SAARLAND UNIVERSITY ARTIFICIAL INTELLIGENCE 23/24
Prof. Jorg Hoffmann, Dr. Daniel Figer
Thorsten Klofner, Pascal Lauer

Al Programming Project Description — Project 2

In this project, your task is to implement the pattern database heuristic and the cliques
heuristic. For a planning task IT = (V, A, I, G) and a pattern (subset of variables) P C V,
the pattern database (PDB) heuristic is the abstraction heuristic A’ = k™", induced by
the abstraction function wp(s) := s|p on Or, where s|p is the restriction of s to P. The
cliques heuristic for a set of patterns C is defined as h(s) := MaX pecliques(C) 2o PeD ht,
where cliques(C) is the set of all maximal cliques in the combinability graph of C.

Implementing the PDB heuristic will give you 20 points, while implementing the cliques
heuristic is worth 5 points.

1 Obtaining the Project

To obtain the project, please pull the main branch of the fork repository by running git
pull --no-edit fork main.

2 Relevant Files

For this project, only the classical planning module downward is relevant. Recall that the
headers and sources of all modules are located in the sub-folders include (headers) and
src (sources). The entities relevant for this project are the same as for project 0 and 1,
with the following additional ones.

Representing II|p The class SyntacticProjection implements a ClassicalTask that is
the syntactic projection II|p of another ClassicalTask II with respect to a pattern P.
Beyond implementing the ClassicalTask interface, it provides the methods compute_index
and get_state_for_index, which can be used to map the states of the syntactic projection
to unique indices in {0,...,|S| — 1} and vice versa. This is useful for storing states of the
projection as indices. The method get_num_states also provides access to the number of
states in the projection.

Computing maximum cliques The function max_cliques: :compute_max_cliques com-
putes the maximal cliques in a graph. It is only relevant for the cliques heuristic hC.

https://fai.cs.uni-saarland.de/ai23/project-software-doc/classpdbs_1_1_syntactic_projection.html
https://fai.cs.uni-saarland.de/ai23/project-software-doc/group__downward.html#ga1d0c6cb83d6c985f771bd6ea9c25db16

General Utility There are two utility functions which you can use to check if an action
is applicable in a state, or if a state is a goal state.

3 Implementation

To implement the heuristics, you need to complete the implementations of the classes
PDBHeuristic, which represents h”, and CliquesHeuristic, which represents h¢. These
classes are defined in the heuristics directory of the classical planning module, namely
inside the files pdb_heuristic.{h,cc} and in cliques_heuristic.{h,cc}, respectively.

To solve the tasks, you may edit the header and source files pdb_heuristic.{h,cc}
and cliques_heuristic.{h,cc} how you see fit, as long as the implementation classes
PDBHeuristic and CliquesHeuristic remain and already provided members are not re-
moved and their accessibility is not changed. You may additionally add your own files to
the students module, in case this is needed (see main page of the software documentation
for details). All other changes will be discarded on our test server.

3.1 Implementation of h” (20 Points)

Before implementing h¢, consider h* first. The class PDBHeuristic receives the pattern P
in its constructor. In the constructor (!), you shall compute a lookup table that associates
each abstract state s of the syntactic projection II|p with its perfect heuristic value h*(s)
in the syntactic projection. To enumerate the abstract states of II|p, the helper class
SyntacticProjection will prove useful. To compute the lookup table, proceed in two steps.

As a first step, reduce the problem of computing h* for II|p to a regression search. The
idea is to start the regression from the abstract goal states and compute their minimum
distance to all other abstract states. To this end, construct a weighted directed graph
G = (V, E) similar to the transition system of II| p, but with edges that go into the opposite
direction. We call this graph the regression graph. The vertices V' of this graph are the
abstract states S of the syntactic projection. The edge relation is defined by E = {(s[a], s) |
s € S,a € A(s)}, and the edge weights are specified by w(s[a], s) = c(a).

After constructing the regression graph, use Dijkstra’s algorithm on G to compute the
minimum distance from the abstract goal states to every abstract state of the problem,
which will effectively compute a lookup table for h* of II|p. While Dijkstra’s algorithm
usually assumes a single source state, you can extend it to multiple source states by initial-
izing the search queue with the full set of abstract goal states and initializing the distance
table entry for all abstract goal states states to 0.

