
12/2/23, 2:51 PM Assignment 3: arXiv

https://q.utoronto.ca/courses/314106/assignments/1183577 1/18

Assignment 3: arXiv

Due  Nov 30 by 4p.m.  Points  None

Assignment 3: Working with arXiv.org Metadata
In Assignment 3, you'll work with data from a popular website for disseminating
scholarly work. To complete the assignment, you will need the material from Weeks 1
to 9 of the course, although you can get started on it prior to completing Week 9.

This handout explains the problem being solved, and the tasks to complete. Please
read it carefully and in its entirety.

Logistics
Due Date: Thursday, November 30 before 4:00PM (Toronto time)
Submission: You will submit your assignment solution on MarkUs.
Late Policy: There are penalties for submitting the assignment after the due date.
These penalties depend on how many hours late your submission is. Please see
the syllabus on Quercus for more information.
No Remark Requests: No remark requests will be accepted. A syntax error could
result in a grade of 0 on the assignment. Before the deadline, you are responsible
for running your code and the checker program to identify and resolve any errors
that will prevent our tests from running. The best way to check for this is to run the
tests on MarkUs via the Automated Testing tab for this assignment.
The work you submit must be your own. Please review The Code of Behaviour on
Academic Matters (http://www.governingcouncil.utoronto.ca/policies/behaveac.htm)
and information for students (https://www.artsci.utoronto.ca/current/academic-
advising-and-support/student-academic-integrity)  from the Office of Student
Academic Integrity.
See Quercus for information on requesting special consideration.

Goals of this Assignment

http://www.governingcouncil.utoronto.ca/policies/behaveac.htm
http://www.governingcouncil.utoronto.ca/policies/behaveac.htm
https://www.artsci.utoronto.ca/current/academic-advising-and-support/student-academic-integrity
https://www.artsci.utoronto.ca/current/academic-advising-and-support/student-academic-integrity


12/2/23, 2:51 PM Assignment 3: arXiv

https://q.utoronto.ca/courses/314106/assignments/1183577 2/18

In this assignment, you will practice working with files, building and using dictionaries,
designing functions using the Function Design Recipe, and writing tests in pytest. You
will also continue to practice your skills in testing and debugging using the Wing101
debugger.

Introduction: arxiv.org
arxiv.org  (https://arxiv.org/) is a free distribution service and an open-access archive
for over two million scholarly articles in the fields of physics, mathematics, computer
science, quantitative biology, quantitative finance, statistics, electrical engineering and
systems science, and economics. arXiv is pronounced as "archive"
(https://en.wikipedia.org/wiki/ArXiv) .

arxiv.org  (https://arxiv.org/) maintainers believe in open, free, and accessible
information. In addition to free and easy access to the articles themselves, arxiv.org
also provides ways to access its metadata  (https://arxiv.org/help/bulk_data) . This
metadata includes information such as the article's unique identification number,
author(s), title, abstract, the date the article was added to the arxiv and when it was last
modified, license under which the article was published, etc. This metadata is used by
a variety of research tools that investigate scientific research trends, provide intelligent
scientific search techniques, and in many other areas.

To make this assignment more manageable for you, we have extracted a sample of
arxiv's metadata, simplified it, and created a text file you will use as input to your
program.

The Metadata File
The metadata file contains a series of one or more article descriptions, one after the
other. Each article description has the following elements, in order:

1. A line containing a unique identifier of the article. An identifier will appear only once
in the file and not contain any whitespace.

2. A line containing the article's title. If no title information is provided, this line will be
blank.

https://arxiv.org/
https://arxiv.org/
https://arxiv.org/
https://en.wikipedia.org/wiki/ArXiv
https://en.wikipedia.org/wiki/ArXiv
https://en.wikipedia.org/wiki/ArXiv
https://en.wikipedia.org/wiki/ArXiv
https://arxiv.org/
https://arxiv.org/
https://arxiv.org/
https://arxiv.org/help/bulk_data
https://arxiv.org/help/bulk_data
https://arxiv.org/help/bulk_data


12/2/23, 2:51 PM Assignment 3: arXiv

https://q.utoronto.ca/courses/314106/assignments/1183577 3/18

3. A line containing the article's created date in the format of YYYY-MM-DD . If no creation
date is provided, this line will be blank.

