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This project specification is contained in six documents. This document contains the overview of 
the project. (You should start here.) Please see other accompanying PDFs for detailed specifications 
and tasks for each of the five tasks (“Part 1” through “Part 5”) of the project. 
 
1. Introduction 
In this project, you will design, implement, simulate, and synthesize a hardware system for 
performing matrix-vector multiplication, where the matrix is dense, and the vector is sparse. This 
is called “matrix-sparse vector multiplication,” which we will abbreviate as MSpVM. You will 
turn in: 

- your documented and commented code 
- clearly labeled synthesis reports  
- a report answering all questions and including requested information 

 
I will run additional simulations on the code you turn in, so it is very important to: 

1. Make sure your designs simulate correctly using QuestaSim on the lab computers or the 
CAD servers. 

2. Carefully organize your code as specified in this document. 
3. Make sure the names and behavior of all signals match this specification exactly. 
4. Carefully label and document your code. 

 
Your project will be evaluated on correctness and efficiency of your design, the quality of your 
report, and your answers to questions in the report.  
 
You may work alone or with one partner on this project. You may not share code with others 
(except your partner).  This means you may not allow others to see your code, nor may you 
read others’ code (for this or related projects). All code will be run through an automatic 
code comparison tool. Plagiarism will result in a score of zero on the assignment for all 
involved parties. If you have questions as to what is acceptable, please come to office hours or 
send Prof. Milder email to ask for clarification. 
 
If you have general questions about the project, please post them Piazza. 

File Organization 
This project is broken into five parts. To make it possible for me to grade and understand your 
work, please carefully organize your files. Use a separate sub-directory for each part (called 
part1/ part2/ part3/ part4/ and part5/). Then be sure to name your files and modules as 
specified in the description below. Make sure all your files are stored inside of a private work 
directory like the ese507work directory you made in the HW2 Tool Tutorial. 
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Point Breakdown 
1. Part 1: Multiply-Accumulate Unit [15 points] 
2. Part 2: Output FIFO [15 points] 
3. Part 3: Input Memory Module [20 points] 
4. Part 4: Matrix-Sparse Vector Multiplier (MSpVM) [25 points] 
5. Part 5: Throughput Optimization [20 points] 
6. Quality of report, code, comments, and organization [5 points] 

 

Getting Started 
As you can see, this project is large and complex. This document provides a high-level overview 
and some important background information. Then, the accompanying documents give the 
specification and tasks for each of the five parts of the project. Begin by carefully reading this 
overview, and then you should spend some time looking through Parts 1–5. Then when you are 
ready to start working, see the Part 1 document. 

2. Partner 
You may work alone or in a team of two students for this project. If you choose to work with a 
partner, it is important that both partners contribute fully to all phases of the project. Your report 
will require you to describe each partner’s contribution to the project. Unequal contributions may 
be reflected in scoring. 
 
If you are choosing to work with a partner, by Monday 10/2 at 11:59pm you must: 

• Send an email to peter.milder@stonybrook.edu with the subject “ESE 507 Project Partner 
Signup” 

• Send the email from your @stonybrook.edu email address 
• In the body of the email, write both your name and your partner’s name 
• CC your partner on the email (using your partner’s @stonybrook.edu email address) 

 
After this, you are committed to work with this partner on this project for the entire semester.  

3. Background 

3.1 Matrix-Vector Multiplication 
We first begin by reviewing matrix-vector multiplication. As an example, let W represent a square 
3´3 matrix, and let x represent a (column) vector of length 3. The product y = W x is defined as: 
 

 
 
So, this system takes in 12 values (the 3´3 matrix W3 and the 3´1 column vector x) and produces 3 
values (3´1 column vector y).  
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We can also use array notation and represent this operation as computing (for m = 0,1,2): 
 

 
 
So, each output value y[m] is computed by multiplying and adding the appropriate values of the 
matrix W and input vector x. 

3.2 Matrix-Vector Multiplication with Generalized Dimensions 
In this project, you will consider matrix-vector multiplications parameterized by the matrix and 
vector dimensions. Specifically, let W be a matrix with M rows and N columns, let x represent a 
column vector of length N, and let y represent a column vector of length M. Then we can represent 
this operation as: 
 

 
 

Or, in array notation: 

 
 

Or, in pseudocode: 
 

for m = 0 ... M-1: 
   y[m] = 0 
   for n = 0 ... N-1: 
      y[m] += W[m][n] * x[n] 

 
Computing each of the M values in y requires performing N multiplications and summing up their 
results. In total, this requires MN multiplications and M(N–1) additions. 
  
In this project, M and N will be parameters of your hardware system. That is, you will design a 
system in SystemVerilog that has parameters M and N which can be changed in the code.  

3.3 Matrix-Sparse Vector Multiplication (MSpVM) 
We say a matrix or vector is considered sparse if many of its elements are equal to 0. If a 
matrix/vector is not sparse, we call it dense. Sparse data occurs in a very wide number of 
applications in science and engineering such as solving partial differential equations, circuit 
simulation, graph theory, and machine learning. Often, these applications operate on very large, 
very sparse matrices. In this project, you study a simpler (but useful) variation of this problem: 
multiplication of a relatively small dense matrix with a sparse vector. Specifically, this problem is 
inspired by recent research on sparsity in transformer networks (e.g., GPT), which are commonly 
used in natural language applications such as chatbots.  
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We will use D to denote the number of non-zero entries in vector x. (Necessarily, 1 ≤ D ≤ N.) Here 
is an example of MSpVM of a dense 3x4 matrix with a sparse vector that has two non-zero entries. 
(That is, M=3, N=4, and D=2.)  

 
 
Notice how we can skip computations related to the entries of x that are equal to 0 since they cannot 
contribute to the result.  
 
When working with sparsity, we use a sparse encoding to represent sparse data. This will allow us 
to compactly represent the non-zero parts of the vector without keeping storing all of the 0s, and it 
will allow us to build hardware that only performs arithmetic on the non-zero portions of the data.  
 
To do so, we will use a simple format based on Compressed Sparse Column (CSC) encoding1 to 
represent our sparse input vector x. In this encoding, only the non-zero entries of the vector are 
stored, but alongside of each value, we must store which row that it belongs to. For example, we 
would store the value of x in the example above as val = [4, 3] and row = [0, 3]. So, this 
tells us that the value 4 is in row 0, the value 3 is in row 3, and all other values are 0. 
 
As another example, if N = 10, and x is represented by val = [1, 2] and row = [5, 9], then this 
corresponds to a column vector with values [0, 0, 0, 0, 0, 1, 0, 0, 0, 2] (and D=2). 
 
Compressing our sparse vector in this way obviously can make it smaller (if D is small), but it has 
another benefit: it allows hardware or software to perform computations while skipping the 0 
entries. In pseudocode (where the matrix has M rows and N columns, and the vector, which has D 
non-zero entries, is encoded in the sparse formatted described above): 
 

for m = 0 ... M-1: 
   y[m] = 0 
   for d = 0 ... D-1: 
      n = row[d] 
      y[m] += W[m][n] * val[d] 

 
To make sure you understand this pseudocode, it is useful to work out the 3x4 example given above 
(where val = [4, 3] and row = [0, 3]).  
 
Recall from above that a dense matrix-vector multiplication requires MN multiplications and M(N–
1) additions. Now, we can see that with a sparse vector with D non-zero entries, MSpVM requires 
only MD multiplications and M(D–1) additions. If D is much smaller than N, this is a large 
reduction in the number of computations to perform. (E.g., if N = 1000 and D = 10, you have 
eliminated 99% of the computation.) 
 
Your goal in this project is to build a hardware system that computes the product of a dense MxN 
matrix with a sparse vector. Your SystemVerilog code will be parameterized (using SystemVerilog 

 
1 When applied on matrices (instead of vectors), the CSC encoding is slightly more complex than this; 
in this project we simplify the representation because only our vector is sparse. 
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parameters) to allow the values of M and N to be easily changed in the code. The value of D will 
vary based on the vector you give your system as input. The following section introduces the 
specified structure of the design, its parameters, and the protocols it uses for input and output. Your 
system will take in a stream of values that represent a matrix and a sparse vector, compute the 
MSpVM, and output the result vector. Then your system will take in new inputs and repeat the 
process.  

4. High-Level Project Overview 
The goal of your project is to build a hardware system for MSpVM—that is, multiplications of 
dense matrices with sparse vectors. Figure 1 illustrates the top-level module and port specifications 
of the system. On the left are five signals whose names start with INPUT_T. These signals form an 
AXI-Stream interface that your system will use to receive input data. On the right there are three 
signals whose names start with OUTPUT_T. These from another AXI-Stream interface you system 
will use to transmit output data. A specification of the AXI Stream protocol for the inputs and 
outputs is provided in Section 5 below. There are also clk and reset signals. Assume reset is 
asserted high and synchronously applied. 
 
 

 
 

Figure 1. Top-level Design and Port Specifications. 
 
 
Figure 2 illustrates a high-level block diagram of the system you will construct. Each of the 
components will be specified and described in more detail in the following sections. 
 

 
 

Figure 2. High-Level Block Diagram 
 

• Your system will take as input a stream of data in AXI-Stream format that represents a  
matrix and a sparse input vector. (The sparse vector is encoded as described in Section 3 
above.) Your system will perform a MSpVM of these and produce the result as output. The 
system’s output values will be provided in AXI-Stream format. (The AXI-Stream protocol 
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and its use are described below in Section 5.) After completing a MSpVM, your system 
will accept a new set of inputs to compute. (In other words, your system will keep 
computing matrix-sparse vector products as long as new inputs are provided.) 
 

• A multiply-accumulate (MAC) unit will be used to perform the individual multiplications 
and additions needed for the matrix-vector product. A MAC operation computes: 

 
f += a*b 

 
Take note of how this is the fundamental operation used in the matrix-vector produce 
pseudocode described above. The MAC unit is Part 1 of the project, and it is described in 
the Project Part 1 document. 
 

• As the MAC unit computes values of the output vector, it places them in the Output FIFO 
module, which is Part 2 of the project. The Output FIFO module will buffer the values and 
output them from your system in AXI Stream format. This module is described in the 
Project Part 2 document. 
 

• Your system will also require input memories to store the matrix and vector values while 
the system performs the computation. These are stored in the Input Memory module, which 
is Part 3 of the project. This module will include a memory for the matrix, a memory for 
the vector, and necessary control logic. You can read more about this in the Project Part 3 
document. 
 

• The goal of Part 4 of the project will be to integrate the three components from Parts 1–3 
and design accompanying control logic that will allow the components to work together to 
perform the full matrix-sparse-vector product. The control logic will be responsible for 
coordinating the operation of the input memories, MAC unit, and output memories. You 
can read more about Part 4 in the Project Part 4 document. 
 

• Lastly, the goal of Part 5 of the project will be to optimize the speed of the system. Please 
see the Project Part 5 document. 
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Parameters 
Rather than building hardware for a specific matrix size, you will design a parameterized system 
to allow flexibility in the matrix/vector dimensions and in the number of bits used for input and 
output values. This means that it will use the following SystemVerilog parameters: 
 

• M: the number of rows of the matrix and rows of the output vector. Your system must 
support M ≥ 2.  

• N: the number of columns of the matrix and rows of the input vector. Your system must 
support N ≥ 2. 

• INW: the input bit width (the number of bits used per value in the input matrix and input 
vector). Your system must support 2 ≤ INW < 32 bits. 

