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Abstract— Recognizing suspicious human activities is one of the
critical requirements for national security considerations. Nowa-
days, designing the deep convolution neural network (DCNN)
models suitable for micro-Doppler (m-D) signature-based human
activity classification is rapidly growing. However, high com-
putation cost and a huge number of parameters limit their
direct/effective usability in field applications. This article intro-
duces an m-D signatures’ dataset “DIAT-µRadHAR” covering
army crawling, boxing, jumping while holding a gun, army
jogging, army marching, and stone-pelting/grenade-throwing,
generated using an X-band continuous wave (CW) radar. This
article also introduces a lightweight DCNN model, “DIAT-
RadHARNet,” designed for those human suspicious activity
classification. To reduce the computation cost and to improve
the generalization ability, DIAT-RadHARNet is designed with
four design principles: depthwise separable convolutions, channel
weighting (CHW) based on the importance, different size filters
in the depthwise part, and operating different size kernels
on the same input tensor. The network has 213 793 parame-
ters with a total of 55 layers. Our extensive experimental
analysis demonstrates that the DIAT-RadHARNet model effi-
ciently classifies the activities with 99.22% accuracy, giving
minimal false positive and false negative outcomes. The time
complexity of the proposed DCNN model observed during
the testing phase is 0.35 s. The same accuracy and time
complexity are obtained even at adverse weather conditions,
low-lighting environments, and long-range operations.

Index Terms— Convolutional neural network, deep convolution
neural network (DCNN)-based classification, human suspicious
activity, micro-Doppler (m-Doppler) signatures, X-band contin-
uous wave (CW) radar.

I. INTRODUCTION

HUMAN activity recognition (HAR) has drawn signif-
icant attention in numerous fields such as security

monitoring, counterterrorism, border surveillance, biomedical
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patient health monitoring, and early detection of public violent
protests/attacks [1], [2]. The need of intelligent systems having
the capability to detect and classify suspicious human activities
becomes essential for triggering the necessary counter-action
mechanisms, to control the situation, and/or for post situa-
tion/scenario analysis [3]. Nowadays, several HAR systems
are available based on vision sensing [smart, closed-circuit
television (CCTV), surveillance video, infrared, thermal, and
acoustic sensors] and RF sensing (radars). More common
vision-based approaches for HAR have relied on visual data,
and hence have several limitations such as sensitivity to
weather conditions, short-range operations [4], narrow field
of view (for good accuracy), range focus/collimation tun-
ing issues, accuracy issues of finderscope/red-dot-finder-based
initial boresight alignment, and dependence on surrounding
lighting conditions [5].

On the other hand, HAR using a radar system offers unique
advantages, such as robustness for even adverse weather
and/or low-lighting conditions, through-wall capability, foliage
penetration/target-imaging, tunnel intruders’ detection, and
long-range operations [6], [7]. The more common human
suspicious activities from the security point of view are
person fight punching (boxing) during one-to-one attack,
person intruding for preattack surveillance (army marching),
person training (army jogging), person shooting (or escaping)
with a rifle (jumping with holding a gun), stone/hand-
grenade-throwing for damage/blasting (stone-pelting/grenade-
throwing), and person hidden translation for attack execution
or escape (army crawling) [8], [9]. Detecting/classifying these
kinds of suspicious human activities correctly, better at the
earliest, by processing their micro-Doppler (m-D) signatures
is very much essential [10].

In the recent decades, researchers have used machine
learning (ML) techniques that require separate time–frequency
(T-F) map features’ retrieve/classification algorithms [11],
such as principal component analysis (PCA), multilayer per-
ceptron, linear predictive coding (LPC), and support vector
machine (SVM), for HAR [12], [13]. However, the efficiency
of extracted features using such traditional techniques for
classification is limited by prior information and intricacy
of categorization problems [14], [15]. Also, the classification
performance of this kind of approach degrades if the m-D sig-
nature similarity between classes is high and/or the number of
classes is more [16]. Therefore, nowadays, deep learning (DL)
gains the researchers’ attention since it does concurrent
automatic features’ extraction, with improved self-actuation,

1557-9662 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Defence Inst of Advanced Technology Deemed Univ. Downloaded on July 21,2023 at 04:48:54 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-3188-3072
https://orcid.org/0000-0002-8830-8338
https://orcid.org/0000-0003-0306-6198
https://orcid.org/0000-0003-3309-4384


2505210 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 71, 2022

self-regulation, and self-control due to its intrinsic computation
and decision-making skills [17], [18], which motivated us to
use the DL technique for the purpose of human suspicious
activity classification. The main contributions reported in this
article are as follows.

