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Abstract—In the context of optical wireless communications (as
well as millimeter wave and terahertz systems), it is important
to consider the random orientation of the user equipment (UE).
At such small wavelengths, the UE’s random orientation affects
the angle of arrival or incidence angle that leads to a change
in channel gain as well as the received signal-to-noise ratio
(SNR). Furthermore, it can result in frequent handover that
may affect user’s quality of experience. Hence, it is required
to consider the random orientation of the UE in our analysis
to obtain more realistic results. Therefore, a framework that
combines the conventional mobility models with the random
orientation model is required. In this study, we propose an
extended orientation-based random waypoint mobility model, in
which the random orientation of the UE is considered during both
walking and pause time. The parameters of the model are set
based on the experimental measurements of device orientation.
The application of this model to an indoor light-fidelity (LiFi)
network is studied as a use case by analyzing the handover rate.

Index Terms—Mobility, random waypoint, random orientation,
LiFi.

I. INTRODUCTION

High-frequency (above 30 GHz) radio frequency (RF)
communication technologies such as millimeter wave (30
to 300 GHz), terahertz (300 GHz to 3 THz) and optical
wireless communications (10 THz to 1 PHz), are highly
sensitive to a change in location and orientation of devices, see
[1]–[3]. These technologies are possible candidates for next
generations of wireless communications with much higher
data rate requirements [4]. However, to be integrated in future
generations of cellular networks, system-level design as well
as network-level analyses of these networks are required by
means of more realistic models for mobility and orientation.

A frequently-used mobility model for wireless cellular
networks is the random waypoint (RWP) model [5]–[9].
The RWP provides flexibility, such as the incorporation of
occasional pause times in modeling the mobility of users.
However, the conventional RWP is not a complete model for
light-fidelity (LiFi) and millimeter wave (mmWave) cellular
networks. The reason behind this is that it does not consider
the random orientation of the user equipment (UE). In fact, in
both LiFi and mmWave networks, the random orientation of
the UE is an important factor since a change in the device
orientation affects the UE’s performance. For instance, it
can lead to a handover that would not normally happen in
conventional RF systems. Hence, it is crucial to incorporate
the random orientation of the UE with user mobility to provide

a more realistic framework for the performance analysis in
LiFi and mmWave networks.

In our recent studies, we derived the statistical models
of device orientation for sitting and walking activities
by recording instantaneous rotation angles of smartphones
[10]–[13]. The statistical results are obtained based on
experimental measurements for three elemental rotation angles
called Euler angles. It is shown that these angles follow
Laplace distributions for sitting activities while for walking
activities they are well-fitted to Gaussian distributions [13].
Device orientation has also been analyzed from a temporal
point of view [10], [14]. The recorded experimental data
confirms that the measured rotation angles are correlated
[13]. Hence, methods to generate a correlated Gaussian
random process (RP) based on the first-order autoregressive
(AR) model [10], [13] and harmonic RP [14] are proposed.
In [10], a correlated Gaussian RP based on AR(1) is
proposed for the polar angle and it is incorporated into
the conventional RWP, which is called the orientation-based
random waypoint (ORWP) mobility model. In [13], [15], the
ORWP mobility model has been used for a receiver with
multiple photodetectors (PDs) by modeling each elemental
rotation angle as a Gaussian RP.

The above studies did not consider ‘pause time’ in their
simulations. However, in a realistic mobility model the users
may pause for random periods of time when users remain
static [5]. Users are static during pause time. According to
[10], the orientation model for static users follows a Laplace
distribution, which is different from the one for walking
activities, i.e., the Gaussian distribution. More importantly,
random orientation may not be a stationary RP during the
pause time, which has not been investigated in previous
studies. In this study, the ORWP will be further extended
to include the random orientation behavior of a UE during
both movement and pause time as a correlated Gaussian RP
and a correlated Laplace RP, respectively. Furthermore, the
non-stationary behavior of random orientation during the pause
time as well as the fluctuations about the azimuth angle have
been considered to provide a more realistic framework for
the analysis of mobility in optical wireless networks. The
rest of this paper is organized as follows. In Section II, the
system model is presented. The proposed ORWP is discussed
in Section III. Simulation results are presented in Section IV.
Section V concludes this paper.
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Fig. 1: Random waypoint mobility model.
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Fig. 2: Realizations of β for (a) a walking user, (b) a static user.

