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ABSTRACT 
The main goal of the motif finding problem is to detect novel, 
over-represented unknown signals in a set of sequences. Popular 
algorithms like Expectation Maximization (EM) and Gibbs 
sampling are sensitive to the initial guesses and are known to 
converge to the nearest local maximum very quickly. A novel 
optimization framework searches the neighborhood regions of the 
initial alignments in a systematic manner to explore the multiple 
local optimal solutions. This effective search is achieved by 
transforming the original optimization problem into its 
corresponding dynamical system and estimating the practical 
stability boundary of the local maximum. The work aims at 
implementing the hybrid algorithm and enhancing it by trying 
different global methods and other techniques. Then aggregation 
methods rather than projection methods are tried. 

Categories and Subject Descriptors 
J.3  [Life and Medical Sciences]: Biology and genetics, Health 
and Medical Information Systems. 

General Terms 
Algorithms, Human Factors  

Keywords 
Motif Finding, Expectation Maximization, Refinement, Random 
Projection 
 

1. INTRODUCTION 
Discovery of patterns in DNA sequences is one of the most 
challenging problems in molecular biology and computer science.  
The identification of regulatory motifs is essential for the study of 
gene expression. The main idea in gene expression is that every 
gene contains the information to produce a protein. Gene 
expression begins with binding of multiple protein factors, known 
as transcription factors, to enhancer and promoter sequences. 
Transcription factors regulate the gene expression by activating 

or inhibiting the transcription machinery.  
 
The identification and discovery of regulatory elements using 
computational algorithms is difficult because they are frequently 
short and variable. The motif finding problem is the task of 
detecting overrepresented motifs as well as conserved motifs 
from the set of DNA sequences that are good candidates for being 
transcription factor binding sites. Transcription factor is a Protein 
that acts as regulator for gene expression, specifically regulating 
the activation of transcription process in which mRNA is made 
using DNA as a template. Motif is the common sequence 
“pattern” in the binding sites of a transcription factor. Finding 
motifs will help to develop disease treatments and understand 
disease susceptibility.         
                         
Synthesis of proteins is a two-step process. First step is 
transcription where an RNA “copy” of a portion of the DNA is 
synthesized. In the second step called translation, this RNA 
sequence is read and interpreted to synthesize a protein. 
Together, and these two steps are called gene expression. Gene 
expression and its regulation involve the binding of many 
regulatory transcription factors (TFs) to specific DNA elements 
called Transcription Factor Binding Sites (TFBS). In the last 
decade, the computational identification of TFBS (Transcription 
Factor Binding Sites) through the analysis of DNA sequence data 
has emerged as a major new technology to explain the 
transcription regulatory networks.  

1.1 Motif Discovery Process 
The mechanism that is responsible for the coordinated behavior 
of genes can be searched given a cluster of genes with highly 
similar expression profiles. It is assumed that co expression 
frequently arises from transcriptional co regulation. As co 
regulated genes are known to share some similarities in their 
regulatory mechanism, possibly at transcriptional level, their 
promoter regions might contain some common motifs that are 
binding sites for transcription regulators. A sensible approach to 
detect these regulatory elements is to search for statistically 
overrepresented motifs in the promoter region of such a set of co 
expressed genes. 
 
In recent years, the efforts for large-scale sequencing of many 
genomes have lead to the easy availability of sequences that 
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contain regulatory elements. Technologies such as microarray 
and Chip-on-chip make it feasible to identify potential targets of 
transcription factors 
In many organisms, the DNA that codes for proteins (genes) is 
only a small portion of the total genomic DNA. For example, 
genes make up only about 1.5% of the human genome. The 
control mechanism for activating and deactivating the genes is 
actually contained in the non coding components of DNA, which 
were initially considered as “junk” sequences. They take care of 
synthesis and non synthesis of proteins. Most of the control 
sequences for a gene lie in the upstream regulatory region, which 
is the region of a few thousand base pairs directly before the gene 
[also called the transcription regulatory region (TRR) or the 
promoter]. 
 

 Fig. 1. Showing the Motif discovery Process.  
 

1.2 Objectives of the Work 
The objectives include experimenting with the hybrid motif 
discovery algorithms to improve the effectiveness, obtaining 
better parameters which would lead to good motifs in information 
content, generating the sequences which would closely resemble 
the real world sequences and finally implementing locality 
sensitive hashing method to achieve good multiple alignments. 
 