• OUTW: the output bit width (the number of bits used per value in the output vector). Your 
system must support 4 ≤ OUTW ≤ 64.   

o OUTW must also be large enough to prevent overflow. Please see explanation in the 
Project Part 1 document.  

 
There is no defined upper bound on the limit of M and N, but as they get larger, the simulation and 
synthesis time will grow.  

5. AXI-Stream Input/Output Protocol 
Your system will use a slightly simplified version of ARM’s AMBA AXI4-Stream protocol. (We 
will refer to our simplified version in this document as AXI-Stream or AXIS for short.) 
 
AXI-Stream is shown in its simplest form in Figure 3. It is a synchronous protocol (meaning both 
sides share a common clock) that allows a transmitter2 module to transfer data to a receiver when 
both sides “agree.” 
 

  
Figure 3. Simplified AXI-Stream protocol signals 

 
The transmitter asserts the TVALID signal when it has placed valid data on the TDATA signal. The 
destination asserts the TREADY signal when it is capable of consuming that data. On any positive 
clock edge, data is transferred if (and only if) both the TVALID and the TREADY signals are asserted. 
(No data will ever be transferred unless both are asserted.) TVALID and TREADY are 1-bit signals, 
while TDATA is multiple bits.  

 
2 In earlier versions of the AXI standard, the transmitter was called a “master,” and the receiver 
was called a “slave.” This terminology was changed to “transmitter” and “receiver” in ARM’s 2021 
standard, although you will still see the older terms used in some places and CAD tools. 
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Note that both source and destinations modules must share a common clock. We will call this 
collection of signals (TVALID, TREADY, and TDATA) an “AXI-Stream interface.” Figure 4 and Table 
1 illustrate this functionality and timing. In this example d[0], d[1], etc., represent the data words 
transmitted. 
 
 

 
 

Figure 4. AXI-Stream data transfer timing example. 
 
 

cycle # TVALID TREADY Explanation 
1 0 0 Neither valid nor ready; nothing is transferred 
2 1 0 Transmitter puts data on TDATA signal and 

asserts TVALID. However, receiver module 
hasn’t asserted TREADY so no data is transferred 

3 1 0 Receiver module is still not ready (TREADY==0) 
so no data is transferred 

4 1 1 Transmitter module is now ready 
(TREADY==1), so it receives data d[0].  

5 1 1 Since d[0] was transferred on the previous 
clock edge, the transmitter now changes the 
data to the next word. This word is transferred 
immediately. (Since TVALID and TREADY are 
still asserted.) 

6 1 1 This has the same logic as cycle 5. Data word 
d[2] is transferred. 

7 0 1 Now, the transmitter has de-asserted TVALID. 
The destination module does not read anything 
(regardless of what the source module has 
placed onto TDATA). 

8 1 0 The transmitter has asserted TVALID but the 
receiver has de-asserted TREADY. Nothing is 
transferred here. 

9 1 1 Both TVALID and TREADY are asserted, so the 
receiver reads d[3] from TDATA. 

 
Table 1. AXI-Stream data transfer timing example. 

clock

TVALID

TREADY

TDATA

1 2 3 4 5 6 7 8 9

x d[0] d[1] d[2] d[3]
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The interaction of the TVALID and TREADY signals is called a handshake. Think of asserting 
TVALID as the transmitter holding out a hand; think of asserting TREADY as the receiver holding 
out a hand. If both sides hold out their hand, then they shake hands and agree that a data transfer is 
complete.  
 
In our simplified AXI-Stream protocol, the transmitter is not permitted to wait until TREADY is 
asserted before asserting TVALID, and the receiver is not permitted to wait until TVALID is asserted 
before asserting TREADY.3 In other words, both the transmitter and the receiver need to decide 
independently whether to assert their signal. (Then at the positive clock edge, they each check to 
see if the other side has asserted theirs.) 

Additional AXI-Stream Signals 
In addition to TDATA, TVALID, and TREADY, the AXI-Stream protocol includes several other 
control signals. In this project, you will use two of them: TUSER and TLAST, shown in Figure 5. 
 

 
Figure 5. AXI-Stream signals including TUSER and TLAST. 

 
• TUSER is a multi-bit signal that transmits “sideband data” from the transmitter to the 

receiver. Think of this as extra information that we transmit alongside of TDATA. This 
signal is controlled in exactly the same way as TDATA: Anytime TREADY and TVALID are 
1 on a positive clock edge, then the information on TUSER is also transmitted.  
 

• TLAST is a 1-bit signal that the transmitter can use to indicate that the currently transmitted 
data is the end of a transfer. Like TDATA and TUSER, this signal will be ignored except 
when TREADY and TVALID are asserted on a positive clock edge. 

Output Stream 
Your system will utilize TDATA, TREADY, and TVALID for its output. (For output data, you will not 
use TUSER or TLAST.) Your Output FIFO module (Part 2) will serve as the transmitter. When you 
simulate, the testbench will be the receiver for this output data. (In a real system, the receiver would 

 
3 One small difference between the full AXI-Stream protocol and our simplified version is that in the 
complete AXI-Stream Protocol, the receiver may choose to wait until TVALID is asserted before 
asserting TREADY, although we will not allow it in our project.  
 
Another difference between our simplified AXI-Stream and the full protocol is that in the full protocol, 
once the transmitter asserts TVALID, it must keep it asserted until the handshake occurs; we will allow 
it to be de-asserted at any time. 
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be whatever component your system connects to.) So, your Output FIFO will have outputs TDATA 
and TVALID and input TREADY. The testbench will have inputs TDATA and TVALID and output 
TREADY. 

Input Stream 
Your system’s input interface will use all five signals (including TUSER and TLAST). Your Input 
Memory module (Part 3) will serve as the receiver. When you simulate, the testbench will be the 
transmitter for this input data. For details about how the input data are provided in this stream, and 
how TUSER and TLAST are used to transmit sparse vectors, please see the Project Part 3 document. 

6. Code and Report Submission 
5 points will be awarded based on the quality of your code, comments, and report. 
 

1. Code 
For your code and synthesis reports, you will turn in a single .zip, .tar, or .tgz file to 
Brightspace. Do not use a different archive format (e.g., .rar). Seriously, please do not 
use any archive format except .zip, .tar, or .tgz or you will lose points.  
 
This compressed file should hold all of the code and synthesis reports from your project, 
organized into part1/ through part5/ directories. I will be testing your designs using 
my testbenches, so it is very important that your code sticks to the specification closely. I 
will test your designs using the ECE grad lab computers so make sure everything runs 
correctly there. 

 
Do not turn in things like QuestaSim “work” directories or gate-level Verilog produced by 
synthesis. Please only submit your actual code. 
 

2. Synthesis Reports 
Include the DesignCompiler synthesis report (in plaintext format) for each design you 
synthesized. These should be included in the .zip, .tar, or .tgz archive file mentioned above. 
Make sure these reports are clearly labeled. Please include them in the appropriate part1/ 
part2/ part3/ part4/ or part5/ directory. 

 
3. Report 

Please organize your report neatly. Use headings to separate it into Part 1, Part 2, Part 3, 
Part 4, and Part 5. Each part of the project will have a numbered list of questions you should 
answer. In your report, please use the same numbering to make it easier to find your 
answers. (In other words, number your answers to match the questions in this assignment.) 
 
In addition to the code submission, your report should be submitted (as a PDF file only) 
alongside of your.zip, .tar, or .tgz archive. (Please include the PDF report separately from 
the archive.) If you worked with a partner, make sure you answered the questions in 
each Part where you are asked to explain each partner’s contribution to the project. 
(If you worked alone obviously you can skip this.) 

  
4. Electronic Hand-in Process 

To hand in your code, go to Brightspace à Assignments à Project.  There you can upload 
your .zip, .tar, or .tgz file and your PDF report.  Only one partner should hand in for 
the group, but make sure both partners’ names are clear in your code and report. 
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To create a .tgz file in Linux, first assemble a hand-in directory with copies of all of your 
code, etc.  For this example, let’s assume that directory is called handin/.  Now, assuming 
you are one directory above handin/, type the following: 

 
  tar cvzf myhandin.tgz handin/  
 

This will create a gzipped-tar file (.tgz) that contains the entire handin/ directory 
(including all of its contents). 

 
You can test that it worked properly by copying the .tgz file you created to another 
directory, and typing: 

  tar xvzf myhandin.tgz 
 

This will extract the file into the directory you are currently in.  If you have any problems 
with this or anything else, please post them on Piazza.  
 

Please, only use .zip, .tar, or .tgz files for your archive, and use PDF for your report. If you use 
other formats, I will be unable to open your work on the lab computers, and you will lose points. 
Your code archive should only contain your code and your synthesis reports with clearly labeled 
names. Please do not submit the testbenches that were provided to you or other things like 
QuestaSim “work” directories or gate-level Verilog produced by synthesis. 
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Part 1: Multiply-Accumulate Computation Unit [15 points] 
Multiply and accumulate (MAC) is a basic operation used commonly in many different types of 
computations.  MAC is defined as 

f  = f + a*b, 
 
where a and b are inputs to the system and f is the output. Notice how the MAC operation is used 
in matrix-vector multiplication; as seen in the MSpVM sudocode (see also Section 3 Project 
Overview): 
 

      y[m] += W[m][n] * val[d] 
 
 
Your MAC module will have the following ports: 
 

 
 

Figure 1.1. Top-level view of MAC unit’s input and output ports 
 

• Input signals in0 and in1 correspond to a and b in the equation above. Each will be signed 
values that are INW bits wide (where INW is a parameter in your SystemVerilog module). 
 

• 1-bit input signal valid_input will be used to tell the module when a new valid set of 
in0 and in1 are provided on the input ports. The MAC unit will use the valid_input 
signal to determine when it should update the value of its internal accumulator register. 
 

• Input signal clear_acc is used to clear the accumulator register that stores the value of 
the output. This is used to begin a new calculation. 
 

• The output signal out corresponds to f in the equation above. This will be a signed value 
with OUTW bits (where OUTW is a parameter in your SystemVerilog module). 
 

Obviously, a hardware system that performs this operation will require feedback because f depends 
on the previous value of f. (This is called “accumulation.”) The f value will be stored on a register 
called the accumulator.  
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Your first task will be to implement and test a single-cycle unpipelined version of the MAC unit 
that looks like this: 
 

 
Figure 1.2. Unpipelined MAC unit. 

 
Clock and reset signals are omitted in this figure but will be needed in the design.  Assume that 
in0 and in1 are each INW-bit signed values. The output of the multiplier is a 2*INW bit signed 
value, and the output signal and the adder output are signed OUTW bit signals. Assume the reset is 
positive-asserted (that is, when reset==1, the registers reset to 0). Assume the register resets 
synchronously—it resets when the reset signal is equal to 1 on a positive clock edge. (This will be 
true of all registers in your project.) 
 
The accumulator register has two synchronous control inputs—clr and en. When clr is asserted 
on a positive clock edge, the register clears to 0. Otherwise, when en is asserted on a positive clock 
edge, the value on the register’s input is stored. These two control inputs can be connected directly 
to the module’s clear_acc and valid_data signals, respectively.  
 
Overflow can occur when the result of an arithmetic operation cannot be represented using the 
allotted number of bits. Larger values of OUTW will allow the system to accumulate more values 
without overflowing. For example, you can tell that an adder has overflowed if: 

- you add two positive values and get a negative answer, or 
- you add two negative values and get a positive answer.  

