
Appendix D
Competition: Resilience to Adversarial
Attack

This is a student competition to address two key issues in modern deep learning,
i.e.,

O1 how to find better adversarial attacks, and
O2 how to train a deep learning model with better robustness to the adversarial

attacks.

We provide a template code (Competition/Competition.py), where there are two
code blocks corresponding to the training and the attack, respectively. The two
code blocks are filled with the simplest implementations representing the baseline
methods, and the participators are expected to replace the baseline methods with
their own implementations, in order to achieve better performance regarding the
above O1 and O2.

D.1 Submissions

In the end, we will collect submissions from the students and rank them according
to a pre-specified metric taking into consideration both O1 and O2. Assume that we
have n students participating in this competition, and we have a set S of submissions.

Every student with student number i will submit a package i.zip, which
includes two files:

1. i.pt, which is the file to save the trained model, and
2. competition_i.py, which is your script after updating the two code blocks

in Competition.py with your implementations.

NB: Please carefully follow the naming convention as indicated above, and
we will not accept submissions which do not follow the naming convention.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
X. Huang et al., Machine Learning Safety, Artificial Intelligence: Foundations,
Theory, and Algorithms, https://doi.org/10.1007/978-981-19-6814-3

295



296 D Competition: Resilience to Adversarial Attack

D.2 Source Code

The template source code of the competition is available at

https://github.com/xiaoweih/
AISafetyLectureNotes/tree/main/Competition

In the following, we will explain each part of the code.

D.2.1 Load Packages

First of all, the following code piece imports a few packages that are needed.

1 import numpy as np
2 import pandas as pd
3 import torch
4 import torch.nn as nn
5 import torch.nn.functional as F
6 from torch.utils.data import Dataset, DataLoader
7 import torch.optim as optim
8 import torchvision
9 from torchvision import transforms

10 from torch.autograd import Variable
11 import argparse
12 import time
13 import copy

Note: You can add necessary packages for your implementation.

D.2.2 Define Competition ID

The below line of code defines the student number. By replacing it with your own
student number, it will automatically output the file i.pt once you trained a model.

1 # input id
2 id_ = 1000

D.2.3 Set Training Parameters

The following is to set the hyper-parameters for training. It considers e.g., batch
size, number of epochs, whether to use CUDA, learning rate, and random seed. You
may change them if needed.



D Competition: Resilience to Adversarial Attack 297

1 # setup training parameters
2 parser = argparse.ArgumentParser(description='PyTorch MNIST

Training')
3 parser.add_argument('--batch-size', type=int, default=128,

metavar='N',
4 help='input batch size for training (default:

128)')
5 parser.add_argument('--test-batch-size', type=int, default=128,

metavar='N',
6 help='input batch size for testing (default:

128)')
7 parser.add_argument('--epochs', type=int, default=10, metavar='N'

,
8 help='number of epochs to train')
9 parser.add_argument('--lr', type=float, default=0.01, metavar='LR

',
10 help='learning rate')
11 parser.add_argument('--no-cuda', action='store_true', default=

False,
12 help='disables CUDA training')
13 parser.add_argument('--seed', type=int, default=1, metavar='S',
14 help='random seed (default: 1)')
15 args = parser.parse_args(args=[])

D.2.4 Toggle GPU/CPU

Depending on whether you have GPU in your computer, you may toggle between
devices with the below code. Just to remark that, for this competition, the usual CPU
is sufficient and a GPU is not needed.

1 # judge cuda is available or not
2 use_cuda = not args.no_cuda and torch.cuda.is_available()
3 #device = torch.device("cuda" if use_cuda else "cpu")
4 device = torch.device("cpu")
5

6 torch.manual_seed(args.seed)
7 kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else

{}

D.2.5 Loading Dataset and Define Network Structure

In this competition, we use the same dataset (FashionMNIST) and the same network
architecture. The following code specify how to load dataset and how to construct a
3-layer neural network. Please do not change this part of code.



298 D Competition: Resilience to Adversarial Attack

1 ####################################################don't change
the below code
####################################################

2

3 train_set = torchvision.datasets.FashionMNIST(root='data', train=
True, download=True, transform=transforms.Compose([transforms
.ToTensor()]))

4 train_loader = DataLoader(train_set, batch_size=args.batch_size,
shuffle=True)

5

6 test_set = torchvision.datasets.FashionMNIST(root='data', train=
False, download=True, transform=transforms.Compose([
transforms.ToTensor()]))

7 test_loader = DataLoader(test_set, batch_size=args.batch_size,
shuffle=True)