2. RELATED WORK 
2.1 Existing Methodologies 
The present motif discovery algorithms are classified into: 
(1) Word-based (string-based) methods that mostly rely on 
exhaustive enumeration, i.e., counting and comparing nucleotide 
frequencies and  
(2) Probabilistic sequence models where the model parameters 
are estimated using maximum-likelihood principle or Bayesian 
inference.  
 
The word-based enumerative methods guarantee global 
optimality and they are appropriate for short motifs. The word-
based methods can also be very fast when implemented with 
optimized data structures such as suffix trees [1] and are a good 
choice for finding totally constrained motifs, i.e., all instances are 
identical. However, for typical transcription factor motifs that 
often have several weakly constrained positions, word-based 

methods can be problematic and the result often needs to be post-
processed with some clustering system [2].  
Probabilistic methods have the advantage of requiring few search 
parameters but rely on probabilistic models of the regulatory 
regions, which can be very sensitive with respect to small 
changes in the input data. Many of the algorithms developed from 
the probabilistic approach are designed to find longer or more 
general motifs than are required for transcription factor binding 
sites. However, these algorithms are not guaranteed to find 
globally optimal solutions. 
 
Existing approaches used to solve the motif finding problem can 
be further classified into two main categories [3]. The first group 
of algorithms utilizes a generative probabilistic representation of 
the nucleotide positions to discover a consensus DNA pattern that 
maximizes information content score. In this approach, the 
original problem of finding the best consensus pattern is 
formulated into finding the global maximum of a continuous non-
convex function.  
 
The second group uses patterns with ‘mismatch representation’ 
which defines a signal to be a consensus pattern and allows up to 
a certain number of mismatches to occur in each instance of the 
pattern. The goal of these algorithms is to recover the consensus 
pattern with the highest number of instances.  
 

EM methods: 
EM for motif finding was introduced by Lawrence and Reilly [4] 
and it was an extension of the greedy algorithm for motif finding 
by Hertz et al.  It was primarily developed for protein motifs; 
however, it can also be applied for DNA motif finding. No 
alignment of the sites is required and the basic model assumption 
is that each sequence must contain at least one common site. The 
uncertainty in the location of the sites is handled by employing 
the missing information principle to develop an EM algorithm. 
This approach allows for the simultaneous identification of the 
sites and characterization of the binding motifs. The MEME 
algorithm by Bailey and Elkan [5] extended the EM algorithm for 
identifying motifs in unaligned biopolymer sequences. The aim 
of MEME is to discover new motifs in a set of biopolymer 
sequences where little is known in advance about any motifs that 
may be present. MEME incorporated three novel ideas for 
discovering motifs. First, subsequences that actually occur in the 
biopolymer sequences are used as starting points for the EM 
algorithm to increase the probability of finding globally optimum 
motifs. Second, the assumption that each sequence contains 
exactly one occurrence of the shared motif is removed. Third, a 
method for probabilistically erasing shared motifs after they are 
found is incorporated so that several distinct motifs can be found 
in the same set of sequences; both when different motifs appear 
in different sequences and when a single sequence may contain 
multiple motifs.  

Gibbs sampling methods: 
Among the probabilistic methods Gibbs sampling method has 
been used extensively for motif finding algorithms. Gibbs 
sampler for motif finding was developed by Lawrence et al. [6]. 
They did not apply this algorithm to DNA sequence but applied 
to protein sequence in the original article. Since one of the 
original assumptions of this algorithm was that there exists at 



 

 

least one instance of a motif in every sequence, the method is 
sometimes called the "site sampler". Gibbs sampler is a Markov 
Chain Monte Carlo (MCMC) approach: "Markov-Chain", since 
the results from every step depends only on the results of the 
preceding one like in EM; "Monte-Carlo", since the way to select 
the next step is not deterministic but rather based on random 
sampling, i.e., random-numbers. The statistical background of 
MCMC methods is explained in the book by Liu [7] and that of 
Gibbs sampling in the article by Liu et al. [8]. In this algorithm it 
is assumed that we are given a set of N sequences S1,...,SN and we 
seek within each sequence mutually similar segments of specified 
width W. 
 