 
In this module, overflow can happen if the sum being calculated by the adder grows too large to fit 
in the OUTW bits available. In the case of overflow, your system should simply preserve the bottom 
OUTW bits of the value. (That is, if the adder overflows, you don’t need to do anything special—just 
let it overflow.) 
 
Store all of your files for part1 in a subdirectory called part1/ and please make sure to use the file 
names and module names specified below.  
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Part 1.1: Your first task for Part 1 is to implement this system, simulate it, and synthesize it, finding 
the maximum clock frequency. Details about our provided testbench are below.  
 
Implement this design in a file called mac_unpipe.sv and use the following top-level module 
name, port names, and port declarations: 
 
module mac_unpipe #( 
        parameter INW  = 16, 
        parameter OUTW = 64 
    )( 
        input signed [INW-1:0]         in0, in1, 
        output logic signed [OUTW-1:0] out, 
        input clk, reset, clear_acc, valid_input 
    ); 
 
It is very important that your module matches this input/output specification exactly, or it will 
fail the tests our testbench performs.  
 
Simulate your design with a variety of parameter values using the testbench as described below. It 
should pass simulation for 2 ≤ INW < 32 bits and 4 ≤ OUTW ≤ 64. (Obviously, you don’t want to 
exhaustively check all possible combinations of these, but you should try several combinations and 
check the extreme values.)  
 
Part 1.2: Your second task for Part 1 is to pipeline this system by inserting a register between the 
multiplier’s output and the adder’s input, as shown in Figure 1.3. If pipelined correctly, you will be 
able to reach a higher clock frequency because the pipeline register splits up the critical path. See 
Topic 7 of our class for a more comprehensive discussion of pipelining. In your full matrix-vector 
multiplier (which you will create in Part 4), you will use this pipelined MAC unit (Figure 1.3). 
 
 

 
 

Figure 1.3. Pipelined MAC unit (but the accumulator’s enable signal is not fully specified) 
 
In your pipelined system, assume that clear_acc causes both the accumulator register and your 
new pipeline register to clear to 0.   
 
Notice that this diagram doesn’t show how the accumulator’s enable signal is controlled. One small 
challenge here is that the enable becomes slightly more complex. You can no longer directly 
connect valid_input to the enable like in the unpipelined design, because it now takes longer 
for data to get from in0 and in1 to the register’s input. Think carefully: how should your system 
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generate the new enable signal for the accumulator register? (Hint: it needs only one small 
additional component.) 
 
Implement this design in a file called mac_pipe.sv and name the top-level module mac_pipe. 
Otherwise, use the same parameters and port declarations as in the unpipelined version. 
 
Simulate your design with a variety of parameter values (like in Part 1.1) using the testbench as 
described below.  

Testbench 
You are provided with a testbench to test both mac_pipe and mac_unpipe. The testbench uses a 
parameter to choose whether you are simulating the unpipelined or the pipelined MAC. This 
testbench has a SystemVerilog module and an accompanying C program that the testbench runs via 
DPI.  
 
You can find the testbench in the following two files: 

/home/home4/pmilder/ese507/proj/part1/mac_tb.sv  
/home/home4/pmilder/ese507/proj/part1/mac_tb.c 

 
Copy these files into your part1/ work directory where your Part 1 designs are. 
 
Before you use it, please read the following brief explanation of how the testbench works. Then 
read through the testbench files and read the comments.  
 

• I recommend beginning by reviewing slides 28–33 of the Topic 5 slides, which cover a 
testbench with a similar structure. 
 

• The testbench has four parameters. Setting the INW and OUTW parameters in the testbench 
will set the corresponding parameters in the MAC module. These are used when the 
testbench instantiates your mac_pipe or mac_unpipe module.  
 
The TESTS parameter chooses the number of random tests to run.  

 
The PIPELINED parameter tells the testbench whether to use your unpipelined design (if 
PIPELINED==0) or your pipelined design (if PIPELINED==1). Make sure you set this 
parameter to 0 when simulating mac_unpipe and set it to 1 when simulating mac_pipe. 

 
• The testbench uses a SystemVerilog class called testdata to hold one cycle of randomly 

generated test data. When a testdata object is randomized, it randomly chooses values 
of in0, in1, valid_input, and clear_acc.  
 

• The C program contains two functions which simulate the expected behavior for both 
versions of the MAC. After generating a cycle of random test data, the testbench will call 
the appropriate C function to determine the expected result. Then, it checks that the 
simulated MAC output matches the expected output. 
 

• Recall that it is possible for the MAC’s accumulator to overflow if its value grows too 
large. The testbench accounts for this by simulating the overflow behavior in the expected 
results. In other words, if your inputs will make the MAC overflow, the testbench will 
expect it to overflow and check that it overflowed to the expected value. 
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Since your design is parameterized, you need to run several simulations to check that it works for 
different parameter values. For example, imagine that you want to simulate several different values 
of parameters INW and OUTW. You could manually edit the testbench file to set the parameters, save 
the file, run the simulation, and then repeat for different parameters.  
 
However, there is one useful trick to make this easier—it is also possible to set those values at the 
command line when you run vsim. The following example will show how to do that. 
 

• First compile the code. For the unpipelined design: 
 vlog -64 +floatparameters +acc mac_tb.sv mac_tb.c mac_unpipe.sv    
  

or for the pipelined design: 
 vlog -64 +floatparameters +acc mac_tb.sv mac_tb.c mac_pipe.sv    
 
 (If your design uses any other .sv files, include them here also).  
 
 Or if you just want to compile all the .sv files in your directory, you can run 

vlog -64 +floatparameters +acc mac_tb.c *.sv 
 

The +floatparameters option is necessary for QuestaSim to allow you to give 
parameter values at the command line when you run vsim. 

 
• Then, you can run QuestaSim and set the parameters from the command like this: 

vsim -64 -c mac_tb -G INW=11 -G OUTW=44 -G PIPELINED=0  
-sv_seed random -do "run -all; quit" 

 
o -64 is necessary for the testbench to use DPI, which is required in this testbench. 

You will need to use -64 each time you run vlog or vsim using this project’s 
testbenches. 
 

o -c will run QuestaSim in command line mode. If you want to use the GUI to view 
waveforms, omit -c 
 

o The parts that start with -G like -G INW=11 are used to set values of mac_tb’s 
parameters. The example above shows how to simulate with INW=11, OUTW=44, 
and PIPELINED=0. Change these values to match the simulation parameters you 
would like. 

 
§ Alternatively, you could choose to edit the parameters in the module in 

mac_tb.sv and then skip all the -G parts of this command. 
 

o The -sv_seed random flag is used to initialize QuestaSim’s random number 
generator, so you will get different random behavior each time you run it. When 
you simulate with this, the simulation will start by showing you the random seed 
it chose in a line that looks like the following (although obviously the number will 
be random) 

# Sv_Seed = 1896683400 
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If you would later like to re-create this exact random behavior, you can run vsim 
with -sv_seed 1896683400  
(Obviously replace the number with the number from your simulation. 

 

Report and Code Submission 
After implementing and simulating both designs, complete the following tasks. In your report, 
provide the requested information and answer the following questions.  
 

1. Use Synopsys DesignCompiler to synthesize your unpipelined design with INW=16 and 
OUTW=64 for a range of different clock frequencies from slow to fast. Adapt the scripts you 
used in HW2.  
 
Rather than copying them from your Homework 2 files, please re-copy the synthesis scripts 
from 
 

/home/home4/pmilder/ese507/synthesis/scripts/ 
 
because I have updated them slightly since you completed homework 2. Don’t forget to 
configure the script with your top-level module name, clock frequency, and so on. If your 
design is uses multiple .sv files, please see the instructions in the comments on lines 9 and 
10 of runsynth.tcl. Do not include testbenches when synthesizing. 
 
Make sure you find the fastest possible frequency and save the synthesis report from that 
frequency in a plaintext file. Submit this clearly labeled synthesis report (as a plaintext file) 
with your code.  I recommend naming it mac_unpipe_synth.txt and using a similar 
filename convention for future synthesis reports. 

 
For each frequency you try, record the area, power, the critical path location, and whether 
the timing constraint was met or violated. In your report, make a table that shows this data 
for each attempted frequency. Make sure you include units on all values you report (here 
and everywhere else in the report).  
 
Make graphs that show the relationships you found between clock frequency and both area 
and power. Explain the trends that you observed and explain why they occur. (Make two 
graphs. On both, show clock frequency on the x-axis; then show area as the y-axis on one 
graph and power as the y-axis on the other.) Make sure use graphs that plot both axes 
proportionally (like a scatter graph, not a line graph). Only include the design points where 
the timing constraint is MET. 

 
For each frequency, give a description of where the critical path is. Don’t just copy/paste 
the endpoints from the synthesis report, but explain logically where the critical path lies in 
the module.  
 
It is very important that you correct any synthesis problems reported by DesignCompiler. 
If you have errors, the tool’s output will not be correct. You also must be certain to fix 
any inferred latches from your design.  
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One common synthesis warning that you can safely ignore is:  
 
Warning:  ./file.sv:182: unsigned to signed assignment occurs. 
(VER-318) 
 
If you have questions about other errors or warnings, first follow the instructions from the 
end of Topic 4 to use the “man” command in DesignCompiler to read the corresponding 
manual entries.  
 

2. Now, repeat the tasks from question 1 for your pipelined design with the same values of 
INW and OUTW. Additionally, answer the following: Did pipelining help make this module 
faster? Explain why or why not and show how this is reflected in the synthesis data and 
critical path. 
 

3. For the pipelined design with the maximum clock frequency you found, how much energy 
would your system consume if it were to process a sequence of 50 cycles of input values? 
Assume you have to wait until the final output comes out of the system.  
 
Remember: energy is measured in joules.  Power = energy per time. 1 Watt = 1 Joule / 1 
second. Use the power obtained from synthesis and your understanding of the time it would 
take for your system to fully compute 50 cycles of input values. 
 

4. Would the energy you computed in question 3 change if you change the clock frequency? 
Justify your answer. 
 

5. Make a table that compares the power, area, latency, and throughput of your pipelined and 
unpipelined MAC designs with INW=16 and OUTW=64. In your report show how you 
calculated the latency and throughput. Quantify latency in seconds (or ns), and quantify 
throughput in terms of MACs per second. (If needed, review these concepts in Topic 7.) 
Based on the trade-offs seen in your table, explain when it would make sense for a designer 
to choose the pipelined design and when it would make sense to use the unpipelined design. 
 

6. Your design is pipelined as much as possible if you assume that you cannot pipeline the 
arithmetic units themselves. However, as we saw in Topic 10, we can also use 
DesignWare’s pipelined arithmetic units, which can add pipeline stages inside of a 
multiplier. For example, you can replace the multiplier with one that is pipelined into 2, 3, 
4, 5, or 6 stages. Based on your results to questions 1 and 2, would you expect that deeper 
pipelining in the multiplier may help? Justify why or why not. If you were to pipeline the 
multiplier deeper, what other changes would you have to make in your module? Would 
pipelining the adder be a good idea? Why or why not? 
 

7. In questions 1 and 2, you always synthesized using the same values of INW and OUTW. Here, 
explore how changing those parameters affects the maximum possible clock frequency of 
your pipelined MAC module. Don’t forget: to change these parameters for synthesis, you 
should edit the default parameter values in your source code (mac_pipe.sv). 
 
a. First, set OUTW=32 and synthesize four designs with INW=8, 12, 16, and 32. For each 

one, determine the maximum clock frequency. Make a graph that shows how the clock 
frequency changes with INW. 
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b. Then, set INW=16 and synthesize four designs with OUTW=16, 32, 48, and 64. Make a 
graph that shows how the maximum clock frequency changes with OUTW. 