II. SYSTEM MODEL

A. LiFi Channel Model

The direct current (DC) gain of the line-of-sight (LoS)
component of LiFi systems is given as [16]:

H =
(m+ 1)APD

2πd2
cosmϕ gfg(ψ) cosψ rect

(
ψ

Ψc

)
, (1)

where the area of the PD is denoted by APD, ψ and ϕ are
the angle of incidence with respect to the axis normal to the
receiver surface, and the angle of radiance with respect to
the axis normal to the transmitter surface, respectively. The
receiver field of view (FOV) is Ψc; and rect( ψΨc

) = 1 for
0 ≤ ψ ≤ Ψc and 0 otherwise. The gain of the optical filter
is shown by gf . The optical concentrator, is given as g(ψ) =
ς2/sin2 Ψc, if 0 ≤ ψ ≤ Ψc, otherwise g(ψ) = 0; where ς is
the refractive index. In (1), m is the Lambertian order which
is m = −1/log2(cosΦ1/2), where Φ1/2 is the half-intensity
angle. The radiance angle ϕ and the incidence angle ψ of the
transmitter and the receiver can be calculated as:

cosϕ =
−d · nt

∥d∥
, cosψ =

d · n′
u

∥d∥
, (2)

where nt = [0, 0,−1]T and n′
u are the normal vectors at

the transmitter and the receiver planes, respectively and d is
the distance vector from the receiver to the transmitter. The
symbols · and ∥·∥ are the inner product and the Euclidean norm
operators, respectively. Also (.)T is the transpose operator.

B. Random Orientation Model

The UE orientation can be expressed by three elemental
angles yaw, α, pitch, β, and roll, γ [17], which can be
measured by various sensors mounted on a smartphone. Based
on Euler’s rotation theorem [18], the three elemental rotations
can be described by three elemental rotation matrices, which
are denoted as Rα, Rβ and Rγ , respectively. And the overall
rotation matrix is denoted as R = RαRβRγ . The normal
vector perpendicular to the screen of the smartphone is denoted
as nu = [n1, n2, n3]

T. The normal vector after rotation,
n′
u = [n′

1, n
′
2, n

′
3]

T, can be obtained as n′
u = Rnu. The

distribution of the random UE orientation (i.e., rotational
angles) has been measured and modeled for both walking and
sitting scenarios [10], [13]. It has been shown in [13] that
the three angles α, β and γ follow a Gaussian or a Laplace
distribution for walking or static users, respectively.

C. Conventional Random Waypoint Model

According to the RWP model, at each waypoint, the
movement of the UE needs to follow three rules, i)
users randomly choose their destinations in the room
area; ii) users move straight from source to destination
with a constant speed; iii) the users may pause for a
random period of time at the destination before moving
again. The RWP mobility model is described as a
discrete-time stochastic process. Mathematically, the RWP
can be denoted as an infinite sequence of quadruple:{
(Pn−1,Pn, vn, Tp,n)

∣∣ n ∈ N
}

where n stands for the nth
movement period. As shown in Fig. 1, the UE moves from
the random waypoint Pn−1 = (xn−1, yn−1) to the destination
point Pn = (xn, yn) with a speed of vn chosen from a
random distribution of fv [5]. Then, it pauses at the destination
for a period of Tp,n. The transition length is defined as
Dn = ∥Pn −Pn−1∥, which is the Euclidean distance between
two consecutive waypoints, Pn−1 and Pn. The angle between
the direction of movement and the positive direction of the
x-axis is defined as the angle of direction, Ω, as shown in
Fig. 1. The elapsed time between two successive movements
for the nth period is given as Te,n = TD,n + Tp,n, where
TD,n = Dn/vn and Tp,n denotes the pause time at the
destination, which is chosen from a random distribution of
fTp . In this study, it is assumed that fTp is an exponential
distribution with a mean value of E[Tp] [5].

III. EXTENDED ORIENTATION-BASED RANDOM
WAYPOINT MODEL

In the context of LiFi as well as mmWave cellular networks,
the effect of a UEs’ orientation on the performance of
the system is significant. In fact, a significant change of
UEs’ orientation, whether individually or combined with the
mobility of the user, can lead to a handover that would
not normally happen for UEs with a constant orientation.
So in order to provide a realistic framework to analyze the
performance of mobile wireless networks, we need to combine
the conventional RWP with the random orientation of the UE.