After computing the lookup table in the constructor, store it so you can access the
h* values of the abstract states during computation of the heuristic. Next, you must im-
plement the inherited method int Heuristic::compute_heuristic(const State& s), which
shall return h¥(s) = h*(s|p) for the input state s. Here, you must first translate s to the

https://fai.cs.uni-saarland.de/ai23/project-software-doc/group__utilities.html

abstract state s|p, before you look up the perfect heuristic value for s|p in the previously
constructed lookup table.

Remarks We require you to implement the lookup table computation for A* of the
projection in the constructor of the PDBHeuristic, as the lookup table shall be computed
only once. Constructing the lookup table in the compute_heuristic method will re-compute
the lookup table each time a new state is evaluated, which is extraordinarily inefficient and
will lead to timeouts in our tests.

3.2 Implementation of h¢ (5 Points)

After implementing k¥, turn to h¢. The class CliquesHeuristic has a constructor that
receives the set of patterns C as a parameter. In the constructor (!), you should first
compute the lookup tables for every pattern and store them for the heuristic computation.
To this end, you can reuse your code from the previous implementation. Furthermore,
compute the maximal cliques cliques(C) of the combinability graph of C and save them
for later. To this end, use the helper function max_cliques::compute_max_cliques, which
receives a graph in a specific format as input and computes the maximal cliques in this
graph.
Afterwards, implement the inherited method int Heuristic::compute_heuristic(const
State& s), which shall return h¢(s) := MaX pecliques(C) 2o PeD h*(s) for the input state s.

Remarks Once again, we require you to implement the lookup table computations, as
well as the maximal clique computation in the constructor of the class, so that everything is
precomputetd once. Construction in the compute_heuristic method will be extraordinarily
inefficient and will lead to timeouts in our tests.

4 Grading

The implementations are evaluated using public tests, which you may execute and inspect
at any time, and daily tests which run at least once per day when you push a change to
your repository. In order to obtain points for a heuristic, you need to pass all public tests
for it. If that is the case, you will receive points for your implementation according to the
ratio of daily tests you passed, i.e. if you pass 20% of the daily tests for h” (and pass all
public tests), you receive 20% * 20 = 4 points.

The deadline for this project is December 22nd, 23:59. We will use the last revision
that was committed before the deadline in the main branch of your repository as a basis
for grading.

5 Running the Public Tests

All public tests of all projects reside in the tests/public subfolder of the repository.
The tests of this specific project are located in the subfolder heuristic_tests, and are
implemented in the files pdb_tests.cc and cliques_heuristic_tests.cc.

All public tests are located in the tests module, which is split up into an include
and src directory, like all other modules. The tests of this specific project are located
in the subfolder src/tests/heuristic_tests, specifically in the files pdb_tests.cc and
cliques_heuristic_tests.cc. The public tests for both heuristics evaluate your heuristic
implementations on example states for a sample planning task and check whether the result
matches the correct heuristic value for that state. The five sample problems used in the
public tests are documented on our documentation page and reside in the tasks subfolder
of the tests module.

Inside Visual Studio Code, all public tests defined by the project should be listed in the
test panel after refreshing the panel. From here, you can run individual tests by clicking
on the run button of a test, or run multiple tests at once. You can also debug specific tests
from here, so that the program halts at the breakpoints you set in your implementation or
in the public tests.

Alternatively, you can run the public tests from the command line via the test script
run_tests.py. To this end, run either .\run_tests.py -f PDBHeuristic for the A’ tests,
or .\run_tests.py -f CliquesHeuristic for the h¢ tests from a terminal which has the
project root directory as the current working directory. To list tests instead of running
them, append the -1 option. To run only the test test_name, run .\run_tests.py -f
test_name. To show verbose output, including printouts for tests that pass, specify the
option -v.

	Obtaining the Project
	Relevant Files
	Implementation
	Implementation of hP (20 Points)
	Implementation of hC (5 Points)

	Grading
	Running the Public Tests