1) Indigenous development of an X-band continuous-wave
(CW) 10-GHz radar, and its uses to prepare the m-D
signatures’ dataset, named as “DIAT-μRadHAR,” corre-
sponding to suspicious human activities: army marching,
jumping with holding a gun, army jogging, army crawl-
ing, grenade-throwing/stone-pelting, and boxing.

2) Designing a lightweight deep convolutional neural net-
work (DCNN), named as “DIAT-RadHARNet,” using
a diversified dataset (“DIAT-μRadHAR”), validating
its classification/performance accuracy and comparing
the computational complexities of the designed DCNN
model with the state-of-the-art CNN models.

3) Following four design principles: depthwise separable
convolutions, channel weighting (CHW) based on the
importance, different size filters in the depthwise part,
and operating different size kernels on the same input
tensor, to reduce the computation cost and to improve
the generalization ability of “DIAT-RadHARNet.”

4) Computing the ablation study and classification report
containing the statistics of layers, parameters, floating
point operations (FLOPs), accuracy, precision, recall,
F1-score, receiver operating characteristics (ROC), cate-
gorical cross-entropy loss, etc., to have thorough perfor-
mance/classification accuracy analysis of the proposed
DCNN model.

5) Analysis of test results of designed DCNN model’s
classification accuracy by conducting open-field
experiments during different environmental conditions:
normal/adverse weather conditions, low-lighting
environments, and long-range operations.

The rest of this article is organized as follows: a brief
review summary of related recent works on HAR is provided
in Section II, Section III describes the developed RF sensor
and dataset formation methodology, Section IV elucidate the
developed “DIAT-RadHARNet” architecture and its imple-
mentation details, Section V presents the experimental results
with performance analysis metrics, and finally Section VI
gives the conclusion.

II. RELATED RECENT WORKS

Recently, radar-based systems for recognizing different
human activities [hand gesture [19], walking, running, jump-
ing, crawling, cycling, sitting still/standing still [20], patient
walk (with/without cane/walker), walking with a concealed
rifle, walking while carrying bag/suitcase/laptop [21], etc.] are
becoming very popular. Zenaldin and Narayanan [8] reported
human activity classification based on a CW radar (6.5 GHz;
target operation ranges are 0.5–9 m) using an SVM classifier
for running, walking, and crawling classes. Chen and Ye [9]
developed a 1-D CNN using a nondiversified dataset prepared
using a commercial K -band CW radar (≈24 GHz; target
ranges are 0.5–5 m inside the laboratory) and used it for
the classification of seven different types of human activities.

Javier and Kim [13] have introduced a nondiversified m-D
signatures’ dataset, of size 1008, obtained using an S-band CW
radar (2.4 GHz; target ranges are 2–8 m inside the laboratory).
The LPC is used to extract the features, followed by an SVM-
based categorization. Zhang and Cao [16] suggested a DCNN
model trained using m-D samples, of size 1896, prepared using
a w-band radar (77 GHz; target range is ≈17.7 m) for the
recognition of walking, swinging hands, and falling human
activities.

Gu et al.. [22] designed a 5.3-GHz one-transmitter and two-
receiver-based CW radar system to classify hand gestures in
the presence of human body movements. Li et al. [23] pro-
posed a sign language/hand gesture classification system using
an ultrawideband (UWB) radar module. Shrestha et al.. [18]
prepared a dataset using a frequency-modulated indoor CW
radar (5.8 GHz; with 15 human targets) and classified six
different human activities using a long short-term mem-
ory (LSTM) network. The model was trained and validated
with two different 35–45-s duration sequences, respectively.
Alnujaim et al.. [15] presented a six-layer DCNN architecture
designed using a 2-D convolutional and fully linked layers
with fixed-size filters for HAR. This kind of design increases
the computational cost and is incapable of capturing multilevel
features. Furthermore, the developed model is trained using a
nondiversified dataset of size 144, generated using a 2.4-GHz
CW radar and 12 human targets. Lee et al.. [24] presented the
human activity classification based on incremental learning
of m-D signatures. The authors used an S-band CW radar
(2.4 GHz; 12 human targets) and prepared a dataset (of
size 1008) containing spectrogram images to classify seven
different classes.