2.2 Popular Motif Discovery Algorithms with 
Advantages and Limitations 
AlignACE is a Gibbs sampling algorithm that returns a series of 
motifs as weight matrices that are over represented in the input 
set. AlignACE is the first statistical motif finder. It provides an 
adjunct measure that takes into account the sequence of the entire 
genome and highlights those motifs found preferentially in 
association with genes under consideration [9] 
 
GLAM It is a Gibbs sampling based algorithm that automatically 
optimizes the alignment width and evaluates the stastical 
significance of its output [10] 
 
MEME optimizes the E value of a statistic related to the 
information content of the motif. Rather than sum of information 
content of each motif column statistic used is the product of P 
values of column information contents [11] MEME use the EM 
algorithm.  It is the most popular program for motif finding. 
 
BioProspector is another variant of the Gibbs Sampling 
algorithm. Compared with the Lawrence version it added a 
Markov model estimated from all promoter sequences in the 
genome to model adjacent nucleotide dependency. It has 15 
parameters. The default values for most of these parameters 
except for the motif width, which is set to 15, and the number of 
top motifs to report, which is set to 5. The background frequency 
model is generated using the whole genome, and the third-order 
Markov model is used unless otherwise specified. The order of 
the Markov model is chosen because it was the best among those 
tested [12]. 
 

3. PROPOSED WORK 

3.1 Theoretical Background 
X is said to be a critical point   if it satisfies the following 
Condition 

( ) 0f x∇ = ……………………..……… (4.1) 
The saddle points are critical points whose gradient is zero and 
Hessian of the nonlinear function has only one negative Eigen 
value. Intuitively, this means that a saddle point is a maximum 
along one direction but a minimum along all other orthogonal 
directions. 
 

Negative gradient system is constructed in order to locate critical 
points of the objective function which is given by: 
 
 

 / ( )dx dt f x= −∇ ............................ (4.2) 
The solution curve of equation starting from x at time t = 0 is 
called a trajectory A state vector is called an equilibrium point of 
if f(x) = 0. 
An equilibrium point is said to be hyperbolic if the Jacobian of f 
at point x has no eigenvalues with zero real part. A hyperbolic 
equilibrium point is called an asymptotically stable equilibrium 
point (SEP) if all the eigen values of its corresponding Jacobian 
have negative real part. Conversely, it is an unstable equilibrium 
point if some eigen values have a positive real part. 
The stability region (also called region of attraction) of a stable 
equilibrium point xs of a dynamical system is denoted by A(Xs) 
and is given as 
 

( ) { : lim ( , ) }n
s s

t
A x x x t x∈ ℜ

→∞
= Φ = ....................... (4.3) 

 
The practical stability region of a stable equilibrium point xs of 
a nonlinear dynamical system denoted by Ap(xs) 
 

( ) int ( )p s sA x A x= ……..…………………….... (4.4) 
 
A type-1 equilibrium point xd (k=1) on the practical stability 
boundary of a stable equilibrium point XS is called a 
decomposition point.  
 

3.2 Trust-Tech based Technique for 
Expectation Maximization [3]:  
The EM algorithm is widely used for learning finite mixture 
models despite its greedy nature. Most popular model-based 
clustering techniques might yield poor clusters if the parameters 
are not initialized properly. To reduce the sensitivity of initial 
points, the proposed algorithm takes advantage of TRUST-TECH 
(Transformation under Stability Retaining Equilibrium 
Characterization) to compute neighborhood local maxima on the 
likelihood surface using stability regions. Basically, this method 
combines the advantages of the traditional EM with that of the 
dynamic and geometric characteristics of the stability regions of 
the corresponding nonlinear dynamical system of the log-
likelihood function. More generic techniques like deterministic 
annealing [13], [14] and genetic algorithms [15], [16] have been 
applied to obtain a good set of parameters.  
 
The global method gives some initial promising subspaces. The 
EM algorithm, along with the stability region phase, can obtain a 
set of promising neighborhood local maxima on the likelihood 
surface [1]. 

 
Fig. 2. Block Diagram of TRUST-TECH Framework. 