4. A line containing the article's last modified date in the format of YYYY-MM-DD . If no
modified date is provided, this line will be blank.

5. Zero or more lines with the article's author(s). Each line contains an author's last
name followed by a comma ,  followed by the author's first name(s). There is
always exactly one comma ,  on the author line. An author's name may have white
space and/or punctuation other than commas. Immediately after the zero or more
author lines, a single blank line will indicate that there are no more authors. (If we
do not have any author information for an article, then the blank line will come
immediately after the modification date line.)

6. Zero or more lines of text containing the abstract of the article.
7. A line containing the word END . This delimitates the end of the article description

and either the beginning of the next article description or the end of the file. You
may assume that a line with only END  in it does not occur in any other context in the
metadata file.

You can assume that any file we test your code with has this structure. You do not need
to handle any invalid file formats.

Example Metadata File
Here is an example metadata file (also provided in the starter code later (a3.zip) ):

5090
Increasing Students' Engagement to Reminder Emails

2022-08-02
Yanez,Fernando
Zavaleta-Bernuy,Angela

Our metric of interest is open email rates.
END
03221
Stargazer: An Interactive Camera Robot for How-To Videos
2023-03-01
2023-03-06
Grossman,Tovi

We present Stargazer, a novel approach for assisting with tutorial content creation.
END
0001

https://q.utoronto.ca/courses/314106/assignments/a3.zip


12/2/23, 2:51 PM Assignment 3: arXiv

https://q.utoronto.ca/courses/314106/assignments/1183577 4/18

Cats and Dogs Can Co-Exist
2023-08-20
2023-10-02
Smith,Jacqueline E.
Sharmin,Sadia

We show a formal proof that cats and dogs
can peacefully co-exist!
END
108
CSC108 is the Best Course Ever
2023-09-01

Smith,Jacqueline E.
Zavaleta-Bernuy,Angela 
Campbell,Jen

We present clear evidence that Introduction to
Computer Programming is the best course
END
42

2023-05-04
2023-05-05

This is a strange article with no title
and no authors.

It also has a blank line in its abstract!
END

This metadata file contains information on five articles with unique identifiers '5090' ,
'03221' , '0001' , '827' , and '42' . Notice that the following information is not provided

in the file: modified date in article '108' , created date in article '5090' , and title and
authors in article '42' . All these are valid cases, and your code should deal with them.

Storing the Arxiv Metadata
We will use a dictionary to maintain the arxiv metadata. Let us look in detail at the
format of this dictionary. The types below are defined in constants.py  and we have
imported them into arxiv_functions.py  for use in your type contracts.

Type NameType

We will store the names of authors as tuples of two strings: the author's last name(s)
and the author's first name(s). For example, the author Sadia Sharmin  would be listed in



12/2/23, 2:51 PM Assignment 3: arXiv

https://q.utoronto.ca/courses/314106/assignments/1183577 5/18

the metadata file as 'Sharmin,Sadia'  and will be stored as ('Sharmin', 'Sadia') . Note,
that there may be punctuation characters (except for commas) and/or white space
included in an author's last name and/or first name, and we need to keep all this
information. For example, Smith,Jacqueline E. , Van Dyke,Mary-Ellen  and Sklodowska

Curie,Marie Salomea  are all valid input lines, and should be stored as ('Smith',

'Jacqueline E.') , ('Van Dyke', 'Mary-Ellen')  and ('Sklodowska Curie', 'Marie Salomea') ,
respectively. A line like Smith,Jacqueline,E.  is not valid, since it contains two commas,
and we cannot tell which is supposed to be the first and which is the last name. You
can assume all inputs are valid and both first and last names are non-empty strings.