Thus, to the best of the authors’ knowledge, numerous
works are being conducted to classify general human activities,
but only fewer works on suspicious human activities. Further-
more, from the literature, it is noted that the majority of the
works have some flaws such as: 1) physical parameters (i.e.,
orientation) of the human target are not taken into account
when acquiring the samples; 2) samples are collected in a
laboratory environment and with short-range target operations;
3) smaller size datasets are used to train the models; 4) datasets
are not available to the access of academicians/researchers;
5) multilevel features are not considered; 6) computationally
costly; and 7) not suitable for on-device implementation.
Sections III–V address these flaws to a greatest extent. In addi-
tion, we wish to find the answer for the following research
questions through our extensive DCNN designs and validation
experimental results/analysis.

1) Does the use of different size filters in depthwise
separable convolutional layer increase the computational
cost?

2) Does weighting the channels depending on the feature
map’s importance help improving the model’s general-
ization capabilities?

3) Is multiscale filtering on the same input tensor useful in
collecting information about human motion signals from
a spectrogram image of suspected human activity?

4) Does combining CHW with multiscale feature maps
increase network performance?
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Fig. 1. Top-level schematic of the developed X-band CW radar.

Fig. 2. Photograph of an indigenously designed CW (X-band) radar in use
during field tests.

III. RADAR EXPERIMENTAL SETUP

AND DATASET FORMULATION

This section describes the radar design and dataset prepa-
ration.

A. Radar Design and Specifications

An X-band CW radar, as shown in Fig. 1, operating
at 10 GHz, is developed at our radar system design laboratory
and is used to collect the experimental m-D signatures via
different open-field experiments (refer Fig. 2). The developed
radar consists of an X-band voltage controlled oscillator
(VCO), source amplifier, bandpass filter, power divider, power
amplifier (PA), and Tx horn antenna at the transmitter chain
and Rx horn antenna, low-noise amplifier (LNA), and a
mixer at the receiver chain. The main specifications of these
subsystems are given in Table I. The radar signal acquisition
module is designed with a baseband amplifier, low-pass
filter (LPF), and analog-to-digital converter (ADC) [25]. This
section receives the signal from the radar Rx chain and sends
it, in digital form at a sampling rate of 10 ksps, to the m-
D signature extraction algorithm developed in PC (MATLAB
environment).

B. DIAT-μRadHAR Dataset Preparation

To have a diversified dataset, 30 different human targets,
including males and females of different weights and heights,
are directed to perform suspicious activities in the open
experimentation field, at different ranges between 10 m and
0.5 km, in front of the radar. To generate the DIAT-μRadHAR
dataset as a realistic one, all the suspicious activities are
performed at seven different orientations (tilted positions): 0◦,
±15◦, ±30◦, and ±45◦, in radar run time. The radar raw
data, i.e., the output of ADC (16 bits), are serialized by a
MAX9258-based universal serial bus (USB) serializer and
passed into the MATLAB environment. Radar time-domain
signals, acquired during normal/adverse weather conditions,
low-lighting environments, and long-range operations, are
recorded for the radar run time of 3 s. Radar data acquired for
3 s are passed through a 600-Hz m-D software LPF, as shown

TABLE I

MAIN SPECIFICATIONS OF THE DEVELOPED X -BAND CW RADAR

Fig. 3. Preprocessing pipeline on radar raw data to generate m-D signature
images.

in Fig. 3 which removes the high-frequency components and
allows only the m-D spectrum for which our radar is designed,
i.e., the maximum radial velocity is 9 m/s [26]. Since in
coherent CW radar the background clutters bias the radar
signal with a dc voltage [27], the clutter (stationary) effect in
the input signal is filtered using a “dsp.DCBlocker” (first stage
in clutter filter) MATLAB object. During the experiments,
the radar cross section (RCS) (i.e., reflections to the X-band
radar’s CW signal) of grasses, tree leaves, wind fluctuations,
or similar slow/random moving targets is very low; hence, they
introduced very weak (very low power) and very low Doppler
components (clutter power is concentrated about the zero
frequency band). Thus, the Doppler effects of such clutters
are removed by an appropriate design of a digital transversal
filter (the second stage in clutter filter), as discussed in [27],
giving a high degree of attenuation around 0 Hz (i.e., deep
stopband around dc) and a high gain throughout the rest of
the considered Doppler spectrum, to attain improved signal-
to-clutter ratio (SCR). The clutter effect filtered radar signal
is applied into short-time Fourier transform (STFT), as given
in (1), for generating the T-F map