 



 

 

The framework consists of three phases. The first phase is the 
global phase in which the promising solutions in the entire search 
space are obtained. The second phase is the local phase (or the 
EM phase), where the promising solutions obtained from the 
previous phase is refined to the corresponding locally optimal 
parameter set. The third phase, which is the main contribution of 
this paper, is the stability region phase. The exit points are 
computed and the neighborhood solutions are systematically 
explored through these exit points in this phase.  
 

3.3 Problem Formulation 
In it the problem of finding the best possible motif is transformed 
into a problem of finding the global maximum of a highly 
nonlinear log-likelihood scoring function obtained from its 
profile representation. Let t be the total number of sequences and 
n be the average length of each sequence. Let S = {S1, S2...St} be 
the set of t sequences. Let P = {P1, P2...Pt} be the set of initial 
alignments. l is the length of the consensus pattern 
 
The count matrix can be constructed from the given alignments. 
We define Q0,j to be the non position specific background count 
of each nucleotide in all  of the sequences where  j ∈  {A, T,C,G} 
is the running total  of nucleotides occurring in each of the l 
positions. Similarly, Qk,j is the count of each nucleotide in the kth  
position (of the l −MER) in all the P alignments.   
 

  , , ,/o j o j o jQ C C= ∑  

                      , , /k j k j j jQ C b N b= + + ∑  ...................(4.5) 
 
First equation shows the background frequency of each 
nucleotide where bj is known as the Laplacian or Bayesian 
correction and is equal to d * Q0,j where d is some constant 
usually set to unity. Second equation gives the weight assigned to 
the type of nucleotide at the kth position of the motif. Each Q can 
be represented in terms of the other three variables. Since the 
length of the motif is l, the final objective function (i.e., the 
information content score) would contain 3l independent 
variables. 
 
A Position Specific Scoring Matrix (PSSM) can be constructed 
from one set of instances in a given set of t sequences. Then 
compute the scoring function. To obtain the score, every possible  
l − MER in each of the t sequences must be examined. This is 
done so by multiplying the respective Qi,j/Q0,j dictated by the 
nucleotides and their respective positions within the l − MER. 
Only the highest scoring l − MER in each sequence is noted and 
kept as part of the alignment. The total score is the sum of all the 
best scores in each sequence. 
 

, ,
1 1 1 11

( ) log( ) log( / ) log( ' )i

lt t t l

k j b i k j i
i i i kk

A Q A Q Q Q=

= = = ==

= =∑ ∑ ∑∑∏  

  (4.6) 
In Eqn 4.6 Q’k,,j is the ratio of the nucleotide probability to the 
corresponding background probability, i.e. Qk,j/Qb. Log(A)i is the 
score at each individual ith sequence where t is the total number 
of sequences. In above equation A is composed of the product of 
the weights for each individual position k. A(Q) is the non-convex 
3l dimensional continuous function for which the global 

maximum corresponds to the best possible motif in the dataset. 
EM refinement that is done at the end of the combinatorial 
approaches has the main disadvantage that it converges to a local 
optimal solution. This method improves the refinement procedure 
by understanding the details about the stability boundaries and 
trying to escape out of the convergence region of the EM 
algorithm. In short problem of finding the optimal motif into a 
problem of finding the global maximum of a non-convex 
continuous 3l dimensional function 
 
A gradient system is constructed order to locate critical points of 
the objective function. In order to reduce the dominance of one 
variable over the other, the values of the each of the nucleotides 
that belong to the consensus pattern at the position k will be 
represented in terms of the other three nucleotides in that 
particular column. Let Pik denote the kth position in the segment 
Pi. The variables in the scoring function are transformed into new 
variables where fik can take the values { ω3k−2, ω3k−1, ω3k, 1 − 
(ω3k−2 + ω3k−1 + ω3k)} depending on the Pik value. 
 

3 2, 3 1, 3
1 1

( ) log ( )
t l

ik k k k i
i k

A Q f ω ω ω− −

= =

= ∑∑ ……….… (4.7) 

 
The first derivative of the scoring function is a one dimensional 
vector with 3l elements. 
 