Type ArticleType  and type ArticleValueType

The file constants.py  in the starter code defines the following constants that you should
use instead of the literal strings. Below are the current values of the constants.

ID = 'identifier'
TITLE = 'title'
CREATED = 'created'
MODIFIED = 'modified'
AUTHORS = 'authors'
ABSTRACT = 'abstract'

We will store information about a single article in a dictionary that maps ID , TITLE ,
CREATED , MODIFIED , AUTHORS , and ABSTRACT  to their corresponding values. The value for

each piece of information is of type ArticleValueType , which is of type str  for all values
except for the value associated with key AUTHORS , which is a list  of NameType . If an
element is not provided in the metadata file, then the value associated with that key will
be empty (i.e. the empty string, or in the case of no authors, an empty list).

For example, the article with the identifier '108'  in our example input file above will be
stored in the following dictionary:

{ID: '108',
 TITLE: 'CSC108 is the Best Course Ever',
 CREATED: '2023-09-01',
 MODIFIED: '',
 AUTHORS: [('Smith', 'Jacqueline E.'), ('Zavaleta-Bernuy', 'Angela'), ('Campbell', 'Je
n')],
 ABSTRACT: 'We present clear evidence that Introduction to\nComputer Programming is the be
st course.'}



12/2/23, 2:51 PM Assignment 3: arXiv

https://q.utoronto.ca/courses/314106/assignments/1183577 6/18

Notice that since the fourth line in the specification is blank, the value corresponding to
key MODIFIED  is the empty string. Also notice that the final newline character on each
line is not included in any of the stored values, except for the newline characters inside
the abstract — we keep those! Take a careful look at the starter file example_data.txt

(same as the example above) and the corresponding dictionary EXAMPLE_ARXIV  defined
in the file arxiv_functions.py  for more examples.

Type ArxivType

Finally, we will store the entire arxiv metadata in a dictionary that maps article
identifiers to articles, i.e. to values of type ArticleType . The key/value pair in this
dictionary that corresponds to the above article is:

'108': {
    ID: '108',
    TITLE: 'CSC108 is the Best Course Ever',
    CREATED: '2023-09-01',
    MODIFIED: '',
    AUTHORS: [('Smith', 'Jacqueline E.'), ('Zavaleta-Bernuy', 'Angela'), ('Campbell', 'Je
n')],
    ABSTRACT: 'We present clear evidence that Introduction to\nComputer Programming is the 
best course.'
}

A Diagram
The diagram below shows a picture of the dictionary that represents some of the
articles in the example_data.txt . The keys for each ArticleType  match the values in
constants.py .



12/2/23, 2:51 PM Assignment 3: arXiv

https://q.utoronto.ca/courses/314106/assignments/1183577 7/18

Files to Download



12/2/23, 2:51 PM Assignment 3: arXiv

https://q.utoronto.ca/courses/314106/assignments/1183577 8/18

Download the Assignment 3 Files and unzip them
(https://q.utoronto.ca/courses/314106/files/28683462?wrap=1) 
(https://q.utoronto.ca/courses/314106/files/28683462/download?download_frd=1) . Place
all the files in the same folder. The following paragraphs explain the files you have
been given. 

Python Code
The starter code for this assignment is in the arxiv_functions.py . You need to
complete the file arxiv_functions.py . We have only provided the docstring for
some of the required functions. You must add the other functions described
in this handout.
The starter code for the required pytests are in the files
test_created_in_year.py  and test_average_author_count.py . You need to

complete these files.
The file constants.py  contains some code that is imported into the
arxiv_functions.py  file. You should not change this file, but you may find it

helpful to read it.
The a3 checker's main file is a3_checker.py . It is complete and must not be
changed. As in the previous assignments, there are some other files
included which are for use by the checker. Keep them in the same folder, but
there is nothing you need to do with them.