X[m, k] =
+∞∑

n=−∞
x[n]w[m − n]e−i2πnk/N (1)
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Fig. 4. m-D spectrogram samples of each suspicious human activity. (a) Boxing. (b) Army marching. (c) Army jogging. (d) Jumping with holding a gun.
(e) Stone-pelting/grenade-throwing. (f) Army crawling.

TABLE II

HUMAN TARGETS’ CLASSWISE PARAMETERS. THE TOTAL NUMBER OF SAMPLES IS 3780

where x[n] is the discrete signal, k is the index value for
frequency, w[n] is the window function, n is the sample
number, and N is the number of samples in the analyzing
window. In our work, the window length is 2048 (Hamming
window), with 4096 points of discrete Fourier transform (DFT)
and 2000 points of (97.65%) overlapping, and the signal
length is 40 000. Noises, sourced from slight movements of
the background clutter and radar subsystems, present in the T-
F map are further removed using a spatial filter (the third stage,
as shown in Fig. 3) designed as described in [28]. The noise
canceled and background clutter effects’ filtered spectrogram
samples are stored in the respective class for designing our
novel DCNN architecture. The classwise data collection details
can be found in Table II. Fig. 4 shows the event photographs
and their sample spectrogram images for each suspicious
activity. The total number of spectrogram samples in our
dataset is 3780. Out of the collected samples, 80% and 20%
are used for training and validation purposes, respectively.
The spectrogram images clearly exhibit how the features of
different human activities, due to torso, hand, leg, and body
movements, are correlated (i.e., interclass correlations) [29].

To facilitate the worldwide researchers working in this field,
we decided to publish our complete dataset (as.mat file) and

the proposed DCNN network (source code) at our institute
website (https://www.diat.ac.in/view-profile/?id = 98) for free
access for their academic/research purposes.

IV. PROPOSED NOVEL DCNN ARCHITECTURE

This section explains the design of a proposed novel
DIAT-RadHARNet architecture along with its design consid-
erations and its implementation details.

A. Proposed DCNN Architecture

The DIAT-RadHARNet architecture, as shown in Fig. 5,
is designed from the inspiration of MobileNetV2 [30], Incep-
tionV3 [31], SENet [32], and BlazeFace [33] architectures by
considering the following five important design principles.

1) The depth of the feature map in a convolution operation
denotes the number of convolutional kernels used to
learn the various feature representations of the input ten-
sor. Some of the feature maps are more significant than
others. Thus, the simplest way to improve a DCNN’s
generalization capabilities is to weight the channels
based on the importance of the feature map [32].
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2) Depthwise separable convolutions reduce the parameters
of the model and extra computing overhead substan-
tially [30].

3) Most of the existing DCNN architectures used
3 × 3 filters in the depthwise separable convolutional
layers. The computational cost on such convolution
operation is dominated by pointwise convolution. For
example; if the input tensor size is Ds × Ds × M
and the filter size is Dk × Dk , then the total number
of multiplication and addition operation for the depth-
wise part is Ds

2 M Dk
2, while the subsequent pointwise

convolution on N channels require a total of Ds
2 M N

multiplication and addition operation, which is (N/Dk
2)

times than depthwise convolution. Thus, using different
size (1 × 1, 3 × 3, 5 × 5) filters in the depthwise part
does not increase extra computational overhead [33].

4) The occupied area of m-D signatures of suspicious
human activities on the spectrogram images differs
based on the type of activity, radar aspect angle, i.e.,
activities’ orientation with respect to radar boresight,
physical parameters, and the range at which activities
take place, etc. Thus, finding the optimal filter size to
learn those signatures is difficult. A larger filter produces
a global distribution, while a smaller one produces a
local distribution. On the other hand, increasing the
depth is prone to overfitting. The solution to this problem
is to operate different size kernels on the same input
tensor [31].

5) The introduction of global average pooling (GAP) layers
in any DCNN model, instated of the traditional fully
connected layer, before the final classifier reduces the
extra burden of trainable parameters [34].