 
8. The MAC’s accumulator holds OUTW bits. If the value stored in the accumulator grows 

large enough, this can overflow—OUTW bits may not be enough to store the resulting 
number.  
 
Given values for INW and OUTW, we would like to find the maximum value G such that we 
can guarantee, no matter what the input values are, there is no way the accumulator can 
overflow within G cycles of inputs to the MAC unit. 
 
First, calculate the maximum value of G for INW=4 and OUTW=10. (Hint: what is the largest 
magnitude number you could produce on the multiplier’s output? Then, how many cycles 
would it take for that number to produce an overflow in the accumulator?) Don’t forget 
that our values are all signed integers. 
 
Next, derive a generalized expression for G in terms of INW and OUT.  
 

9. If you worked with a partner, please carefully describe each partner’s contribution to this 
part of the project. (If you did not work with a partner, skip this.) 

 
In your project submission, include a part1/ subdirectory that includes: 
 

• Your SystemVerilog implementations of both MAC units (mac_pipe.sv and 
mac_unpipe.sv) plus other SystemVerilog files your design uses (if any).  
 

• Clearly labeled synthesis output files for the fastest clock frequency designs you found in 
questions 1, 2, and 7. 
 

• Do not include the testbenches that were provided to you with the project, and do not 
include any unnecessary files like work/ or work_synth/ directories or other gates.v 
or other files created by our tools. Please only submit your code and the requested synthesis 
reports. 
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Part 2: Output FIFO [15 points] 
The goal of Part 2 is to build and test the Output FIFO component, whose top-level block diagram 
is seen here (Figure 2.1). 

 

 
 

Figure 2.1. Top-level view of Output FIFO module. 
 

This module has two parameters:  
• OUTW, which represents the number of bits of the FIFO’s input and output values. (This 

will be equal to the OUTW of your MAC module.) 
o Your system should support 4 ≤ OUTW ≤ 64. 

• DEPTH, which determines the number of entries in the FIFO. 
o Your system should support DEPTH ≥ 2. 

 
Note in the diagram above, the capacity signal is listed as being C bits wide; we will define C as:  
 

 
 
or in SystemVerilog code1: $clog2(DEPTH+1). If you are surprised by the +1, remember that the 
capacity can be any number between 0 (the FIFO is full) to DEPTH (meaning the FIFO is empty). 
So, it needs DEPTH+1 possible values. 
 
In your matrix-vector multiplier, the Output FIFO will be used to hold output vector values 
computed by the MAC module; they will be stored using the data_in port and the corresponding 
wr_en write enable.  
 
The FIFO’s output will connect to an AXI-Stream interface with TDATA, TVALID, and TREADY. 
(Please see Project Overview Section 5 for a specification of this interface.) 
 
You may be wondering why our system needs to use this FIFO at all. Certainly, it would be possible 
for the output vector values produced by the MAC unit to directly go to the AXI-Stream output 
interface. The downside to such a design would be that the timing of the computation would then 
depend heavily on the timing of the external TREADY control signal. In other words, if the testbench 

 
1 Recall, $clog2() will compute the log2 of its operand and round up to the nearest integer. For 
example, $clog2(32)=5 and $clog2(33)=6. 
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set the output TREADY to 0, we may have to make our computational module stall, wasting time. 
(This would also make the control logic needed to control that module more complicated.) Instead, 
by using a simple FIFO, we can prevent this from happening. As long as there is space in the FIFO, 
we can compute values and store them there; the FIFO’s internal logic can then place available 
values on the AXI-Stream output whenever the testbench is ready for them. 
 
Recall, we discussed building FIFOs in class—see the Topic 8 slides. This FIFO will behave like 
that one with one key difference: rather than having an output interface with data_out and rd_en, 
this FIFO will connect to an AXI stream interface. This means you will be responsible for 
determining how to adapt the FIFO design from class to use the TVALID and TREADY control inputs. 
Some hints: 

• The FIFO output is valid if the FIFO is not empty. Use this idea to control the TVALID 
signal. 

• The AXI-Stream interface is reading from the FIFO if TVALID and TREADY are both 
asserted on the same positive clock edge. Use this idea to determine how to set the rd_en 
signal. 

 
Your FIFO should be structured like the FIFO we described in class, with the changes needed to 
interface its output with AXI-Stream. 

Memory  
Your FIFO must use one instance of the dual-port memory structure we discussed in Topic 8, with 
synchronous reads and writes and two address ports. Use the following memory module. You can 
copy this module from: 
 /home/home4/pmilder/ese507/proj/part2/memory_dual_port.sv 
You may not modify this memory module (although you can feel free to copy/paste the code into 
another .sv file if that’s more convenient).  
 
module memory_dual_port #( 
        parameter                WIDTH=16, SIZE=64, 
        localparam               LOGSIZE=$clog2(SIZE) 
    )( 
        input [WIDTH-1:0]        data_in, 
        output logic [WIDTH-1:0] data_out, 
        input [LOGSIZE-1:0]      write_addr, read_addr, 
        input                    clk, wr_en 
    ); 
        
    logic [SIZE-1:0][WIDTH-1:0] mem; 
     
    always_ff @(posedge clk) begin 
        data_out <= mem[read_addr]; 
        if (wr_en) begin             
            mem[write_addr] <= data_in;                       
            if (read_addr == write_addr) 
                data_out <= data_in; 
        end 
    end 
endmodule 
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There are several important things to understand about this memory: 
 

• The memory is parameterized by two parameters:  
a. WIDTH, the number of bits of each word 
b. SIZE, the number of words stored in memory 

 
• The memory has a “local parameter” called LOGSIZE, which represents the number of 

address bits needed to address SIZE entries. This is automatically computed as the log2 of 
SIZE, rounded up.  
 

• All reads and writes are synchronous (that is, they will occur on a positive clock edge). 
 

• The memory has one read port and one write port, and each uses a separate address input. 
This means the memory can read and write from two independent locations at the same 
time.  
 

• The memory has “bypass logic” that means if you are reading and writing to the same 
address at the same time, you will get the new data, not the old data. This is helpful in 
FIFOs (as discussed in Topic 8). 

 
Remember, you can overwrite these parameters when you instantiate the module. For example, if 
you instantiate the memory as: 

 
memory_dual_port #(12, 256) myMemInst(clk, din, dout, wr_addr,  

rd_addr, wren); 
 
Then you would be building a memory with 256 words, each with 12 bits. 
 
Figure 2.2 demonstrates the timing of reading from the memory. On each positive clock edge, the 
system samples the value on rd_ddr. A short time after the clock edge, the memory will output 
the value in memory at that location. In this diagram, mem[7] represents the value stored in address 
7 of the memory. 

 
Figure 2.2. Timing of memory read. 

 
Figure 2.3 demonstrates the timing of writing to memory. In this example, you are first writing the 
value 3 to address 6. Then, on the following cycle, no write is performed because the wr_en signal 
is 0 on the clock edge. Then, value 4 is written to address 1 on the third positive clock edge. 
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Figure 2.3. Timing of memory write. 

 
Recall from class that this RTL memory module will not synthesize to SRAM—instead it will 
produce a structure built from of flip-flops. If these memories were large, this would be very 
inefficient. However, the memories you will need in this project will be fairly small, so we will 
simply let the logic synthesis tool implement them using registers.  

Code  
Store all of your files for part2 in a subdirectory called part2/ . Implement this design in a file 
called output_fifo.sv and use the following top-level module name, port names, and port 
declarations: 
 
module output_fifo #( 
        parameter OUTW=32, 
        parameter DEPTH=33, 
        localparam LOGDEPTH=$clog2(DEPTH) 
    )( 
        input clk, reset, 
        input [OUTW-1:0] data_in, 
        input wr_en, 
        output logic [$clog2(DEPTH+1)-1:0] capacity, 
        output logic [OUTW-1:0] AXIS_TDATA, 
        output logic AXIS_TVALID, 
        input AXIS_TREADY         
    ); 

Testbench 
You are provided with a testbench to test your output_fifo module. This testbench will 
randomly write data into the FIFO and read data from it, checking the result. You can find the 
testbench at  
 
 /home/home4/pmilder/ese507/proj/part2/output_fifo_tb.sv 
 
Copy this file into your part2/ work directory where your part2 designs are. Please read the 
testbench code and its comments.  
 
The testbench module includes five parameters. The first three are straightforward: 

• OUTW: the number of bits for each data word 
• DEPTH: the number of entries in the FIFO 
• TESTS: the number of inputs to simulate 
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The other two parameters are slightly different, because they control the random behavior of the 
testbench. 
 

• WRITE_EN_PROB is a decimal value that represents the probability that the testbench will 
attempt to write a value into the FIFO on any clock cycle. (If the FIFO is full, the testbench 
will never write data.) 

 
• TREADY_PROB is a decimal value that represents the probability that the testbench will 

assert AXIS_TREADY on any clock cycle.  
 
These parameters should be between 0.001 and 1, inclusive. For example, if you set 
WRITE_EN_PROB to 0.3, then there will be a 30% chance that the testbench will try to write a value 
into the FIFO on each cycle. If you set either of these parameters to 0, the testbench will randomly 
pick a value at the beginning of the simulation (and tell you what it chose). 
 
Adjusting the probabilities of these signals is important, and it’s especially important to test 
scenarios where the is a mismatch between them. For example, make sure you test a situation where 
WRITE_EN_PROB is small like 0.01 and TREADY_PROB is large like 0.99. This will test the situation 
where the FIFO is almost always empty—as soon as you write data to the FIFO, the testbench will 
read it. Similarly, if you reverse the parameters, then you will simulate the situation where the FIFO 
will quickly fill up with data. Run tests with different probabilities to verify your control logic 
works correctly. Also be sure you check different values of DEPTH and OUTW. Importantly, be sure 
to test the DEPTH parameter with numbers that are both powers of 2 and non-powers of 2.  
 
Compile and simulate your code similar to Part 1 (although here there is no C code to compile, 
since this testbench does not rely on DPI like Part 1 did). 
 
When you are synthesizing your design, keep in mind that this is not real SRAM. Here we are 
synthesizing a logical description of the memory, but logic synthesis will produce flip-flop based 
logic with the same logical functionality of the memory. (See Topic 8 slides.) 

Report and Code Submission 
After implementing and simulating the designs with a variety of parameters, complete the following 
tasks. In your report, provide the requested information and answer the following questions. 
 

1. The basic form of the FIFO was discussed in class, but here you needed to adapt that to 
interface its output with AXI-Stream. Explain how you did that and how your logic works. 
  

2. Synthesize the design with OUTW=32 and DEPTH=33 using Synopsys DesignCompiler. Find 
the maximum possible clock frequency. Correct any synthesis problems you find. In your 
report, give the maximum clock frequency and the area, power, and critical path location 
for this frequency. Note that the critical path location may be somewhat confusing. Make 
sure you carefully trace it so you can explain what logic the critical path includes. 
 
Here you only need to report statistics for the highest clock frequency. Save your synthesis 
report with a descriptive name and include it with your submission. 
 