Sample arxiv metadata
We have provided two text files containing sample data. The file
example_data.txt  corresponds exactly to the example we used throughout

this handout. The file data.txt  is much larger, albeit it is still a small part of
the real data available on arxiv.org  (https://arxiv.org/) .

A reminder about the checker: We have provided a checker program
( a3_checker.py ) that tests two things:

whether your functions have the correct parameter and return types, and
whether your code follows the Python Style Guidelines.

The checker program does not test the correctness of your functions, so you
must do that yourself.

https://q.utoronto.ca/courses/314106/files/28683462?wrap=1
https://q.utoronto.ca/courses/314106/files/28683462?wrap=1
https://q.utoronto.ca/courses/314106/files/28683462/download?download_frd=1
https://q.utoronto.ca/courses/314106/files/28683462/download?download_frd=1
https://q.utoronto.ca/courses/314106/files/28683462/download?download_frd=1
https://arxiv.org/
https://arxiv.org/
https://arxiv.org/


12/2/23, 2:51 PM Assignment 3: arXiv

https://q.utoronto.ca/courses/314106/assignments/1183577 9/18

Required Functions
In the starter code file arxiv_functions.py , follow the Function Design Recipe to
complete the following functions. We have provided a few docstrings in the starter
code, but you will need to write most of them yourself.

In addition to the functions below, you must add some helper functions (i.e. functions
that you design yourself) to aid with the implementation of these required functions.
These helper functions also require complete docstrings. We strongly recommend you
use the suggested helper functions in the table below; we give you these hints to make
your programming task easier.

Some indications that you should consider writing a helper function are:

Reusing similar code to solve similar tasks across multiple functions
Getting a warning from the checker that your function is too long
Getting a warning from the checker that your function has too many nested blocks
or too many branches
Realizing that your function can be broken down into smaller sub-problems

For each of the required functions below, other than read_arxiv_file , write at least two
examples in the docstrings that use the constant EXAMPLE_ARXIV . However, if your helper
function takes an open file as an argument, you do NOT need to write any examples in
that function's docstring.

Your functions should not mutate their arguments, unless the description says that is
what they do.

A note on sorting: Throughout the assignment, we ask for lists to be sorted in
lexicographic order. This is the order that Python sorts in (such as when you call
list.sort ). You do not have to write your own sorting code (unless you want to!)

We have broken the components of the assignment down into 5 Tasks, grouping
related functions together. Some tasks are easier than others, and you can do the
tasks in any order. As in the previous assignments, we'll be marking each function
mostly separately (however there will be some overlap when functions call other
functions).



12/2/23, 2:51 PM Assignment 3: arXiv

https://q.utoronto.ca/courses/314106/assignments/1183577 10/18

Task 1: Working with ArxivType  and using a helper function
Functions to implement in arxiv_functions.py for Task 1

Function name:
(Parameter types) -

> Return type

Full Description (paraphrase to get a proper docstring
description)

created_in_year:

(ArxivType, str, int)

-> bool

The first parameter represents arxiv metadata, the second
parameter is an article ID, and the third parameter is a year. This
function should return True if and only if an article with the
provided id occurs in the metadata and was published in the
given year. Hint: Think about what the function should return if
this ID is not found in the metadata.

contains_keyword:

(ArxivType, str) ->

list[str]

The first parameter represents arxiv metadata and the second
parameter is a keyword to search for in the metadata. This
function should return a list of the IDs of articles that contain the
given keyword in their title, author names, and/or abstract. The
list should be sorted in lexicographic order.

This function should be case-insensitive and should ignore
punctuation.  For example, if the keyword is 'cat', then the
keyword will match any titles with the words: "Cat", "c&at",
"CAT", "c-at".  Hint: make use of the provided helper function
clean_word .

The keyword should not be matched as a substring of a larger
word. For example, if keyword is 'calc' , then the function
should not match with the title 'Calculus is Great' .