However, in order to integrate the random orientation of
a device with user mobility, it is required to model it as a
RP. According to the experimental measurements [10], the
elemental rotation angles, i.e. α, β and γ, can be modeled
as stationary correlated Gaussian RPs for walking users.
However, for static users, sudden changes are occasionally
observed after random periods in these angles; hence, they
can be modeled more realistically as non-stationary Laplace
RPs [14]. One realization of β (obtained from experimental
measurements) is shown in Fig. 2a for a mobile user and
Fig. 2b for a static user. The correlated Gaussian and Laplace
RP are described in the following subsections.
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A. Correlated Gaussian Process

A simple method to generate a correlated Gaussian RP is to
pass a white noise process through a linear time-invariant (LTI)
filter, e.g., using a linear AR model. The goal is to match the
generated RP to the moments and the coherence time of the
elemental rotation angles measured experimentally. Hence, it
is sufficient to only consider first-order AR model by assuming
p = 1 to generate the correlated Gaussian RP. Therefore, after
passing the white noise process, w[n], through the LTI filter,
the nth sample of the AR(1) model can be expressed as:

α[n] = c0 + c1α[n− 1] + w[n], (3)

where c0 denotes the biased level and c1 is a constant factor. To
guarantee the RP, α, is wide-sense stationary, c1 should meet
the condition |c1| < 1. The mean, variance and autocorrelation
function (ACF) of AR(1) are denoted as [19]:

E[α]=
c0

1− c1
, σ2

α=
σ2
w

1− c21
, Rα(ℓ)=cℓ1, (4)

where σ2
w is the variance of white noise RP, w. Note that the

coherence time of RP α is denoted as Tc,α and defined as the
time that satisfies Rα(ℓα =

Tc,α

Ts
) = 0.05, where Ts is the

sample time. Based on the above equations, we have:

c0=(1− c1)E[α], σ2
w=(1− c21)σ2

α, c1=0.05
Ts

Tc,α . (5)

The nth time sample of the correlated Gaussian RP, α, can be
determined according to (3) after determining the parameters
of the AR(1) model. Using the same method, the nth sample
of β and γ can also be specified.

B. Correlated Laplace Process

The experimental measurements illustrate that the mean
value of β changes after a random period Ti, i ∈ N, when users
are static. This behavior is not observed in the experimental
data of walking users which means that they tend to keep their
smartphone with a constant mean value during the movement,
however with some fluctuations around it (please see Fig. 2a
and 2b). Therefore, the RP β is not stationary for static users.
However, it is fair to assume it as a weak-sense stationary
(WSS) RP over small duration of Ti. Hence, we aim to provide
a new framework to model the non-stationary behavior of β
by breaking it into small stationary RPs. We assume that Ti
follows an exponential distribution with a mean value of Tm. It
is also assumed that the mean value, βi, at each Ti are chosen
randomly from a uniform distribution U(βmin, βmax). Note
that these two assumptions does not change the generality of
the model and other distributions can be also assumed. Next,
we need to create correlated Laplace samples with the mean
and variance of βi and σ̂2

β,i for each duration of Ti.
Methods to generate a zero-mean Laplace process with a

desired ACF is introduced in [20], [21]. The methods are based
on the multiplication of independent zero-mean Gaussian RPs.
We use a similar procedure to generate a non-zero correlated
Laplace RP as shown in Fig. 3. That is, after passing the
complex white noise, wi, i = 1, 2, through an AR(1) LTI filter,
the correlated Gaussian noise ϑ1 and ϑ2 are produced. The

Fig. 3: Block diagram of generating the correlated Laplace process.

real or imaginary part of the multiplication of these correlated
Gaussian noise, ϑ1 and ϑ2, is a correlated zero-mean Laplace
process. Based on the desired mean value for the final RP, ϑ,
the bias b0 is added to it. Without loss of generality, we assume
that the AR(1) filters have equal orders and they are identical.
In this study and for the purpose of simplicity, we only
considered the first-order autoregressive process, i.e., AR(1).
In fact, as it will be shown in Lemma 1, this simple model is
sufficient to match the mean, variance and the coherence time
of the generated RP ϑ to the statistics of α, β and γ provided
in Table I of [13].

Let ϑi[n] represents the nth sample of the correlated
complex RP, ϑi, obtained from AR(1) model, then we have:

ϑi[n] = c0 + c1ϑi[n− 1] + w[n], i = 1, 2 (6)

To ensure that ϑ1 and ϑ2 are zero-mean RPs, c0 = 0. The
parameters c1, σ2

w and b0 should be obtained in such a way
that match the statistics of the correlated Laplace RP, ϑ. These
parameters can be uniquely determined using the following
lemma.