3. If you worked with a partner, please carefully describe each partner’s contribution to this 
part of the project. (If you did not work with a partner, skip this.) 
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In your project submission, include a part2/ subdirectory that includes your code and your 
synthesis report. Don’t include any other files like synthesis work directories or other files created 
by the CAD tools. 
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Part 3: Input Memory Module [20 points] 
The goal of Part 3 is to construct and test the Input Memory module, which holds two memories, 
which will be used to buffer the input matrix and the sparse input vector. This module is 
parameterized by M, N, and INW. (See Project Overview Section 4 for the requirements on these 
parameters.) The following diagram shows the top-level block diagram of this module (Figure 3.1). 
 

 
Figure 3.1. Input Memory module. 

 
Internally, this module will contain control logic and two memories: one for holding the matrix W 
(called the matrix memory) and one for holding the sparse input vector x (called the vector memory) 
in the compressed sparse format described in Project Overview Section 3. On the left of Figure 3.1 
you will see an AXI-Stream input interface, which will receive the input data (a matrix and sparse 
vector). On the right of Figure 3.1 you will see vector_* and matrix_* ports. These provide an 
interface that allows the rest of your MSpVM system to read the data stored in the input memories. 
Here is a specification of each port: 
 

• AXIS_TDATA, AXIS_TUSER, AXIS_TLAST, AXIS_TVALID, and AXIS_TREADY 
collectively form an AXI-Stream interface used to load input data into the module. See 
Project Overview Section 5 for a description of AXI-Stream, and see the subsection labeled 
“Input Protocol” below for information on how this AXI-Stream interface will be used to 
load both input matrices and vectors. In your top-level MSpVM system, these signals will 
be directly connected to the top-level INPUT_T* signals (as shown in Figure 1 in Project 
Overview Section 4). 
 

• The input_loaded signal is an output that your module will use to indicate when its 
internal memories hold a complete matrix and vector. We will refer to this as the 
“input_loaded” state. That is, when your module is in the input_loaded state, this signal 
will equal 1. (Later, your top-level MSpVM system will use this signal to determine when 
it is time to begin performing the computation.) 
 

• matrix_read_addr and matrix_data are used to read data from the matrix memory. 
When your module is in the input_loaded state, then the matrix_read_addr signal will 
select an address in the matrix memory, and the matrix memory’s output will be provided 
on matrix_data. 
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• vector_read_addr, vector_val, and vector_row are used to read data from the 
vector memory. When your module is in the input_loaded state, then the 
vector_read_addr signal will select an address in the vector memory, and the memory’s 
output will be provided on vector_val and vector_row (indicating the values and rows 
for our sparse vector—see the explanation of CSC in Project Overview Section 3.3). 
 

• D is an output that indicates the D value of the vector currently stored in the vector memory. 
(Recall from Project Overview Section 3.3 that D indicates the number of non-zero values 
in a sparse vector.) We require the D output to be correct and valid anytime input_loaded 
is 1. 
 

• The done signal is an input that tells your module when it is done computing the MSpVM 
on the matrix and sparse vector values stored in memory. When done is asserted on a 
positive clock edge, your module should set input_loaded to 0 and go back to its initial 
state to begin taking in new input values. 

Input Protocol  
Matrix and sparse vector inputs will be provided to this module via the AXI-Stream interface 
signals shown on the left of Figure 3.1. Recall the discussion of AXI-Stream from Project Overview 
Section 5. Here there is some complexity, so we will break this description down into three parts: 
(a.) loading a matrix, (b.) loading a vector, and (c.) reusing an old matrix. 
 
(a.) Loading a Matrix 
When loading the matrix, your system will use the AXIS_TVALID, AXIS_TREADY, and 
AXIS_TDATA signals. If AXIS_TVALID and AXIS_TREADY are both equal to 1 on a positive clock 
edge, then your system has received data. Your system will control the value of AXIS_TREADY, so 
you must set it to 0 when the system is not “ready” for new inputs. 
 
Matrix values will be provided in row-major order. This means that the first row will be provided, 
then the second row, etc. That is, the first valid input will be W[0][0], then W[0][1], …. 
Eventually after the end of the row (W[0][N-1]), then it will go to the next row W[1][0], and so 
on. Your module must store the matrix values in the internal matrix memory in this order. 
 
This process is illustrated in Figure 3.2 for a 3x3 matrix. Note that in this example, AXIS_TVALID 
and AXIS_TREADY are both 1, so the timing is simple. However, if either of these signals were to 
become 0, then nothing would be transmitted at that time, and the system must stall.  
 
(Please also note in this figure we include a signal called new_matrix. This signal will be defined 
and explain in part (c.) below.) 
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Figure 3.2. Example of loading the matrix. 

 
(b.) Loading a Vector 
After the matrix is transmitted, then the input stream will transfer the input vector. Loading the 
vector over the AXI-Stream interface is slightly more complex for two reasons: 
 

1. We know that our vector will be stored in CSC format (see Project Overview Section 3.3.) 
This means that in addition to the values of the vector, we will also need the row indices. 
To transmit the row indices, we will use some of the bits from the AXIS_TUSER signal. 

 
We will define AXIS_TUSER as being $clog2(N)+1 bits wide.  

o Its least significant bit, AXIS_TUSER[0] will be used for a different purpose. (We 
will discuss this in (c.) below.) 

o The remaining bits, AXIS_TUSER[$clog2(N):1] will be used to hold the row 
encoding of the element of the sparse vector. In the rest of this specification, we 
will refer to these bits as row. 

 
For simplicity, I suggest you make the following assignment in your SystemVerilog 
description of this module: 
 logic [$clog2(N)-1:0] row; 
 assign row = AXIS_TUSER[$clog2(N):1]; 
 

2. We also need to deal with the fact that the length of the compressed vector will be variable. 
That is, if D is 1, then only one input element (a pair of val and row) will stream into the 
system. However, if D is 100, then 100 input elements will stream in. To deal with the 
variable length problem, we will use the AXIS_TLAST signal. When loading the vector, if 
AXIS_TLAST is 1 on any positive clock edge (where AXIS_TVALID and AXIS_TREADY 
are both 1), then this indicates that this is the last value of the vector. 

 
For example, Figure 3.3 shows an example of first loading a 3x3 matrix, then a vector 
(where D=2). The hardware system only knows the vector is done when it sees the 
AXIS_TLAST signal.  
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Figure 3.3. Example of loading a new 3x3 matrix, followed by a vector with D=2. 

 
 
(c.) Reusing an Old Matrix 
Lastly, your system has the capability of remembering the previous matrix, rather than loading a 
new matrix. This can allow operations where the system loads a matrix, and then multiplies that 
matrix with many different vectors without having to reload the matrix values as inputs. (Since the 
matrix can be large, this can save a lot of time.) 
 
To make this possible, we need to define a control bit as part of the input stream to tell the system 
when it is loading a new matrix and when it should use the old one. For this we will use 
AXIS_TUSER[0], the least significant bit of AXIS_TUSER. We will call this signal new_matrix.  
 
For simplicity, you may want to make the following assignment in your SystemVerilog description 
of this module: 

 
 logic new_matrix; 
 assign new_matrix = AXIS_TUSER[0]; 

 
The new_matrix signal only matters during the first cycle of input data transfer. That is, as your 
system begins processing inputs for a new MSpVM, it will check new_matrix on the first valid 
input cycle. If new_matrix==1 at that time, then the data represents the first value of the matrix. If 
new_matrix==0 at that time, then the data represents the first value of the vector, and the system 
will continue to use the old matrix already stored in memory from the last operation. 
 
The new_matrix signal is only meaningful during the first cycle of data transfer; at all other times, 
its value is ignored. Figure 3.3 above shows the process when new_matrix==1, so the input data 
represents a matrix and then eventually a vector. Then Figure 3.4 below shows an example where 
new_matrix==0, so the system skips reading the matrix and immediately reads a vector.   
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Figure 3.4. Example where new_matrix==0 at the time of the first input, so a new matrix is 

not loaded, and the vector immediately begins. 
 
 
Keep in mind that all transfers are done using the AXI-Stream protocol. This means that 
AXIS_TDATA and AXIS_TUSER are only transferred on positive clock edges when AXIS_TVALID 
and AXIS_TREADY are both equal to 1. Your system will set the value of AXIS_TREADY, so you 
must set it to 0 when the system is not “ready” for new inputs. 

Module Operation 
Here we will give a brief overview of this module’s phases of operation and the sequence of steps 
it will take. You must construct control logic that will make the system undergo the following steps. 
Your control logic will likely need to include an FSM and counters. The following phases are not 
necessarily the only FSM states your system will use, but you should use them as a guide for how 
your control logic for this module should operate.  
 

1. Input Matrix: In this phase, the module will take in matrix data via its AXI-Stream input 
interface. This data will be stored in the matrix memory. This phase is complete after the 
entire matrix is loaded. This step will be skipped if new_matrix is 0. (See “Input Protocol” 
subsection above.) 
 

2. Input Vector: In this phase, the module will take in sparse vector data via its AXI-Stream 
input interface. The data elements of the vector will be provided on AXIS_TDATA and the 
AXIS_TUSER signals, as described in the “Input Protocol” subsection above. Your system 
will monitor the AXIS_TLAST signal to know when to exit this phase. 
 

3. Input Loaded: The input_loaded phase begins after the input vector is complete. Your 
system will output input_loaded=1 during this phase. In this phase, your system should 
ensure that the D output signal holds the correct value of D (the number of non-zero 
elements in this vector).  
 
During this phase, your system will allow the vector and memory read interfaces (on the 
right side of Figure 3.1) to read data from the vector and matrix memories. This means that 
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during this phase, the vector_read_addr and matrix_read_addr signals should be 
used to provide addresses to the vector and matrix memories, respectively. 
 
While in this phase, your system should monitor the done input signal. When done==1 
on a positive clock edge, your system should exit this phase, set input_loaded to 0, and 
go back to the beginning, waiting for new input data. 

Memory  
This module should contain two memory instances: one to hold the matrix and one to hold the 
encoded vector. Each memory must use synchronous reads and have a single address port. Use the 
following module for both memories. You can find this memory at:  

/home/home4/pmilder/ese507/proj/part3/memory.sv 
 
module memory #(    
        parameter                   WIDTH=16, SIZE=64, 
        localparam                  LOGSIZE=$clog2(SIZE) 
    )( 
        input [WIDTH-1:0]           data_in, 
        output logic [WIDTH-1:0]    data_out, 
        input [LOGSIZE-1:0]         addr, 
        input                       clk, wr_en 
    ); 
 
    logic [SIZE-1:0][WIDTH-1:0] mem; 
     
    always_ff @(posedge clk) begin 
        data_out <= mem[addr]; 
        if (wr_en) 
            mem[addr] <= data_in; 
    end 
endmodule 
 
There are several important things to understand about this memory: 
 

• The memory has one read port, one write port, and one address input used for both reads 
and writes. All reads and writes are synchronous (that is, they will occur on a positive clock 
edge). 
 

• Unlike the memory used in Part 2, this memory module only contains a single address 
input, which will be used for both reading and writing. (So, you cannot read and write to 
different locations of this memory at the same time.) 
  

• The memory’s parameters are the same as in the dual port memory in Part 2. 
 
The timing of reading and writing from this memory is the same as the dual port memory from Part 
2 (Figures 2.2 and 2.3), except now there is a single address signal addr that is shared for both 
reads and writes. 
 