 [ ]1./ / 2....... / T

lA A A Aω ω ω∇ = ∂ ∂ ∂ ∂ ∂ ∂  ..……………... (4.8) 

 
And each partial derivative is given by: 
 

/ 3 2, 3 1, 3

1

/ / ( )
t

p fip p ik k k k

i
A fωω ω ω ω∂ ∂ − −

=
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1, 2.....3p l=∀  And    ( / 3) 1k round p= +  
 
The approach requires the computation of a Hessian matrix (i.e. 
the matrix of second derivatives) of dimension (3l)2 and the 3l 
eigenvectors of the Hessian The Hessian is a block diagonal 
matrix of block size 3X3. For a given sequence, the entries of the 
3X3 block will be the same if that nucleotide belongs to the 
consensus pattern (Ck). This nonlinear transformation will 
preserve all the critical points on the likelihood surface. If it is 
possible to identify all the saddle points on the stability boundary 
of a given local maximum to find all the tier-1 local maxima is 
easy However, finding all of the saddle points is computationally 
intractable and  have adopted a heuristic by generating the 
eigenvector directions of the PSSM at the local maximum. 
 

3.4 Algorithm 
Input: The DNA sequences, length of the motif (l), 
Maximum Number of Mutations (d) 
 
Output: Motif (s) 
 
Step 1: Given the sequences, apply random projection 
algorithm to obtain different set of alignments. 



 

 

Step 2: Choose the promising buckets and apply EM 
algorithm to refine these alignments. 
Step 3: Apply the exit point method to obtain nearby 
promising local optimal solutions. 
Step 4: Report the consensus pattern that corresponds to 
the best alignments and their corresponding PSSM 
 
The algorithm can pictorially be represented as: 

 
 

Fig. 3. Showing the Block Diagram of Hybrid Method. 

3.5 Design Issues in Implementing the 
Random Projection Algorithm 
Suppose a planted (l, d)-motif problem on t sequences of n letters. 
Randomly select k positions out of l positions. This selection is 
called (l, k) gapped pattern. For each l-MER in the data look at its 
k-subset which is defined by the gapped pattern. This subset is 
called projection. 
 
Given a gapped pattern, count all k-length hashes of all l-MERS. 
Group l-MERS that hash to the same k-MER in a set called 
bucket. Random sequences should have the same bucket size for 
any hashed pattern. Some buckets will be significantly over-
represented, which will mean that they represent motifs.  
 
Like many probabilistic algorithms, the Projection algorithm 
performs a number of independent trials of a basic iteration. In 
each such trial, it chooses a random projection h and hashes each 
l-MER x in the input sequences to its bucket h(x). Any hash 
bucket with sufficiently many entries is explored as a source of 
the planted motif, using a series of refinement steps 

3.5.1 Finding the Planted Bucket 
The algorithm does not know which bucket is the planted bucket. 
So, it attempts to recover the motif from every bucket that 
contains at least s elements, where s is a threshold that is set so as 
to identify buckets that look as if they may be the planted bucket. 
In other words, the first part of the Projection algorithm is a 
heuristic for finding promising sets of l-MERS in the sequence. It 
must be followed by a refinement step that attempts to generate a 
motif from each such set. 
Choose k of the l positions at random, without replacement. For 
an l-MER x, the hash function h(x) is obtained by concatenating 
the selected k residues of x. Viewing x as a point in l-dimensional 
Hamming space, h(x) is the projection of x onto a k-dimensional 
subspace. If M is the (unknown) motif, then bucket with hash 
value h(M) is the planted bucket. 
 
The key idea is that, if k < l − d, then there is a good chance that 
some the t planted instances of M will be hashed to the planted 
bucket, namely all planted instances for which the k hash 

positions and d substituted positions are disjoint. So, there is a 
good chance that the planted bucket will be enriched for the 
planted motif, and will contain more entries then an average 
bucket  
 

3.5.2 Choosing the Parameters 
The algorithm has three main parameters: 
 
• The projection size k, 
• The bucket (inspection) threshold s, and 
• The number of independent trails m. 
 
Projection size: 
 Ideally, the algorithm should hash a significant number of 
instances of the motif into the planted bucket, while avoiding 
contamination of the planted bucket by random background l-
MERS. 
 
To minimize the contamination of the planted bucket, choose k 
large enough. Since hashing t (n − l + 1) l-MERS into 4k buckets, 
choose k such that 4k > t (n − l + 1), then the average bucket will 
contain less than one random l-MER. 
 