8

9 # define fully connected network
10 class Net(nn.Module):
11 def __init__(self):
12 super(Net, self).__init__()
13 self.fc1 = nn.Linear(28*28, 128)
14 self.fc2 = nn.Linear(128, 64)
15 self.fc3 = nn.Linear(64, 32)
16 self.fc4 = nn.Linear(32, 10)
17

18 def forward(self, x):
19 x = self.fc1(x)
20 x = F.relu(x)
21 x = self.fc2(x)
22 x = F.relu(x)
23 x = self.fc3(x)
24 x = F.relu(x)
25 x = self.fc4(x)
26 output = F.log_softmax(x, dim=1)
27 return output
28

29 ####################################################end of "don't
change the below code"

####################################################

D.2.6 Adversarial Attack

The part is the place needing your implementation, for O1. In the template code, it
includes a baseline method which uses random sampling to find adversarial attacks.
You can only replace the middle part of the function with your own implementation
(as indicated in the code), and are not allowed to change others.

1 'generate adversarial data, you can define your adversarial
method'

2 def adv_attack(model, X, y, device):



D Competition: Resilience to Adversarial Attack 299

3 X_adv = Variable(X.data)
4

5 ############################################Note: below is
the place you need to edit to implement your own attack
algorithm

6 ############################################
7

8 random_noise = torch.FloatTensor(*X_adv.shape).uniform_(-0.1,
0.1).to(device)

9 X_adv = Variable(X_adv.data + random_noise)
10

11 ############################################ end of attack
method

12 ############################################
13

14 return X_adv

D.2.7 Evaluation Functions

Below are two supplementary functions that return loss and accuracy over test
dataset and adversarially attacked test dataset, respectively. We note that the function
adv_attack is used in the second function. You are not allowed to change these two
functions.

1 'predict function'
2 def eval_test(model, device, test_loader):
3 model.eval()
4 test_loss = 0
5 correct = 0
6 with torch.no_grad():
7 for data, target in test_loader:
8 data, target = data.to(device), target.to(device)
9 data = data.view(data.size(0),28*28)

10 output = model(data)
11 test_loss += F.nll_loss(output, target, size_average=

False).item()
12 pred = output.max(1, keepdim=True)[1]
13 correct += pred.eq(target.view_as(pred)).sum().item()
14 test_loss /= len(test_loader.dataset)
15 test_accuracy = correct / len(test_loader.dataset)
16 return test_loss, test_accuracy
17

18 def eval_adv_test(model, device, test_loader):
19 model.eval()
20 test_loss = 0
21 correct = 0
22 with torch.no_grad():
23 for data, target in test_loader:
24 data, target = data.to(device), target.to(device)
25 data = data.view(data.size(0),28*28)



300 D Competition: Resilience to Adversarial Attack

26 adv_data = adv_attack(model, data, target, device=
device)

27 output = model(adv_data)
28 test_loss += F.nll_loss(output, target, size_average=

False).item()
29 pred = output.max(1, keepdim=True)[1]
30 correct += pred.eq(target.view_as(pred)).sum().item()
31 test_loss /= len(test_loader.dataset)
32 test_accuracy = correct / len(test_loader.dataset)
33 return test_loss, test_accuracy

D.2.8 Adversarial Training

Below is the second place needing your implementation, for O2. In the template
code, there is a baseline method. You can replace relevant part of the code as
indicated in the code.

1 #train function, you can use adversarial training
2 def train(args, model, device, train_loader, optimizer, epoch):
3 model.train()
4 for batch_idx, (data, target) in enumerate(train_loader):
5 data, target = data.to(device), target.to(device)
6 data = data.view(data.size(0),28*28)
7

8 #use adverserial data to train the defense model
9 #adv_data = adv_attack(model, data, target, device=device

)
10

11 #clear gradients
12 optimizer.zero_grad()
13

14 #compute loss
15 #loss = F.nll_loss(model(adv_data), target)
16 loss = F.nll_loss(model(data), target)
17

18 #get gradients and update
19 loss.backward()
20 optimizer.step()
21

22 #main function, train the dataset and print train loss, test loss
for each epoch

23 def train_model():
24 model = Net().to(device)
25

26 #
#############################################################

27 ## Note: below is the place you need to edit to implement
your own training algorithm

28 ## You can also edit the functions such as train(...).