ESE 507 Project Part 3 

Page 7  © 2023 Peter Milder 

Recall from class that this RTL memory module will not synthesize to SRAM—instead it will result 
in a memory structure built out of flip-flops. If these memories were large, this would be very 
inefficient. However, the memories you will need in this project will be fairly small, so we will 
simply let the logic synthesis tool implement them using registers.  
  

• The matrix memory should have WIDTH=INW and SIZE=M*N. Your system should store 
the matrix in row-major order (see above).  

o The data_in port of this memory should connect directly to the AXIS_TDATA 
input of this module. 

o The data_out port of this memory should connect directly to the matrix_data 
output of this module.  

o The addr and wr_en ports of this memory should be driven by your module’s 
internal logic.  
 

• The vector memory should have WIDTH=INW+$clog2(N) and SIZE=N. In each memory 
entry, you should store the concatenation of the vector element’s val (which is INW bits) 
and row (which is $clog2(N) bits). Each vector will need D entries, and D can be as large 
as N, so we must make this memory of size N to accommodate the largest possible vector. 

o The data_in port of this memory should be driven by a concatenation of the 
AXIS_TDATA input and the row signal. 

o The data_out port of this memory should connect directly to the vector_data 
and vector_row outputs of this module (with bits partitioned to match the way 
the value and row were concatenated on the memory’s input port). 

o The addr and wr_en ports of this memory should be driven by your module’s 
internal logic. 

Reading from the memories 
Once your module is in the input_loaded phase (and it is setting input_loaded to 1), your control 
logic should allow the memory read interfaces (on the right side of Figure 3.1) to read data from 
the matrix and vector memories. That is, when input_loaded==1, then the matrix memory’s 
address input should follow matrix_read_addr, and the vector memory’s address input should 
follow vector_read_addr. At all other times (when input_loaded is 0), your internal logic 
will determine the addresses on these memories. 

Number of Non-Zero Vector Entries D  
The number of non-zero values in the sparse vector is not known ahead of time—it is input-
dependent. As described in the Input Protocol subsection above, your module will use the 
AXIS_TLAST signal to determine when you have reached the last of the input vector entries. Your 
module should contain a register to hold the value of D, and this register’s output should go to the 
D output of this module. When your system determines that the entire input vector has been stored, 
it should set the correct value of D and hold it until new input data is loaded. 

Code  
Store all of your files for part3 in a subdirectory called part3/ . Implement this design in a file 
called input_mems.sv. Your system should use the memory module given above. (You may 
either copy/paste that into your code or include the given memory.sv file alongside your file.) Use 
the following top-level module name, port names, and port declarations: 
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module input_mems #( 
        parameter INW=16,    
        parameter M=24,    
        parameter N=32,     
        localparam LOGN  = $clog2(N),  
        localparam LOGMN = $clog2(M*N)                     
    )(                     
        input clk, reset, 
         
        input [INW-1:0] AXIS_TDATA, 
        input           AXIS_TVALID, 
        input           AXIS_TLAST, 
        input [LOGN:0]  AXIS_TUSER, 
        output logic    AXIS_TREADY,      
 
        output logic            input_loaded, 
        input                   done,       
        output logic [LOGN-1:0] D,  
 
        input        [LOGN-1:0]  vector_read_addr, 
        output logic [INW-1:0]   vector_val, 
        output logic [LOGN-1:0]  vector_row, 
        input        [LOGMN-1:0] matrix_read_addr, 
        output logic [INW-1:0]   matrix_data                     
    ); 

Testbench 
You are provided with a testbench to test your input_mems module. This testbench will generate 
random data (matrices and sparse vectors) and then provide the inputs to your module using the 
AXI-Stream interface (with random timing on the AXIS_TVALID signal). Then the testbench will 
wait until your module asserts the input_loaded signal, and then it will read the data back from 
your module’s internal memories, checking that the data retrieved matches what was transmitted. 
You can find the testbench in the following two files. 
 
 /home/home4/pmilder/ese507/proj/part3/inputs_mems_tb.sv 
 /home/home4/pmilder/ese507/proj/part3/test_helper.c 
 
Copy these files into your part3/ work directory where your part 3 design is. Before you use it, 
please read the following brief explanation of how the testbench works. Then read through the 
testbench files and read the comments.  
 
The testbench module includes five parameters, which will look familiar after your experience with 
the previous testbenches. 

• INW: the number of bits for each data word 
• M: the number of rows in the matrix  
• N: the number of columns in the matrix 
• TESTS: the number of inputs to simulate 
• TVALID_PROB: a decimal value that represents the probability that the testbench will assert 

AXIS_TVALID on any given cycle. This should be between 0.001 and 1, inclusive. For 
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example, if you set TVALID_PROB to 0.3, then there will be a 30% chance that the testbench 
will assert AXIS_TVALID (and try to transmit input data) on each cycle. If you set this 
parameter to 0, the testbench will randomly pick a probability at the beginning of the 
simulation (and tell you what it chose). 

 
The testbench uses a SystemVerilog class called testdata. This class is somewhat different than 
the one in Part 1’s testbench. Here, the class holds the input data for an entire MSpVM operation. 
That is, it holds the values of the matrix, the vector (in sparse encoding), the value of D, and the 
value of new_matrix. The testbench uses SystemVerilog’s internal randomization capabilities to 
randomize the values of the matrix, D, and new_matrix. Then, it uses a C function (called through 
DPI) to generate a sparse random vector.  

 
For each test, the testbench will randomize the test data and feed the test data into the system via 
the AXI-Stream interface. The timing of this transaction will be randomized based on 
TVALID_PROB.  

 
After feeding in a set of test data, the testbench will wait for the DUT to set input_loaded to 1. 
Then, the testbench will use the DUT’s vector_read_addr and matrix_read_addr inputs to 
read the stored data back from the DUT’s internal memories, checking the values. 
 
Compile and simulate your code, using a variety of different parameters. Don’t forget that you can 
set top-level testbench parameters from the command like with -G like -G INW=32. (For more 
examples, see the description of the Part 1 testbench.) 

Report and Code Submission 
After implementing and simulating the designs with a variety of parameters, complete the following 
tasks. In your report, provide the requested information and answer the following questions. 
 

1. This part of the project required you to design a significant amount of control logic that 
interacts with the AXI-Stream interface, the memories, the D register, and the 
input_loaded and done signals. Carefully and thoroughly document this module 
including your control logic. Your documentation should allow the reader to fully 
understand how your input_mems module works (and any submodules) without looking 
at the code. 

 
2. The number of cycles required by this module is largely determined by the parameters (M, 

N), the input vector’s D, and by how the testbench asserts AXIS_TVALID. However, there 
are places where you as the designer could make choices that affect the number of cycles 
required by your module. For example, if your system unnecessarily sets AXIS_TREADY 
to 0, or it adds extra cycles of delay between steps, the system will be less efficient. 
 
One way to quantify this is to measure how long your system takes to complete a task. Run 
a simulation where you set INW=16, M=24, N=32, and TVALID_PROB=1. When 
new_matrix==1, the testbench will begin by feeding in a 24*32=768 matrix values and 
D vector elements (where 1 ≤ D ≤ 32). In other tests where new_matrix==0, the system 
will simply feed in D vector elements. 
 
Simulate this design in QuestaSim’s waveform view and count the number of cycles 
between when your design sets AXIS_TREADY to 1, and when it sets input_loaded to 1. 
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Do this for a set of inputs where new_matrix==1 and a set of inputs where 
new_matrix==0.)  
 
Hint: you can view the amount of simulated time that passes in the waveform and then 
divide it by 10ns to get the number of simulated clock cycles. In your report, give this cycle 
count, and the value of D for the vector (for both new_matrix of 0 and 1).  
 
In the report, quantify how efficient your system is with respect to the number of clock 
cycles by computing the following ratios:  

o When new_matrix==1, use efficiency = cycles/(M*N+D) 
o When new_matrix==0, use efficiency = cycles/D 

 
In these metrics, 1.0 is perfectly efficient—a good implementation will be close to this. 
Report both metrics and the data you collected. 
 
If your efficiency number is not close to 1, where could your logic be improved? 
 

3. In the previous question, you measured the cycle count. Now, use your understanding of 
your system’s behavior to write equations for the cycle count with respect to M, N, and D. 
You should have one equation for new_matrix==1, and one equation for 
new_matrix==0. 
 

4. Describe how your system’s hardware changes when you change the parameters INW, M 
and N. Be specific about how the hardware components in your design will change as you 
change these parameters. Which of these changes do you expect to be important to the area 
and power of the system? Explain your answers. 

 
5. Synthesize the design using DesignCompiler twice, with parameters: 

o INW=16, M=4, N=5  
o INW=16, M=24, N=32  

Correct any synthesis problems you find. For each set of parameters, find the maximum 
possible clock frequency, area, power, and critical path location. (Here you only need to 
report statistics for the highest clock period for each design.) Carefully explain each 
design’s critical path. Don’t just list its start and end points; explain what the path means 
and why it makes sense. Does the critical path change between these two designs? Explain 
why or why not.  
 
Save both of your synthesis reports with descriptive names and include them with your 
submission. 
 

6. If you worked with a partner, please carefully describe each partner’s contribution to this 
part of the project. (If you did not work with a partner, skip this.) 

 
In your project submission, include a part3/ subdirectory that includes your code and your 
synthesis reports. Don’t include any other files like synthesis work directories or other files created 
by the CAD tools. 
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Part 4: Matrix-Sparse Vector Multiplier (MSpVM) [25 points] 
The goal of this task is to integrate the components you designed in Parts 1, 2, and 3 and add 
additional control logic to make a hardware unit that performs MSpVM. Recall, Figures 1 and 2 in 
Project Overview Section 4 illustrate the top-level ports and a high level block diagram for this top-
level system. Your matrix-sparse vector multiplier’s top-level module should be named MSpVM, 
and it is parameterized by parameters M, N, INW, and OUTW, as defined previously. (For the legal 
range of these parameters, please see Project Overview Section 4.) 
 
Figure 4.1 illustrates a partial view of how this module is constructed. Here, you can see that the 
top-level AXI-Stream input interface directly connects to the Input Memory module, and the AXI-
Stream output interface directly connects to the output FIFO. The diagram also shows how the sub-
module parameters are set. Most are obvious—INW, OUTW, M, and N in the sub-modules should 
match the corresponding parameters in the top-level module. One non-obvious thing to note: your 
Output FIFO module should have its internal DEPTH parameter set to M. (This means the FIFO is 
large enough to fully hold one full output vector.) Also note that the MAC unit is the pipelined 
mac_pipe system you designed in Part 1.2. 
 

 
 

Figure 4.1. This shows a partial view of how your top-level MSpVM module should be 
constructed. You will need to design logic to interact with the signals that are unconnected 

in this diagram. (You may need to zoom in on the PDF to read this diagram clearly.) 
 
Your job in this task is to design the control logic and interconnections that will allow these three 
modules to work together to perform matrix-sparse vector multiplication. Your new logic will need 
to interact with the signals that are unconnected in this diagram. 
 