Lemma 1: The expected value, variance and ACF of the RP
ϑ are given as:

E[ϑ] = b0, σ2
ϑ =

σ4
w

2(1− c21)2
, Rϑ(ℓ) = c2ℓ1 . (7)

Proof: See Appendix.
For the RP α, the parameter c1 can be first determined by

matching the coherence time of the RP to the one obtained
from experimental measurements. Therefore, by substituting
ℓ =

Tc,α

Ts
in (7) and noting that Rα(ℓ =

Tc,α

Ts
) = 0.05 [22],

we have:
c1 = 0.05

Ts
2Tc,α . (8)

From (7), we have:

σ2
w =
√
2σϑ(1− c21). (9)

Finally, the nth sample of the correlated Laplace process, α,
is given as:

α[n] = Re {α1[n]α2[n]}+ b0, (10)

where αi[n] = c1α[n − 1] + w[n] for i = 1, 2 and Re{·}
picks the real part. This approach can be repeated to obtain
the correlated samples of the RPs β and γ. For the RP β the
samples are determined based on the corresponding βi and
σ̂2
β,i for each duration of Ti.
By combining the two methods described above in

subsections A and B, one can readily generate samples
of device orientation whether the user is mobile or static.
Hence, the ORWP that incorporates the orientation with
RWP mobility can be modeled as an infinite sequence of
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Algorithm 1 Extended orientation-based random waypoint

1: Initialization:
Denote P0=(x0, y0) as the initial UE’s position
N as the number of simulation runs; v as the average
speed of UE; Tc,α, Tc,β and Tc,γ as the coherence time of
α, β and γ, respectively; Set Tc = min{Tc,α, Tc,β , Tc,γ};

2: for k = 1 : N do
3: Choose a random position Pk = (xk, yk)
4: Compute Dk = ∥Pk − Pk−1∥
5: Compute Ω = tan−1

(
yk−yk−1

xk−xk−1

)
6: tmove ←− 0
7: n←− 1;
8: while tmove ≤ Dk

v do
9: Compute Pn=(xn, yn) with xn=xn−1 + vTc cosΩ

and yn = yn−1 + vTc sinΩ
10: Generate Θn = (αn,βn,γn) based on the correlated

Gaussian AR(1) model described in Section III-A
11: Return (Pn−1,Pn, v, 0,Θn) as ORWP specifications
12: n←− n+ 1
13: tmove ←− tmove + Tc
14: end while
15: if tmove ̸= Dk

v − Tc then
16: Generate Θn = (αn,βn,γn) based on the correlated

Gaussian AR(1) model described in Section III-A
17: Pn ←− Pk
18: Return (Pn−1,Pn, v, 0,Θn) as ORWP specifications
19: n←− n+ 1
20: end if
21: Choose a random pause time Tp,n from a random

distribution of fTp

22: tpause ←− 0
23: while tpause ≤ Tp,n + Tc do
24: Generate Θn = (αn,βn,γn) based on the correlated

Laplace AR(1) model described in Section III-B
25: Pn ←− Pn−1

26: Return (Pn−1,Pn,v,Tp,n,Θn) as ORWP specifications
27: n←− n+ 1
28: tpause ←− tpause + Tc
29: end while
30: k ←− k + 1
31: end for

{
(Pn−1,Pn, vn, Tp,n,Θn(k))

∣∣ n, k ∈ N
}

, where Θn(k) =
(αn(k), βn(k), γn(k)) determines the orientation of device at
time instance k. The ORWP is outlined in the Algorithm 1.

IV. SIMULATION RESULTS

In the simulation setup, we consider a room of size 10×10
m2. The user’s movement is based on the ORWP mobility
model. Fig. 4 shows the PDF and ACF of β for walking
and static users with N = 104 realizations. As it can be
seen from Fig. 4a and Fig. 4c, the PDF of β follows a
Gaussian distribution with a mean value of 28.80 and standard
deviation of 3.25 for walking users while it follows a Laplace
distribution with µβ = 30 and σβ = 2.39 for static users. The

(a) PDF of β for walking users
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(b) ACF of β for walking users

(c) PDF of β for static users
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Fig. 4: Statistics of β.

average coherence time of β for walking and static users are
shown in Fig. 4b and Fig. 4d, respectively. We note that for
some realizations the coherence time might be less and for
some other realizations, it might be higher than the average
coherence time. This effect has been seen in the experimental
measurements as well. However, by taking the average values,
we find that both of them are very close. By comparing
the values of mean, standard deviation and coherence time
obtained from Monte-Carlo simulations with the experimental
measurements, reported in Table I, the accuracy of the models
described in Section III-A and Section III-B is justified.