The proposed DIAT-RadHARNet DCNN model comprises
55 layers as: 13 separable convolutional layers, one max-
pooling layer, three multiply layers, six add layers, 13 batch
normalization layers, six rectified linear unit (ReLU) activa-
tion layers, three dense layers with ReLU activation, three
dense layers with sigmoid activation, one dropout layer, four
GAP layer, one softmax, and one input layer. To reduce
the computational overhead, we used separable convolutional
layers throughout our network instead of 2-D DCNN. All
the convolutional layers are activated by ReLU activation,
and we use the same padding to maintain the same output
feature maps’ dimension as the input tensor. We included
batch normalization layers in our model to improve the
generalization error and accelerate the training process. The
proposed DIAT-RadHARNet DCNN model can be expressed
as follows:
DIAT-RadHARNet(x) = β( f FC( f D( f G( f MSFCAi ( f M( f B(σ

× ( f Ci (x ∗ wi + bi))))))))) (2)

where β, f FC, f D , f G , f MSFCAi , f M , f B , σ , f Ci , x , wi ,
and bi represent thesoftmax activation, classification layer,
dropout layer, GAP layer, multiscale filtering and channel
attention (MSFCA) layer, max-pooling layer, batch normal-
ization layer, ReLU activation, first convolutional layer, input
image, weight matrix, and bias, respectively. The proposed
DCNN model takes the preprocessed spectrogram images as

an input in the first phase. During the preprocessing phase,
the images are first downsized to 256 × 256 × 3, normalized
using a 1/255 scaling ratio, and then augmented with zooming,
brightening, and horizontal flipping [10], on-the-fly, using
the “ImageDataGenerator” class of Keras library. We used
separable convolutional layers to reduce the computational
overhead and to make the model lightweight. On the other
hand, introducing batch normalization layers after convolu-
tional layers in our model helps reduce the generalization error
and to speed up the training process.

The processed spectrogram samples are then passed through
the first convolutional layer of the proposed DCNN model,
where we apply 96 filters with stride two of size (3 × 3) to
learn basic feature representations. The output of this layer
of dimension (128 × 128 × 96) is then given to the batch
normalization layer, followed by the first max-pooling layer.
The max-pooling layer with stride two reduces the input
volume’s spatial dimension to (64 × 64 × 96) for subsequent
layers. Then, we add three consecutive MSFCA blocks to its
end as shown in Fig. 5. The MSFCA blocks are designed with
the proposed design principles said in points 1–4 above. The
MSFCA block takes the output of the previous max-pooling
layer or activation layer. This block helps the model learn
multilevel feature representations from the same input tensor
and improve the channel interdependency. As a result, the
overall performance of the network increased with minimal
computational cost. Each MSFCA block consists of four
parallel paths. Path one, two, and three are made up with
one convolutional layer followed by one batch normalization
layer which can be expressed by the following equations,
respectively:

f P1(x) = f B(σ ( f Ci ( f x ∗ wi + bi))) (3)

f P2(x) = f B(σ ( f Ci ( f x ∗ wi + bi))) (4)

f P3(x) = f B(σ ( f Ci ( f x ∗ wi + bi))) (5)

where f Ci , σ , f x , wi , bi , i , and f B represent the convolutional
layer, ReLU activation, output feature map of the previous
max-pooling layer or activation layer, weights, bias, layer
index, and batch normalization layer, respectively. To cap-
ture multilevel feature representation from the input tensor,
we applied different size filters in paths one, two, and three,
but the stride was one for all convolution operations as per
the proposed design principles in points 2–4, above. The filter
size for paths one, two, and three was 5 × 5, 3 × 3, and 1 × 1,
respectively. The output tensors of the three paths are then
elementwise added in the addition layer using

f A1(x) = f P1(x) ⊕ f P2(x) ⊕ f P3(x) (6)

where ⊕ is the elementwise addition operation. The mul-
tilevel feature representation map f A1(x), generated by the
elementwise addition operation, is then passed through a batch
normalization layer f B followed by an ReLU activation layer,
which is then elementwise added with the output of path four
f P4(x), as given in the following equation:

f A2(x) = σ( f B( f A1(x))) ⊕ f P4(x) (7)

where σ is the ReLU activation function. Path four, as given
in (8), helps model channel interdependences with only a small
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increase in the computational cost, but including this path
in the MSFCA block directly improves the overall network
performance

f P4(x) = σ( f Ci ( f Mul(α( f FC(σ ( f FC( f G( f x)))))) ∗ f x))