Recall from Project Overview Section 3 that the MSpVM module must perform the computation 
seen in this pseudocode: 
 

for m = 0 ... M-1: 
   y[m] = 0 
   for d = 0 ... D-1: 
      n = row[d] 
      y[m] += W[m][n] * val[d] 

 

Input Memories

clk

reset

INW AXIS_TDATA

AXIS_TVALID

AXIS_READY

AXIS_TUSER

AXIS_TLAST

input_loaded

done

D

vector_read_addr

vector_data

vector_row

matrix_read_addr

matrix_data

log2(N)+1

mac_pipe

in0

in1

out

clk

reset

clear_acc

valid_input

OUTW

Output FIFO

clk

reset

data_in

wr_en

capacity

OUTW
AXIS_TDATA

AXIS_TVALID

AXIS_READY

Clock and reset signals go to all 
components. They are omitted here to 
simplify the drawing.

clk

reset

… …
to all m

odules

parameters: INW, M, N

parameters: INW, OUTW

parameters: OUTW, DEPTH=M

INPUT_TVALID

INPUT_TDATA

OUTPUT_TDATA

INPUT_TREADY

OUTPUT_TVALID

OUTPUT_TREADY

INPUT_TUSER

INPUT_TLAST



ESE 507 Project Part 4 

Page 2  © 2023 Peter Milder 

Now, we can connect our understanding of this pseudocode to the hardware components in our 
system. The input vector is represented by row[d] and val[d], which you can read from the 
vector memory in the Input Memory module. The matrix is represented by W[m][n], which you 
can read from the Input Memory module’s matrix memory. The computation in the last line is 
performed by the MAC module, and the final vector value will be written into the output FIFO. 
Your control logic will be responsible for making this happen. 

Module Operation 
Here we will give a brief overview of this module’s phases of operation and the sequence of steps 
it will take. You must construct control logic that will make the system undergo the following steps. 
Your control logic will likely need to include an FSM and counters. The following phases are not 
necessarily the only FSM states your system will use, but you should use them as a guide for how 
your control logic for this module should operate.  
 

1. First, the Input Memory module will interact with the input AXI-Stream interface to load 
the data into the matrix and vector memories. When the input values are loaded and 
available in those memories, the Input Memory module will assert its input_loaded 
output signal. 

 
2. Then, your control logic will be responsible for reading the matrix and sparse vector data 

from the input memories the matrix_read_addr and vector_read_addr signals and 
feeding the correct data into the MAC module. Refer to the pseudocode above to think 
about how the matrix addressing should work.  
 
Also recall that the matrix will be stored in row-major order, so you will need to map 
W[m][n] to an address. This simply means that W[0][0] is address 0, W[0][1] is address 
1, W[0][N-1] is address N-1, W[1][0] is address N, and so on. 
 

3. As your system feeds the matrix and vector values into the MAC unit, the MAC unit will 
perform the multiply-accumulate operation. Your logic will need to control the MAC 
module’s control inputs (clear_acc and valid_input). 
 

4. The MAC unit’s output will connect to the Output FIFO’s input signal. As the FIFO 
receives output data, its internal logic will send output data onto the output AXI-Stream 
interface. 
 
Your control logic will need to set the value of the FIFO’s wr_en appropriately, as well as 
monitor the FIFO’s capacity to make sure there is space in the FIFO before computing the 
value.  
 
Notice that our specification above shows that the FIFO’s depth should be M—this means 
the FIFO is capable of holding an entire output vector. So, an easy way to make sure you 
don’t overfill the FIFO is to wait until the FIFO’s reported capacity is M before you start 
computing a new MSpVM. (Other approaches are possible; one alternative would be to 
check that the FIFO isn’t full before you finish each individual output vector entry, but this 
makes the control logic much more complex, so I don’t recommend it.) 
 

 
5. After your system is done computing the MSpVM operation, the control logic should set 

done (the input signal to the memory module) to 1 for one clock cycle. This will cause the 
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input_memory module to start reading in new inputs again, and the whole process can 
repeat. 

 

Efficient Reading from Memories 
One place where your system could lose efficiency if you are not careful is in the sequencing of 
how you read vector and matrix values from their internal memories. The portion of the pseudocode 
relevant to this operation is: 
 

      n = row[d] 
      y[m] += W[m][n] * val[d] 

 
Notice that you cannot read the matrix value W[m][n] until you have first row[d]. Since our 
memory reads are synchronous, this means you cannot do both of those operations within the same 
clock cycle. A naïve, but inefficient way to approach this would be to use one cycle for reading 
row[d] and another cycle for reading W[m][n]. That would look like this: 
 

• Cycle 0: read row[0] and val[0] from vector memory 
• Cycle 1: read W[m][row[0]] from matrix memory  
• Cycle 2: read=row[1] and val[1] from vector memory 
• Cycle 3: read W[m][row[1]] from matrix memory 
… 
• Cycle 2*D-2: read row[D-1] and val[D-1] from vector memory 
• Cycle 2*D-1: read W[m][row[D-1]] from matrix memory 

 
So, this would take 2*D cycles to read D sets of values and send them to the MAC. This means 
that half of the time, the MAC unit is sitting idle with no useful work to do. 
 
Instead, you can overlap reading from the sparse-vector memory with reading from the W memory, 
like the following sequence: 
 

• Cycle 0: read row[0] and val[0] from vector memory 
• Cycle 1: read W[m][row[0]] while concurrently reading row[1] and val[1] 
• Cycle 2: read W[m][row[1]] while concurrently reading row[2] and val[2] 
… 
• Cycle D-1: read W[m][row[D-2]] while concurrently reading row[D-1] and val[D-1] 
• Cycle D: read W[m][row[D-1]] from matrix memory  

 
This sequence will take D+1 cycles to read D pairs of values and send them to the MAC. This is 
obviously much more efficient than the naïve method above, which takes 2*D cycles.  
 
Make sure that your control logic is constructed to make efficient use of the memories and MAC 
unit while performing computation. 

Code  
Store all of your files for part4 in a subdirectory called part4/ . You will need to copy your Parts 
1–3 designs here as well, since Part 4 obviously uses them.  
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Implement your top-level MSpVM module in a file called MSpVM.sv. Feel free to use other files 
and organize your control logic and other modules in any way that makes sense to you, but make 
sure everything is commented and named clearly. Make sure all files used in Part 4 are located in 
the part4/ directory. 
 
Use the following top-level module name, port names, and port declarations: 
 
module MSpVM #( 
        parameter INW  = 8, 
        parameter OUTW = 32, 
        parameter M=24,  
        parameter N=25,         
        localparam LOGN  = $clog2(N), 
        localparam LOGMN = $clog2(M*N) 
    )( 
        input clk, reset, 
 
        input [INW-1:0] INPUT_TDATA, 
        input           INPUT_TVALID, 
        input           INPUT_TLAST, 
        input [LOGN:0]  INPUT_TUSER,                                       
        output          INPUT_TREADY,    
 
        output [OUTW-1:0] OUTPUT_TDATA, 
        output            OUTPUT_TVALID, 
        input             OUTPUT_TREADY 
    ); 
 

Testbench 
You are provided with a testbench to test your MSpVM module. This testbench will generate random 
data (matrices and sparse vectors) and the expected output vectors. It will then provide the inputs 
to your module using the input AXI-Stream interface (with random timing on the INPUT_TVALID 
signal) and receive your module’s outputs on the output AXI-Stream interface (with random timing 
on the OUTPUT_TREADY signal). The testbench will check your module’s output values against the 
expected results and report any errors to you. 
 
You can find the testbench in the following two files. 
 
 /home/home4/pmilder/ese507/proj/part4/MSpVM_tb.sv 
 /home/home4/pmilder/ese507/proj/part4/test_helper.c 
 
Copy these files into your part4/ work directory where your part 4 design is. Before you use it, 
please read the following brief explanation of how the testbench works. Then read through the 
testbench files and read the comments. (Note: this .c file is identical to the one used in Part 4.) 
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The testbench module includes six parameters, which will look familiar after your experience with 
the previous testbenches: 

• INW: the number of bits for each input data word 
• OUTW: the number of bits for each output data word 
• M: the number of rows in the matrix  
• N: the number of columns in the matrix 
• TESTS: the number of inputs to simulate 
• INPUT_TVALID_PROB: a decimal value that represents the probability that the testbench 

will assert INPUT_TVALID on any given cycle. This should be between 0.001 and 1, 
inclusive. If you set this parameter to 0, the testbench will randomly pick a value at the 
beginning of the simulation (and tell you what it chose).  

• OUTPUT_TREADY_PROB: a decimal value that represents the probability that the testbench 
will assert OUTPUT_TREADY on any given cycle. This should be between 0.001 and 1, 
inclusive. If you set this parameter to 0, the testbench will randomly pick a value at the 
beginning of the simulation (and tell you what it chose). 

 
The testbench uses a SystemVerilog class called testdata. This class is similar to the class with 
the same name in the Part 3 testbench, but this also includes extra functions that will generate 
random input data and the expected output data. If you would like to learn more about how this 
works, please see the code and comments in the testbench. 
 
For each test, the testbench will randomize the test data and generate the expected corresponding 
output data. The testbench will feed the test input data into the system via the input AXI-Stream 
interface and receive the output data on the output AXI-Stream interface. The timing of the input’s 
TVALID and the output’s TREADY will be randomized based on the probability parameters described 
above. 
 
The testbench will check each output value and report any errors to the screen. The testbench will 
also report your system’s simulated throughput in terms of MSpVMs per cycle. We will discuss 
this more in the “Throughput” subsection below. 
 
Compile and simulate your code, using a variety of different parameters. Don’t forget that you can 
set top-level testbench parameters from the command like with -G like -G INW=32. (For more 
examples, see the description of the Part 1 testbench.) Make sure your system works correctly 
across the legal range of M, N, INW, and OUTW (defined in the Project Overview). 
 
It’s also important to adjust the INPUT_TVALID and OUTPUT_TREADY probabilities. For example, 
if INPUT_TVALID has high probability and OUTPUT_TREADY has low probability, your system will 
behave differently than if the probabilities were reversed. (In the first case, the system will be slow 
at outputting data, so it will simulate what happens if your FIFO fills up and the system needs to 
stall. In the second case, you will be checking that your logic works correctly when it must 
frequently stall due to slow input loading.) Make sure you simulate a variety of different scenarios. 

Overflow 
Recall from Part 1 that the accumulator in a MAC unit can overflow if OUTW is too small to hold 
the result of the operations performed on it. Here we will deal with this by detecting overflow in 
the testbench. When it calculates the expected results, it will detect when this happens and print a 
message to the screen that looks like this: 
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# WARNING: Output overflow. You must increase OUTW or decrease INW for 
correct output. Value=52267. Current OUTW=16 --> values must be between 
-32768 and 32767. 
 
If you see this message, this doesn’t mean there is a problem with your design; it just means that it 
is not possible to compute the MSpVM with the values of OUTW and INW you provided. In this case, 
you should make INW smaller or OUTW larger and try again. 

Throughput 
We will characterize the speed of your designs based on their throughput. Recall, throughput is a 
metric that quantifies the rate that a system processes inputs or performs computations. We will 
measure throughput in terms of MSpVMs per second.  
 
For example, if your system performs an MSpVM in 1000 cycles, and it has a maximum clock 
period of 1ns, we calculate its throughput as: 

 
(where one “op” represents one full MSpVM operation). 
 
So, this hypothetical system would compute 106 = 1 million MSpVMs per second. 
 