Next, we investigate the effect of the ORWP mobility model
on the handover rate in a LiFi network as a case study.
It is noted that similarly the impact of the ORWP model
can be evaluated in a mmWave or Terahertz network. Also,
instead of handover rate which is one of the key metrics in
cellular network design, other parameters such as received
signal-to-noise ratio (SNR), user throughput and so on can
be considered. Handover rate is defined as [23]:

H =

∑N
i=1Nh,i∑N
i=1 Te,i

, (11)

where Nh,i is the number of handovers during the ith
elapsed time, Te,i. In fact, the numerator and denominator of
(11) denote the total number of handovers and the overall
simulation time, respectively.

In this simulation setup, four LiFi APs are assumed
such that the network area is divided into four separate
quadrants (attocells) with one AP at the center of each attocell.
Simulation parameters are presented in Table II. The UE is
assumed to be initially connected to the corresponding AP
denoted as APj for j = 1, 2, 3, 4. Fig. 5 represents the
Monte-Carlo simulations of handover rate for ORWP (shown
by the solid line) and conventional RWP (shown by the dashed
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TABLE I: Statistics of orientation measurement.

Static Walking
α β γ α β γ

Mean Ω-90 U(20, 40) -0.84 Ω-90 28.81 -1.35
Standard deviation 3.67 2.39 2.21 10 3.26 5.42
Coherence Time 0.342 0.377 0.331 0.131 0.176 0.142
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Fig. 5: Handover rate versus mean value of pause time.

TABLE II: Simulation parameters

Parameter Symbol Value
Room area - 10× 10 m2

Locations of APs - (±2.5,±2.5)
Vertical distance of UE and AP h 2.15 m
LED half-intensity angle Φ1/2 60◦

Receiver FOV Ψc 90◦

Physical area of a PD APD 1 cm2

Gain of optical filter gf 1
Refractive index ς 1

lines) mobility models. In the conventional RWP model, the
UE is vertically upward without any random orientation. In
the simulations, we assumed that the pause time is chosen
from an exponential distribution with the mean value of E[Tp]
seconds [5]. During a pause time, WSS RPs of β are generated
for a random period taken from an exponential distribution of
Exp(1/30). The mean values βi are chosen uniformly between
20 and 40. Three speed values of v = 1 m/s, v = 1.4
m/s and v = 2 m/s are chosen around the average human
walking speed [24]. As can be seen from Fig. 5, the handover
rate decreases overall with an increase in the mean value of
pause time. The results show a considerable gap between the
conventional RWP and the proposed ORWP mobility models,
which signifies the difference of these two methods.

Fig. 6 presents the impact of different parameters of
correlated Laplace RP β on the handover rate. In these results,
we set v = 1 m/s. As described in Section III-B, a WSS
RP with mean value of βi ∼ U(βmin, βmax) is generated for
a duration of Ti, where Ti ∼ Exp(1/Tm). Fig. 6a shows
the handover rate versus the expected duration Tm for which
βi ∼ U(20, 40). A slight decrease of handover rate is observed
as Tm increases. The results are illustrated for three values
of E[Tp]. As expected, higher handover rate corresponds to
lower E[Tp]. Fig. 6b presents the handover rate versus E[Tp]
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Fig. 6: Impact of parameters variations of correlated Laplace RP β on
handover rate.

for different values of βmin and βmax. For these results, we
set Tm = 10. It is noted that the lower handover rate is related
to the case of βmin = βmax which is intuitively true. This is
because all βi’s are the same and the RP β is stationary during
the whole time. However, as βmin and βmax diverge from each
other, the handover rate increases. That is, the RP β becomes
a non-stationary process.