(8)

where σ , f Ci , f Mul, α, f FC, f G , and f x denote the ReLU
activation, convolutional layer, multiplication layer, sigmoid
activation, dense layer, GAP layer, and output of the previous
max-pooling layer or activation layer, respectively. Path four
takes an input feature map x of dimension Ds × Ds × M ,
reduces it to dimension 1 × 1 × M by GAP layer, and then
passes this M-length tensor through a multilayer perceptron,
which projected back to the same dimension 1 ×1 × M as the
dimension of the input feature map, which is then elementwise
multiplied with the input feature map x . The first dense layer
in this path reduces the complexity of its output channel
by a factor of 16. The advantage of including this path in
the MSFCA block is shown above in the proposed design
principle 1. The resultant tensor is then subsequently passed
into a 1×1 convolutional layer to maintain the same dimension
as f A1(x). Finally, by combining (3) and (8), we can express
the MSFCA block as follows:

f MSFCAi = σ( f A2(x)) (9)

where f A2 is the second addition layer of that block, and x
is the output feature map of the previous layer, which can
be represented by f x ∈ R

D . D is the output dimension
of the previous layer. After that, we fed the output tensor
of f MSFCA3 block to a GAP layer (for the reason said in
design principle 5). Then, the output feature map of the GAP
layer is fed into the dropout layer to prevent overfitting.
Finally, a dense layer of six neurons triggered by the softmax
activation function is added to the proposed DCNN network
to anticipate the final action label. The proposed network
has 213 793 parameters. The developed new DCNN model is
trained end to end using 3780 m-D images of six classes of
suspicious human activities. Furthermore, the proposed model
uses depthwise separable convolutional layers and a GAP
layer to reduce computation costs (lightweight DCNN), which
makes the proposed architecture more suitable for on-device
[e.g., field-programmable gate array (FPGA)] implementation.

B. Implementation Details

The proposed novel DIAT-RadHARNet architectural model
is implemented on a Windows 10 workstation with an Intel
Xeon Gold 6140 2 Processor (2.30 GHz, 2.29 GHz), 256-GB
memory, NVIDIA Quadro RTX 6000 (24.0 GB) Graphics
card, CuDNN v7.6.0, and CUDA v10.0.130 Tool kit. Our pro-
posed architecture is implemented using Keras 2.2.4, python
3.5.6, matplotlib 2.2.2, and TensorFlow-GPU v1.14.0. In our
work, we used a trial-and-error method to tweak the model
hyper-parameters. The DIAT-RadHARNet network is end-to-
end trained on the captured m-D signature dataset, and the
Adam optimizer is used to optimize the network. We used
zooming by 0.1 scale, brightening between 0.9 and 1.1, and
horizontal flipping data augmentation technique to increase the

TABLE III

CLASSIFICATION REPORT OF THE PROPOSED DIAT-RADHARNET MODEL

size of the training dataset. The learning rate of the model
is initially set to 0.001 and reduced by 0.5 factor up to
0.00001 when validation accuracy saturated in subsequent two
epochs. The batch size is set to be eight, and the maximum
epoch is 300. The weights and bias in all the convolutional
layers are initialized with glorot uniform and a constant value
of 0.2, respectively. On the other hand, the normal weight
initializer is used in the dense layers of the MSFCA block.
The number of filters applied in each layer and its output
dimension are shown in Fig. 5. We used the same padding in
all convolution operations to maintain the same dimension as
the input tensor. To make the network more generalized and to
prevent overfitting, 40% dropout is applied before the softmax
layer. We also monitor the validation loss; if no progress
is seen in the next ten epochs, we use early stopping to
avoid overfitting. The categorical cross-entropy loss function,
as shown in (10), is used to measure the performance of the
DIAT-RadHARNet network

L = −
c∑

k=1

tk log(pk) (10)

where pk denotes the softmax probability for the kth class,
c is the total number of class, and tk denotes the truth label.