You may assume the keyword to search for is a non-empty
lowercase string containing only alphabetic characters.

average_author_count:

(ArxivType) -> float
The parameter represents arxiv metadata. This function should
return the average number of authors per article in the arxiv



12/2/23, 2:51 PM Assignment 3: arXiv

https://q.utoronto.ca/courses/314106/assignments/1183577 11/18

metadata. If there are no articles, the function should return
0.0 .

For example, if the metadata has two articles (one with four
authors and one with one author), then the function should
return an average author count of (4 + 1) / 2 = 2.5.

Task 2: Reading in the arxiv metadata file
Functions to implement in arxiv_functions.py for Task 2

Function name:
(Parameter
types) ->

Return type

Full Description (paraphrase to get a proper docstring
description)

read_arxiv_file:

(TextIO) ->

ArxivType

The parameter represents an arxiv metadata file that is already
open for reading. This function should read the file and return the
data in the ArxivType  dictionary format. Take a careful look at the
starter file example_data.txt  (same as the example above) and the
corresponding dictionary EXAMPLE_ARXIV  defined in the file
arxiv_functions.py  for an example.

Note: in the docstring, do not provide example calls for functions that
read files.

Hint: Notice that this is a structured file reading problem. It is also a
good idea to design and write a couple of helper functions here.

Task 3: Working with Authors and Coauthors
Functions to implement in arxiv_functions.py for Task 3

Function name:
(Parameter types) ->

Return type

Full Description (paraphrase to get a proper
docstring description)



12/2/23, 2:51 PM Assignment 3: arXiv

https://q.utoronto.ca/courses/314106/assignments/1183577 12/18

make_author_to_articles:

(ArxivType) ->

dict[NameType, list[str]]

The parameter represents arxiv metadata. This function
should return a dictionary that maps each author name to
a list of ID's of articles written by that author. The list
should be sorted in lexicographic order.

For example, if the input is a dictionary that represents
the information from our example metadata file, then
make_author_to_articles  should return the dictionary

{
    ('Campbell', 'Jen'): ['108'],
    ('Grossman', 'Tovi'): ['03221'],
    ('Sharmin', 'Sadia'): ['0001'],
    ('Smith', 'Jacqueline E.'): ['0001', '108'],
    ('Yanez', 'Fernando'): ['5090'],
    ('Zavaleta-Bernuy', 'Angela'): ['108', '5090']
}      

Note that the order of the key/value pairs in the dictionary
could be different, and that's OK. However, the value lists
must all be sorted to match the above.

Hint: It is a good idea to build the dictionary first, and
then sort the article lists (the values in the dictionary).

get_coauthors:

(ArxivType, NameType) ->

list[NameType]

The first parameter represents arxiv metadata and the
second parameter represents an author's name. This
function should return a list of coauthors of the author
specified by the second argument. (Two people are
coauthors if they are authors of the same article.) The list
should be sorted in lexicographic order.

Authors should appear in the list only once, even if they
were a coauthor on more than one paper.

For example, if the first argument is a dictionary that
represents the information from our example metadata



12/2/23, 2:51 PM Assignment 3: arXiv

https://q.utoronto.ca/courses/314106/assignments/1183577 13/18

file and the second argument is ('Smith', 'Jacqueline

E.') , then this function should return the list

[('Campbell', 'Jen'), ('Sharmin', 'Sadia'), ('Zavaleta-Ber
nuy', 'Angela')].

Hint: Make sure you don't claim that a person is their own
coauthor. Make sure your code does not crash if the
author does not appear in the input dictionary at all!
Consider using function(s) you already defined to simplify
your solution.

get_most_published_authors:

(ArxivType) ->

list[NameType]

The parameter represents arxiv metadata. This function
should return a list of authors with the most published
articles (possibly more than one author can publish the
most articles). The list should be sorted in lexicographic
order.

For example, if input is a dictionary that represents the
information from our example metadata file, then this
function should return the list

[('Smith', 'Jacqueline E.'), ('Zavaleta-Bernuy', 'Angel
a')]

Note: Because the example arxiv dictionary provided will
always have one list of most published authors, you will
need to create a second arxiv metadata dictionary for
your second example for this function.