V. CONCLUSIONS

In this study, an extended ORWP mobility model is
proposed, in which the orientation of UEs is considered.
Inspired by the experimental measurements, we presented
a new scheme that takes into account the pause time by
generating non-stationary Laplace RP for device orientation.
Both correlated Laplace and Gaussian RPs are modeled based
on AR(1) for which the parameters are obtained according
to the experimental measurements. The accuracy of AR(1)
model is validated through Mote-Carlo simulations. Finally,
the proposed ORWP mobility model is compared with the
conventional RWP in a LiFi cellular network to assess
the handover rate. The results confirm the importance of
incorporating the random orientation with user mobility to
provide a more realistic framework for performance analysis.
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APPENDIX

Proof of Lemma 1
As mentioned, the nth sample of correlated Laplace process,

ϑ, can be expressed as:

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on July 26,2020 at 10:43:24 UTC from IEEE Xplore.  Restrictions apply. 



ϑ[n] = Re {ϑ1[n]ϑ2[n]}+ b0. (12)

For simplicity of notation, we drop the time index n from
equations. The mean value of the RP ϑ is given as:

E [ϑ] = E [Re {ϑ1ϑ2}] + b0. (13)

Since ϑ1 and ϑ2 are zero-mean RPs, ϑ1ϑ2 is also a zero-mean
RP. Hence, E [Re {ϑ1ϑ2}] = 0, and we have E [ϑ] = b0.

Substituting ϑ1 = ϑR1 + jϑI1 and ϑ2 = ϑR2 + jϑI2 in (12),
and noting that random variables ϑR1 , ϑR2 , ϑI1 and ϑI2 are
independent, the variance of the random variable ϑ can be
obtained as:

σ2
ϑ = E

[(
ϑR1 ϑ

R
2 − ϑI1ϑI2

)2]− E2
[
ϑR1 ϑ

R
2 − ϑI1ϑI2

]
. (14)

After some simplifications, we arrive at:

σ2
ϑ =E

[(
ϑR1

)2]E [(
ϑR2

)2]
+ E

[(
ϑI1

)2]E [(
ϑI2

)2]
. (15)

Note that we have:

E
[(
ϑRi

)2]
= E

[(
ϑIi
)2]

=
σ2
w/2

1− c21
. (16)

Therefore, substituting (16) into (15), we get:

σ2
ϑ =

σ4
w

2(1− c21)2
. (17)

The definition of normalized autocorrelation for a WSS RP
is [25]:

Rϑ(ℓ) =
E[(ϑ[n]− µϑ)(ϑ[n+ ℓ]− µϑ)]

σ2
ϑ

, (18)

where µϑ = E[ϑ] = b0. Substituting for ϑ[n] =
Re {ϑ1[n]ϑ2[n]}+ b0, (18) can be simplified as:

Rϑ(ℓ) =
1

σ2
ϑ

E [Re {ϑ1[n]ϑ2[n]}Re {ϑ1[n+ ℓ]ϑ2[n+ ℓ]}]

=
1

σ2
ϑ

E
[(
ϑR1 [n]ϑ

R
2 [n]− ϑI1[n]ϑI2[n]

)
×(

ϑR1 [n+ ℓ]ϑR2 [n+ ℓ]− ϑI1[n+ ℓ]ϑI2[n+ ℓ]
)]

=
1

σ2
ϑ

E
[
ϑR1 [n]ϑ

R
1 [n+ ℓ]ϑR2 [n]ϑ

R
2 [n+ ℓ]

]
+

1

σ2
ϑ

E
[
ϑI1[n]ϑ

I
1[n+ ℓ]ϑI2[n]ϑ

I
2[n+ ℓ]

]
.

(19)
The third equality in (19) is a result of the fact that ϑRi
and ϑIi are independent and identically distributed (i.i.d.) RPs.
Substituting E

[
ϑRi [n]ϑ

R
i [n+ ℓ]

]
= σ2

ϑR
i
RϑR

i
(ℓ) and similarly

for imaginary part in (19), we have:

Rϑ(ℓ)=
1

σ2
ϑ

[
σ2
ϑR
1
σ2
ϑR
2
RϑR

1
(ℓ)RϑR

2
(ℓ) + σ2

ϑI
1
σ2
ϑI
2
RϑI

1
(ℓ)RϑI

2
(ℓ)

]
(20)

Comparing (16) and (17), we have:

σ2
ϑ = 2σ4

ϑR
i
= 2σ4

ϑI
i
, i = 1, 2. (21)

Substitution (21) into (20) and noting that RϑR
i
(ℓ) =

RϑI
i
(ℓ) = cℓ1, we have:

Rϑ(ℓ) = c2ℓ1 . (22)

This completes the proof of (7).
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