V. EXPERIMENTAL RESULTS AND

PERFORMANCE ANALYSIS

To illustrate the efficacy of the proposed DCNN model, the
ROC curves are created for each of the six distinct activity
classes for a given set of predicted probabilities and ground-
truth labels. We have used a technique known as “one vs
all” to obtain the ROC curve. In this technique, we have
used “roc_curve” metrics from “sklearn package” which takes:
1) true binary labels; 2) target scores; and 3) positive class,
and returns: 1) false positive rate and 2) true positive rate.
In this way, the ROC curve, for every class, is obtained against
all other classes. The resulting ROC plots are depicted in
Fig. 6; from which we can observe that the area under the
curve (AUC) value is one for all the classes, which proves the
model’s classification excellency. As we know, a high AUC
score indicates that the model is good at differentiating the
six human suspicious activity classes.
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Fig. 5. Overall framework of the proposed DCNN architecture.

TABLE IV

COMPARISON OF THE DIAT-RADHARNET MODEL WITH OTHER POPULAR DCNN MODELS

A detailed/statistical performance study is conducted to
evaluate the classwise performance and estimate the classi-
fication error of our DCNN model. The classwise F1-score,
recall, and precision of our DCNN model are presented in the
classification report given in Table III, which evidences for
99.22% of the overall classification accuracy of the proposed
DCNN model. The loss and accuracy plot shown in Fig. 7
depicts the training process and the learning direction of
our DCNN model. The training and validation curves in the
accuracy plot converge, indicating that the network is not
overfitted.

To perform a thorough test analysis on the classifica-
tion accuracy of our proposed DCNN model, all the sus-
picious human activities shown in Fig. 4 are performed
in front of the radar, with a new set of human targets,
at different ranges between 10 m and 0.5 km during nor-
mal/adverse weather conditions, low-light environments, and
long-range operations, and the respective (on-the-spot) test
samples are collected. We used these on-the-spot test sam-
ples: normal (380 samples)/adverse (314 samples) weather
conditions, low-light (211 samples) environments, and long-
range (140 samples) target operations, to get thorough perfor-
mance analysis. The classification statistics obtained during

these open-field different environmental experiments are as
follows.

1) Normal Weather Conditions: Fig. 8 gives the classifica-
tion statistics of on-the-spot test results of the proposed DCNN
model, obtained from the test experiments conducted during
normal weather conditions. It can be observed from Fig. 8 that
the model achieves 99.22% test classification accuracy, and the
miss classification rate is only 0.78%. It also reveals that only
three samples belonging to boxing, jumping with holding a
gun, and stone-pelting are misclassified as army crawling.

2) Adverse Weather Conditions: The confusion matrix asso-
ciated with the test experiments conducted during adverse
weather conditions is shown in Fig. 9. The overall on-the-
spot test accuracy of the model in adverse weather condition
is 99.05%, and the misclassification rate is 0.95%. We can
note that the model’s false negative and positive scores for
each class are very low.

3) Low-Light Environments: The performance statistics of
the model in low-light conditions are given in the confusion
matrix shown in Fig. 10. The model achieves 99.06% classi-
fication accuracy in these experimental conditions with only
0.94% of misclassification. It can also be observed that the
model’s false positive and negative results are minimal.
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Fig. 6. ROC curve of the proposed DIAT-RadHARNet model.

Fig. 7. Categorical cross-entropy loss. (a) Accuracy and (b) plots of the
proposed DIAT-RadHARNet model.

Fig. 8. DIAT-RadHARNet: confusion matrix—normal weather conditions.

4) Long-Range Target Operations: The proposed DCNN
model achieves 99.29% of test classification accuracy in long-
range target operations as reported in the confusion matrix
shown in Fig. 11. The misclassification rate of our model in
long-range operations is only 0.71%. We can note that only
one sample belonging to the boxing category is misclassified
as army crawling.

Thus, these open-field different environmental test exper-
imental results evidence the good classwise classification
performance/accuracy of our DCNN model on the newly, i.e.,
on-the-spot, collected test datasets/samples. It also reveals that
the model’s false negative and positive scores for each class are
very low. Furthermore, the time complexity observed during
the testing phase is 0.35 s, which is quite low, and it evidences
the suitability of the designed DCNN model for on-the-fly
classification applications.

Based on overall performance evaluations, the DIAT-
RadHARNet model achieved a superior accuracy (99.22%)
with 213 793 parameters and 55 layers. Table IV gives the
comparison of DIAT-RadHARNet with that of other well-
known models, trained, validated, and tested with our datasets.