D Competition: Resilience to Adversarial Attack 301

29 #
#############################################################

30

31 optimizer = optim.SGD(model.parameters(), lr=args.lr)
32 for epoch in range(1, args.epochs + 1):
33 start_time = time.time()
34

35 #training
36 train(args, model, device, train_loader, optimizer, epoch

)
37

38 #get trnloss and testloss
39 trnloss, trnacc = eval_test(model, device, train_loader)
40 advloss, advacc = eval_adv_test(model, device,

train_loader)
41

42 #print trnloss and testloss
43 print('Epoch '+str(epoch)+': '+str(int(time.time()-

start_time))+'s', end=', ')
44 print('trn_loss: {:.4f}, trn_acc: {:.2f}%'.format(trnloss

, 100. * trnacc), end=', ')
45 print('adv_loss: {:.4f}, adv_acc: {:.2f}%'.format(advloss

, 100. * advacc))
46

47 adv_tstloss, adv_tstacc = eval_adv_test(model, device,
test_loader)

48 print('Your estimated attack ability, by applying your attack
method on your own trained model, is: {:.4f}'.format(1/

adv_tstacc))
49 print('Your estimated defence ability, by evaluating your own

defence model over your attack, is: {:.4f}'.format(
adv_tstacc))

50 ############################################
51 ## end of training method
52 ############################################
53

54 #save the model
55 torch.save(model.state_dict(), str(id_)+'.pt')
56 return model

D.2.9 Define Distance Metrics

In this competition, we take the .L∞ as the distance measure. You are not allowed to
change the code.

1 #compute perturbation distance
2 def p_distance(model, train_loader, device):
3 p = []
4 for batch_idx, (data, target) in enumerate(train_loader):
5 data, target = data.to(device), target.to(device)



302 D Competition: Resilience to Adversarial Attack

6 data = data.view(data.size(0),28*28)
7 data_ = copy.deepcopy(data.data)
8 adv_data = adv_attack(model, data, target, device=device)
9 p.append(torch.norm(data_-adv_data, float('inf')))

10 print('epsilon p: ',max(p))

D.2.10 Supplementary Code for Test Purpose

In addition to the above code, we also provide two lines of code for testing purpose.
You must comment them out in your submission. The first line is to call the
train_model() method to train a new model, and the second is to check the quality
of attack based on a model.

1 #Comment out the following command when you do not want to re-
train the model

2 #In that case, it will load a pre-trained model you saved in
train_model()

3 model = train_model()
4

5 #Call adv_attack() method on a pre-trained model
6 #The robustness of the model is evaluated against the infinite-

norm distance measure
7 #!!! Important: MAKE SURE the infinite-norm distance (epsilon p)

less than 0.11 !!!
8 p_distance(model, train_loader, device)

D.3 Implementation Actions

Below, we summarise the actions that need to be taken for the completion of a
submission:

1. You must assign the variable id_ with your student ID i;
2. You need to update the adv_attack function with your adversarial attack method;
3. You may change the hyper-parameters defined in parser if needed;
4. You must make sure the perturbation distance less than 0.11, (which can be

computed by p_distance function);
5. You need to update the train_model function (and some other functions that it

called such as train) with your own training method;
6. You need to use the line “model = train_model()” to train a model and check

whether there is a file i.pt, which stores the weights of your trained model;
7. You must submit i.zip, which includes two files i.pt (saved model) and

competition_i.py (your script).



D Competition: Resilience to Adversarial Attack 303

D.3.1 Sanity Check

Please make sure that the following constraints are satisfied. Your submission won’t
be marked if they are not followed.

• Submission file: please follow the naming convention as suggested above.
• Make sure your code can run smoothly.
• Comment out the two lines “model = train_model()” and “p_distance(model,

train_loader , device)”, which are for test purpose.

D.4 Evaluation Criteria

Assume that, among the submissions S, we have n submissions that can run
smoothly and correctly. We can get model .Mi by reading the file i.pt.

Then, we collect the following matrix

Score =

⎛

⎜⎜⎜⎝

⎞

⎟⎟⎟⎠

i = 1 s11 s12 . . . s1(n−1) s1n

i = 2 s21 s22 . . . s2(n−1) s2n

. . .

i = n − 1 s(n−1)1 s(n−1)2 . . . s(n−1)(n−1) s(n−1)n

i = n sn1 sn2 . . . sn(n−1) snn

j = 1 j = 2 . . . j = n − 1 j = n

(D.1)

for the mutual evaluation scores of using .Mi to evaluate .Atkj (defined in function
adv_attack). The score .sij is the test accuracy obtained by using adv_attack
function from the file competition _j .py to attack the model from i.pt. From
Eq. (D.1), we get j ’s attacking ability by letting

.AttackAbilityj =
n∑

i=1

Scorei,j (D.2)

to be the total of the scores of j -th column. Let .AttackAbility be the vector of
.AttackAbilityj . Moreover, we get i’s defence ability by letting

.Def enceAbilityi =
n∑

j=1

Scorei,j , (D.3)


