied by the minority edge

samples in the minority class. CART method

adopted in this work takes mean squared error as

the objective for optimizing the tree structure.

Different from KNN that depends highly on local

characteristics of the oversampled dataset, CART

takes into account the general characteristic of the

whole oversampled dataset. The edge samples and

the generated synthetic minority samples around

them are relatively far from the majority ones and,

thus, they may favor in optimizing the CART

decision tree structure.

(5) The influence of IR and number of discriminative

features on the classification performance are coher-

ent with the previous work

By comparing the performance of the proposed

method, it can be observed that the classification

performance degrades as the IR increases. This is

caused by the fact that limited minority samples

cannot represent the distribution of minority class.

The proposed method relies on the local character-

istics of nearest neighbors for oversampling. While

the sample size in minority class decreases, the

statistical characteristics of the nearest neighbors are

less representative. Similarly, IR is not the only

factor to consider for describing the influence of

between-class imbalance on the classification per-

formance, the influence is reduced with more

discriminative features in the imbalanced datasets.

That’s also why adjusted IR is more suitable for

describing the difficulty in classification modeling of

imbalanced datasets.

(6) The computational complexity is almost stable with

respect to the value k of nearest neighbors

The experimental process includes mainly the

sample importance calculation, oversampling with

respect to sample importance and the classification

modeling process. Taking the Poker8-6 dataset as an

example, the change of computation time with

respect to the k value of nearest neighbors is shown

in Fig. 12. One may observe that the computational

complexity is almost stable for different steps of the
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experimental process. The computational complexity

of the experiment mainly depends on the training

data size, the number of synthetic samples and the

data size of the oversampled training dataset. Thus,

for the same dataset, the computational complexity is

almost stable for different k values of nearest

neighbors.

5 Conclusions

Noisy samples may reduce the performance of a synthetic

minority oversampling method by introducing overlapping

and outliers. Considering the composition and distribution

of the k nearest neighbors of a borderline or edge sample in

minority class, this paper proposes a new minority over-

sampling method, i.e., Importance-SMOTE. In the pro-

posed method, the minority samples with nearest neighbors

from different classes well-separated and with more sam-

ples from its own class among its nearest neighbors are

given larger importance. The minority samples with larger

importance are more likely to be selected and oversampled.

Since the borderline and edge samples are more likely to be

misclassified, the proposed method oversamples only the

borderline and edge sample in minority class. Two popular

classification models, i.e., KNN and CART, are integrated

in the experiment for binary classification of public

imbalanced datasets. The proposed method obtains always

highest mean rank in comparison with the benchmark

methods. Wilcoxon singed rank test on the experiment

results show that the proposed method gives significantly

better results than the benchmark methods for most of the

comparisons. This work shows the benefits for exploring

the local characteristics (e.g., composition and distribution

of the nearest neighbors) of the imbalanced training data-

sets for improving the classification accuracy.

One drawback of the proposed method is that the out-

liers are not considered. Since outliers can be wrongly

judged as noise in the proposed method, one interesting

future work is to distinguish noise from outliers and to

propose effective importance calculation and oversampling

methods. Another research direction is to focus on a cost-

sensitive balance between recall and precision in hyper-

parameters tuning. Considering that the published work

shows already that oversampling in high-dimensional Hil-

bert space with nonlinear kernel functions improves the

performance of classical SMOTE method (Mathew et al.

2018), the future work may also extend the current

Importance-SMOTE to the Hilbert space for identifying

different types of samples, calculating sample importance

and generating synthetic minority samples. Considering the

randomness brought by the oversampling strategy of the

proposed method, the ensemble model has a good potential

to improve the robustness and stability of the imbalanced

data classification results, especially for dealing with dif-

ficult data. While since the samples are given different

importance, it should be carefully discussed about the

diversity of the sub-models and the combination methods

of results from sub-models. Boosting and Bagging in

combination with sampling methods are popular strategies

for generating different training datasets (Liu et al. 2021;

Chen et al. 2021). The sub-models should be assigned a

different weight considering the sample importance.

Appendix

See Tables 6, 7, 8, 9
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