Fig. 9. DIAT-RadHARNet: confusion matrix—adverse weather conditions.

Fig. 10. DIAT-RadHARNet: confusion matrix—low-light conditions.

Fig. 11. DIAT-RadHARNet: confusion matrix—long-range operations.

It is noted from Table IV that the (layers), storing capacity
(size), and computational complexity (parameters and FLOPs)
are at the optimum tradeoff giving the classification accuracy
at 99.22%. Even though the input dimension is high, i.e.,
256 × 256 × 3, in our DCNN model, it gives a greater
accuracy with a size of 2.75 Mb, parameters of 0.21M,
and FLOPs of 0.83G. Although the layers of VGG-16 and
VGG-19 are relatively low, all other design parameters are
very high, and the classification accuracy is low, i.e., 97% and
98%, respectively. Similarly, FLOPs for 1.0 MobileNet-224,
MobileNetV2, and BlazeFace are low as 0.57G, 0.30G, and
0.30G, respectively, but the respective classification accuracy
is also low, i.e., 93%, 94.67%, and 96.74%, respectively.
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TABLE V

ABLATION STUDY OF THE PROPOSED DIAT-RADHARNET MODEL.
FLOPS DENOTE FLOATING POINT OPERATIONS

Furthermore, through extensive designs and performance
validation experiments, we found answers to all our research
questions raised in Section II. The answers (findings) are as
follows.

1) The optimum number of MSFCA blocks for our DCNN
model is determined using an ablation study, as given
in Table V. Therein, we can note that three consecutive
MSFCA blocks are sufficient to have a test accuracy of
99.22%. Furthermore, it is observed that increasing the
number of MSFCA blocks does not lead to increasing
the accuracy, but it increases the computational com-
plexity. Hence, we finalized only three MSFCA blocks
in our proposed architecture. Adjusting the filter size in
the depthwise separable convolutional layer resulted in
no extra processing burden (as shown in Table V, the
total FLOPs are only 0.62G when three MSFCA blocks
are used without CHW).

2) Weighting the feature maps adds a minimal trainable
parameter to the model, but the benefit is that it improves
the model’s generalization capabilities [as shown in
Table V, the total FLOPs is only 0.62G when using
three MSFCA blocks without CHW and 0.83G when
using three MSFCA blocks with CHW, implying that
the difference between these two cases is only 0.21G].

3) As shown in Table V, when three MSFCA blocks are
used without CHW, the overall test accuracy of the
model is 98.13%, indicating that the benefit of multi-
level feature representation extraction plays a vital role
in extracting valuable characteristics from spectrogram
images.

4) Combination of feature map weighting based on priority
and multiscale feature map extraction from m-D signa-
tures of different human targets improves the network’s
generalization ability and overall accuracy (as shown in
Table V, when three MSFCA blocks are used with CHW,
the overall test accuracy of the model is 99.22% at the
FLOPs of 0.83G).

VI. CONCLUSION

This article introduced a dataset “DIAT-μRadHAR” con-
taining m-D signatures corresponding to six different human
suspicious activities and designed a new lightweight DCNN
architecture “DIAT-RadHARNet” for their detection and clas-
sification. The new DCNN model is trained/validated with the
m-D signature samples recorded using an X-band (10 GHz)
CW radar’s open field, at different ranges (10 m–0.5 km),

different weather/lighting conditions, diversified human tar-
gets, and different aspect angles, experiments. In this work,
we increased the generalization capability of the designed
DCNN model by weighting the feature maps and adding
negligible trainable parameters. We also found that changing
the filter size in the depthwise separable convolutional layer
did not require additional computational overhead.

The designed DCNN model gives 99.22% classification
accuracy with a very low false negative and positive outcome
with 213 793 parameters and 55 layers. The time complexity
observed during the testing phase of the designed DCNN
model is 0.35 s which is quite low; hence, it is more suitable
for on-device, i.e., FPGA implementation, which is one of
our ongoing research works. However, the work reported
in this article does not address the classification of suspi-
cious activities of multiple subjects, inverse synthetic aperture
radar (ISAR) imaging, classification of suspicious human
activities based on ISAR signatures, cross-range/adaptive
beam-forming effect analysis on m-D signatures of suspicious
human activities, imaging the target’s activities on a range-
velocity map to demonstrate the separability of subject targets
and slow-moving clutters, etc., which are our near-future
research works.
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