Hint: Consider using function(s) you already defined to
simplify your solution. Specifically, it is a good idea to
implement the function make_author_to_articles  before
this one.



12/2/23, 2:51 PM Assignment 3: arXiv

https://q.utoronto.ca/courses/314106/assignments/1183577 14/18

suggest_collaborators:

(ArxivType, NameType) ->

list[NameType]

The first parameter represents arxiv metadata and the
second parameter represents the author's name. This
function should return a list of authors with whom the
author specified by the second argument is encouraged
to collaborate. The list should be sorted in lexicographic
order.

The list of suggested collaborators should include all
authors who are coauthors of this author's coauthors. In
other words, if author A  wrote an article with author B

and author B  wrote an article with author C , then we will
include C  as a suggested collaborator for A .

For example, if the first argument is a dictionary that
represents the information from our example metadata
file and the second argument is ('Yanez', 'Fernando') ,
then this function should return the list

[('Campbell', 'Jen'), ('Smith', 'Jacqueline E.')].

If the second argument is ('Grossman', 'Tovi') , then this
function should return an empty list.

Hints: Consider using function(s) you already defined to
simplify your solution. Make sure you do not include
people who are already coauthors of the given author in
the return list (they already know each other!). Make sure
you don't include the author themselves as a suggested
collaborator. Finally, make sure the resulting list does not
contain any names more than once.

Task 4: Prolific Authors
Functions to implement in arxiv_functions.py for Task 4



12/2/23, 2:51 PM Assignment 3: arXiv

https://q.utoronto.ca/courses/314106/assignments/1183577 15/18

Function name:
(Parameter types) ->

Return type

Full Description (paraphrase to get a proper docstring
description)

has_prolific_authors:

(dict[NameType,

list[str]],

ArticleType, int) ->

bool

The first parameter is a dictionary mapping author names lists
of IDs of articles published by that author, the second
parameter represents the information of a single article, and the
third argument represents the minimum number of publications
required for an author to be considered prolific. The function
should return True if and only if the article (second argument)
has at least one author who is considered prolific. An author is
prolific if they've published at least a minimum number of
publications (third argument).

For example, if the first argument is the dictionary

{
    ('Campbell', 'Jen'): ['108'],
    ('Grossman', 'Tovi'): ['03221'],
    ('Sharmin', 'Sadia'): ['0001'],
    ('Smith', 'Jacqueline E.'): ['0001', '108'],
    ('Yanez', 'Fernando'): ['5090'],
    ('Zavaleta-Bernuy', 'Angela'): ['108', '5090']
}      

the second argument is the article with ID '5090'  from our
example, and the third argument is 2 , then the function should
return True , because at least one of the authors of the article
with ID '5090'  is "prolific", i.e., has published at least 2 papers.
If the second argument is the article with ID '03221'  (and the
other arguments are the same), then the function should return
False , since none of the authors of this article have published

at least two papers.

You can assume that every author of the article specified by the
second argument also appears as a key in the first argument.



12/2/23, 2:51 PM Assignment 3: arXiv

https://q.utoronto.ca/courses/314106/assignments/1183577 16/18

keep_prolific_authors:

(ArxivType, int) ->

None

The first parameter represents arxiv metadata and the second
parameter represents the minimum number of publications
required for an author to be considered prolific. The function
should modify the passed in metadata to contain only articles
published by prolific authors, i.e., articles that have at least one
author who has published at least the minimum required
number of articles.

For example, if the first argument is a dictionary that represents
the information from our example metadata file and the second
argument is 2 , then the function should modify its first
argument by removing the articles with IDs '03221'  and '42' ,
and keeping the articles with IDs '108' , '5090' , and '0001' .

Some hints:

Notice that this function returns None  and modifies its
argument.
Recall that in Python you never want to remove items from
a dictionary while iterating over that same dictionary. One
way to avoid this issue in your solution is to first decide on
which articles should be removed from the dictionary, and
then remove them in a separate loop.
Consider using the functions make_author_to_articles  and
has_prolific_authors  as helpers to simplify your solution.