The number of cycles required by your MSpVM systems will depend on several external factors: 

• The values of parameters M and N 
• The number of non-zero values D in your sparse matrix 
• How frequently the testbench asserts INPUT_TVALID and OUTPUT_TREADY 
• Whether the system needs to load a new matrix (new_matrix==1) or use the previously 

stored matrix (new_matrix==0) 
 
When we measure throughput, we will choose values for hardware parameters M, N, INW, and OUTW. 
Then we will choose values for testbench parameters INPUT_TVALID_PROB and 
OUTPUT_TREADY_PROB. We will measure the cycle count over many operations. TESTS = 10000 
is a good number. Although D and new_matrix are randomized for each test, over the course of 
10000 tests, their average values will be stable: D is randomly selected between 1 and N, so its 
average value will be (N+1)/2; new_matrix is randomly 0 or 1 with equal probability. 
 
So, we will compute the throughput averaged over 10000 test cases, e.g.: 
 

 
 

How will you find the cycle count? Obviously, you aren’t going to count millions of cycles. Instead, 
the testbench we provide will automatically count these cycles and show you the result at the end 
of the simulation. For example, 
 
# Your system computed       10000 MSpVMs in    10193214 cycles 
 

<latexit sha1_base64="Zb+JFEhtLIrQ/U4g5ED4qZbkmm0="></latexit>

1 op

1000 cycles
⇥ 1 cycle

10�9 sec
= 106

ops

sec

<latexit sha1_base64="PBrOf40TAhAfjsuGkOmKqsb+iJM="></latexit>

10000 ops

107 cycles
⇥ 1 cycle

10�9 sec
= 106

ops

sec
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So here, you would have 10000 ops in 10,193,214 cycles. Next, you would synthesize this design 
to find the minimum clock period and compute the number of MSpVMs per second. In the 
questions below, you will be asked to do this for some specific configurations. 

Report and Code Submission 
After implementing and simulating your Part 4 design with a variety of parameters, complete the 
following tasks. In your report, provide the requested information and answer the following 
questions. 
 

1. This part of the project required you to design a significant amount of control logic that 
interacts with the existing modules. Carefully and thoroughly document how your top-level 
system works. Your documentation should allow the reader to fully understand how it 
works without looking at the code. 
 

2. In Part 3, you wrote equations that described the number of cycles the input_mems 
module requires (given M, N, and D) when new_matrix==0 and new_matrix==1.  
 
Now, you should use your understanding of your system to update these equations to 
describe the number of cycles for the entire MSpVM operation in the same scenarios. Your 
equation should reflect the best-case number of cycles between when your system starts 
receiving inputs and when it is done with that computation and ready to receive a new set 
of inputs (where “best case” implies that INPUT_TVALID and OUTPUT_TREADY are always 
1). 
 
Based on these equations, is your system’s performance limited by any one phase of 
execution? (For example, if your input loading time is much higher than the compute time, 
this shows that the input loading time limits your speed much more than computation. On 
the other hand, if the system spends most of its time doing MAC operations on data, then 
the computational unit is the limiting factor. If the times are close to balanced, then this 
shows your system’s performance is highly dependent on both of them.) 
 
Justify and explain your answers.  
 

3. Here, you will synthesize your MSpVM design with DesignCompiler. You will synthesize 
designs with the following sets of parameters: 

o INW=12, OUTW=36, M=7, N=9 
o INW=24, OUTW=64, M=17, N=15 

 
For each design, report the maximum clock frequency, minimum clock period, area, and 
power. For each, describe where the critical path is in the design. (Make sure you explain 
the critical path fully; don’t just list the start and end points.) You only need to report data 
for the smallest clock period you were able to find for each design. Save these two synthesis 
reports with descriptive names and include them with your submission. 

 
4. Now, find the throughput of each of the two designs you synthesized in question 3. 

Evaluate each of the two designs under two different assumptions about testbench 
parameters INPUT_TVALID_PROB and OUTPUT_TREADY_PROB: 0.25, 0.5, 0.75, and 1. 
(That is, do four simulations for each design, one where both _PROB parameters are 0.25, 
one where they are both 0.5, and so on.) 
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For each, record the number of clock cycles needed for 10,000 MSpVMs, as reported by 
the testbench with the parameters set appropriately. Then use those cycle counts along with 
the clock periods you found from synthesis, to find the throughput in number of MSpVMs 
per second for each design under the four assumptions of the _PROB parameters.  
 
In your report, make a table that shows the cycle counts and computed throughputs for all 
8 scenarios (two designs with four sets of assumptions each). Make sure your tables include 
units (here and in all questions). For example, this table could look like the following: 
 

 Design 1 (7x9 matrix) Design 2 (17x15 matrix) 
TVALID and 
TREADY prob 

cycle count throughput 
(ops/sec) 

cycle count throughput 
(ops/sec) 

0.25     
0.50     
0.75     
1.00     

 
5. The average delay of a system is the average amount of time that elapses between when it 

starts a computation and when it finishes it. For the 8 scenarios evaluated in question 4, 
determine the delay in seconds (or ms, µs, ns, etc., as appropriate). Use the cycle counts 
you determined in the previous question and the clock period you determined in question 
3. (Don’t forget that the cycle counts reported in question 4 are for 10,000 MSpVMs—you 
need to find the average delay for a single MSpVM). Report these delays in a table. 

 
6. The synthesis tool gives you an estimate of the power of your system. Use the power 

obtained from synthesis and the delays you computed in question 5 to determine the 
average energy your system consumes per MSpVM for each of the eight scenarios you 
have evaluated in the previous questions. Report these values in a table.  
 
Remember: energy is measured in joules.  Power = energy per time. 1 Watt = 1 Joule * 1 
second.  

 
7. A joint metric that combines the effects of area and speed in a single value is the area-

delay product. The area-delay product is found by multiplying the area of the system times 
its delay. (Since these are both metrics that we want to minimize, lower area-delay products 
are better than higher ones.) Calculate the area-delay product of your system under these 
eight scenarios and report the results in a table.  
 

8. If you worked with a partner, please carefully describe each partner’s contribution to this 
part of the project. (If you did not work with a partner, skip this.) 
 

In your project submission, include a part4/ subdirectory that includes your code and your 
synthesis reports. Don’t include any other files like synthesis work directories or other files created 
by the CAD tools. 
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Part 5: Performance-Optimized MSpVM [20 points] 
In Part 5, you will optimize the throughput and delay of your full MSpVM system (from Part 4). 
You will modify your system to be as fast as possible, while keeping the input/output ports and 
protocols as specified in the prior parts of the project. Your goal is to maximize the throughput and 
minimize the delay of the system. We will quantify your optimizations based on the same metrics 
you used in Part 4 (throughput, delay, area, power, energy, area-delay product). Here you should 
aim to increase throughput and minimize delay, even at the expense of area, power, and energy. 
 
Create a new directory part5/ for this part. Be very careful that you keep your original Parts 1–4 
files in their original directories. Don’t accidentally lose your prior work here! I suggest that you 
start by copying all of your Part 4 design files into your Part 5 directory and modifying it from 
there. 
 
You may change the internals of your system in any way possible, but the input/output ports and 
protocol must not deviate from the original specification. In other words, Part 5 your optimized 
system must simulate correctly with the exact same testbench as the Part 4 design.  
 
Some ideas you may want to pursue: 
 

• pipelining deeper, potentially including pipelined DesignWare components. An example 
of using DesignWare pipelined mulitpliers is given below. 
 

• increasing parallelism. That is, building more adders, multipliers, and memories so that 
you can perform more operations concurrently. 
 

• modifying your control logic so that the system works more efficiently. One potential 
improvement in this direction is overlapping the loading of input data with computing. For 
example, you could double buffer your input memories so that while your system is 
computing an MSpVM, your input_mems module is concurrently pre-loading the next set 
of inputs. 
 

You may not modify the internals of the memory modules used (except of course adjusting their 
parameters when you instantiate them). However, you may choose to use as many memory module 
instances as you like. 
 
There are obviously many techniques you can consider using here. Use your understanding of your 
system and the data collected in your evaluations from prior parts of the project to determine what 
techniques will give you the most improvement here. In Part 5 you will be evaluated based on the 
correctness of your optimized system and the extent to which you improved the performance. A 
portion of the points here will be directly calculated based on the speed of your system. 

DesignWare Library Components 
This subsection describes how to use DesignWare library components, especially pipelined 
multipliers. Do not interpret the inclusion of this text to mean that this is necessarily the most 
important optimization to make. The details are given here because they are needed for you to apply 
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this technique (while the other techniques do not require any specialized knowledge beyond what 
you already have). 
 
You may use DesignWare components for adders and multipliers, but you may not use the 
DesignWare multiply-and-accumulate unit.  
 
One useful component is the DesignWare pipelined multiplier. Recall, in Part 1, you pipelined your 
MAC unit by placing a register between the multiplier and adder. With that style of design, where 
you are using the * operator for multiplication, it is not possible to pipeline the multiplier itself into 
multiple stages. The DesignWare pipelined multiplier designs are internally-pipelined multipliers, 
which may be able to improve your clock frequency. We can instantiate a pipelined multiplier from 
their library. 
 
You can find the DesignWare datasheet on Brightspace (under Course Documents à DesignWare 
Documentation), but here is a quick guide on how to instantiate the pipelined multiplier: 
 

DW02_mult_S_stage #(INW, INW) multinstance(input1, input2, 1'b1,  
clk, output); 

 
In this code, replace the S in mult_S_stage with the number of pipeline stages you want inside 
of the multiplier (from 2 to 6).  Replace input1 and input2 with the two INW-bit signals you want 
to multiply. Replace output with the 2*INW-bit signal where you want to store the multiplier’s 
output. 
 
For pipelined systems like these to work correctly, you will need to adjust your control logic. Think 
carefully about how your control logic must change for different choices of S. Make sure that your 
design continues to simulate correctly. 
  
Note that once you use one of the DesignWare instantiations in your design, you need to take an 
extra step when simulating. When you compile your code for QuestaSim, you need to also compile 
the simulation module for the DesignWare designs. To do, simply include the multiplier’s 
simulation model when you run vlog. These simulation models are: 
 

/home/home4/pmilder/ese507/synthesis/sim_ver/DW02_mult*.v 
 

Or, if you use other DesignWare components, replace the end of that line with the appropriate one. 
(You will not need to do anything special when trying to synthesize these modules because 
DesignWare components are already accessible to DesignCompiler.) 

Code and Testbench 
Store all of your files for Part 5 in a subdirectory called part5/ . Use the same top-level module 
name and port specification as Part 4. Since your optimizations will not change the external 
input/output behavior, you will use the same testbench as Part 4. 
 
As you improve your design, evaluate it based on the metrics described below. 

Report and Code Submission 
After implementing and simulating your Part 5 design with a variety of parameters, complete the 
following tasks. In your report, provide the requested information and answer the following 
questions. 
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1. What techniques did you perform to improve the performance of your system? Explain 

and document your approach in detail and carefully describe how your optimized 
system works. Explain why you chose these techniques. Do you believe they were 
effective?  

 
2. – 7. Repeat questions 2 through 7 from Part 4, but now evaluate your new Part 5 design. For 

each question, compare the results here to those from the Part 4 design. 
 
8. Your new design performs the same computation as your design in Part 4, but it should 

be faster, larger, and consume higher power. In questions 6 and 7, you compared your 
new design’s energy consumption and area-delay with your Part 4 design. Based on 
these metrics, would you say your speed-optimized design is more or less efficient than 
your previous design?  
 

9. If you worked with a partner, please carefully describe each partner’s contribution to 
this part of the project. (If you did not work with a partner, skip this.) 

 
In your project submission, include a part5/ subdirectory that includes your code and your 
synthesis reports. Don’t include any other files like synthesis work directories or other files created 
by the CAD tools. 
 