When writing tests for this function, remember that the
function modifies its input. To make sure that the tests do
not interfere with each other, we often create copies of
sample input and pass these copies to the function we are
testing.
Take a careful look at the docstring for this function which
we provided in the starter code and pay attention to the use
of copy.deepcopy  in the example calls.



12/2/23, 2:51 PM Assignment 3: arXiv

https://q.utoronto.ca/courses/314106/assignments/1183577 17/18

Task 5: Required Testing ( pytest )
Write and submit a set of pytest tests for the created_in_year  and average_author_count

functions. We have provided starter code in the test_created_in_year.py  and
test_average_author_count.py  files. We have included one test that you can use as a

template to write your other test methods. For each test method, include a brief
docstring description specifying what is being tested. Do not write examples in the
docstring.

Your set of tests should all pass on correct code and use appropriate methods for
testing functions returning floats. Your tests should be thorough enough that at least
one of them will fail on a buggy version of the function. There is no required number of
tests; we will mark your tests by running them on the correct code as well as several
buggy versions.

Marking Scheme
These are the aspects of your work that will be marked for Assignment 3:

Correctness (70%): Your functions should perform as specified. Correctness, as
measured by our tests, will count for the largest single portion of your marks. Once
your assignment is submitted, we will run additional tests, not provided in the
checker. Passing the checker does not mean that your code will earn full marks for
correctness.
Testing (10%): Your pytest  test suite will be checked by running in on
incorrect/broken implementations. Your tests should all pass on a correct version of
the function, and at least one should fail on each of our broken implementations.
Your tests will not be marked for style. Your tests should be appropriate for the
return type of the function you are testing.
Coding style (20%): Make sure that you follow Python style guidelines that we
have introduced and the Python coding conventions that we have been using
throughout the semester. Although we don't provide an exhaustive list of style rules,
the checker tests for style are complete. So, if your code passes the checker, then it
will earn full marks for coding style with one exception: docstrings and the creation



12/2/23, 2:51 PM Assignment 3: arXiv

https://q.utoronto.ca/courses/314106/assignments/1183577 18/18

of helper functions may be evaluated separately. For each occurrence of a PyTA
error as reported by the checker, a mark deduction will be applied. Make sure you
review the CSC108 Python Style Guidelines
(https://q.utoronto.ca/courses/314106/pages/python-style-guidelines) for the rules on
how to write a docstring description. You may also refer to the PythonTA Checks

 (https://www.cs.toronto.edu/~david/pyta/checkers/index.html) webpage for a more
comprehensive list of styling related checks by looking up the corresponding error
codes mentioned in the a2 checker. 

No Remark Requests
As mentioned earlier: No remark requests will be accepted. A syntax error could result
in a grade of 0 on the assignment. Before the deadline, you are responsible for
running your code and the checker program to identify and resolve any errors that will
prevent our tests from running. You should do a final check on the code you submit by
running the tests on MarkUs via the Automated Testing tab for this assignment.

What to Hand In
Submit arxiv_functions.py , test_created_in_year.py , and test_average_author_count.py  on
MarkUs.

The very last thing you do should be to run the checker program one last time.

Otherwise, you could make a small error in your final changes before submitting that
causes your code to receive zero for correctness. We do not accept remark requests
for 108 assignments, including for cases like this. Before the deadline, you are
responsible for running your code and the checker program to identify and resolve any
errors that will prevent our tests from running.

https://q.utoronto.ca/courses/314106/pages/python-style-guidelines
https://q.utoronto.ca/courses/314106/pages/python-style-guidelines
https://www.cs.toronto.edu/~david/pyta/checkers/index.html
https://www.cs.toronto.edu/~david/pyta/checkers/index.html
https://www.cs.toronto.edu/~david/pyta/checkers/index.html
https://www.cs.toronto.edu/~david/pyta/checkers/index.html