Bucket threshold:  
If the total amount of sequence is very large, then it may be that 
one cannot choose k to satisfy both k < l −d and 4k > t (n−l +1). 
In this case, set k = l −d−1, as large as possible, and set the 
bucket threshold s to twice the average bucket size t (n − l + 
1)/4k. 
 
Number of independent trails:  
Choose m so that the probability is at least q = 0.95 that the 
planted bucket contains s or more planted motif instances in at 
least one of the m trails. 

3.6 Design Issues in Implementing EM 
Algorithm and Motif Refinement 
The main loop of the Projection algorithm finds a set of buckets 
of size >= s. In the refinement step, each such bucket is explored 
in an attempt to recover the planted motif. The idea is that, if the 
current bucket is the planted buckets, then k of the planted motif 
residues are found. These, together with the remaining l − k 
residues, should provide a strong signal that makes it easy to 
obtain the motif in only a few iterations of refinement.  
Each bucket of size >= s is processed to obtain a candidate motif. 
Each of these candidates will be “refined” and the best 
refinement will be returned as the final solution. Candidate motifs 
are refined using the expectation maximization (EM) algorithm. 
This is based on the following probabilistic model: 
 
An instance of some length-l motif occurs exactly once per input 
sequence. Instances are generated from a 4 × l weight matrix 
model W, whose (i, j)th entry gives the probability that base i 
occurs in position j of an instance, independent of its other 
positions. The remaining n−l residues in each sequence are 
chosen randomly and independently according to some 
background distribution. 
 



 

 

Let S be a set of t input sequences, and let P be the background 
distribution. EM-based refinement seeks a weight matrix model 
W* that maximizes the likelihood ratio Pr(S | W*, P) and Pr(S | 
P), that is, a motif model that explains the input sequences much 
better than P alone. 
 
The position at which the motif occurs in each sequence is not 
fixed a priori, making the computation of W* difficult, because 
Pr(S | W*, P) must be summed over all possible locations of the 
instances. To address this, the EM algorithm uses an iterative 
calculation that, given an initial guess W0 at the motif model, 
converges linearly to a locally maximum-likelihood model in the 
neighborhood of W0. An initial guess Wh for a bucket h is formed 
as follows: set Wh(i, j) to the frequency of base i among the jth 
positions of all l-MERS in h.  
 
This guess forms a centroid for h, in the sense that positions that 
are well conserved in h are strongly biased in Wh, while poorly 
conserved positions are less biased. To avoid zero entries in Wh, 
add a Laplace correction of bi, to Wh(i, j), where bi is the 
background probability of residue i in the input. Once EM 
algorithm is used to obtain a refinement W* h of Wh, the final 
step is to identify the planted motif from W* h. To do so, select 
from each input sequence the l-MER x with the largest likelihood 
ratio: 
 

Pr(x | W* h) Pr(x | P)  
 

The resulting multiuse T of l-mer represents the motif in the input 
that is most consistent with W* h. Let CT be the consensus of T, 
and let s(T) be the number of elements of T whose Hamming 
distance to CT is <= d. The algorithm returns the sequence CT 
that minimizes s(T), over all considered buckets h and over all 
trials. 
 

3.7 Algorithm Projection with EM 
Input: sequences S1, . . . , St, parameters k, s and m 
Output: best guess motif 
for i = 1 to m do 

choose k different positions Ik  {1, 2, . . . , l}  
for each l-MER x ∈ S1, . . . , St do 

compute hash value hIk (x) 
Store x in hash bucket 

for each bucket with >= S elements do 
refine bucket using EM algorithm 

return consensus pattern of best refined bucket 
 

3.8 Neighborhood Profile Search 
The algorithm begin at random initial alignment positions and 
attempt to converge to an alignment of l-MER in all of the 
sequences that maximize the objective function. In other words, 
the l-MER whose log(A)i is the highest (with a given PSSM) is 
noted in every sequence as part of the current alignment. During 
the maximization of A(Q) function, the probability weight matrix 
and hence the corresponding alignments of l – MERS are updated.  
This occurs iteratively until the PSSM converges to the local 
optimal solution. The consensus pattern is obtained from the 
nucleotide with the largest weight in each position (column) of 

the PSSM. This converged PSSM and the set of alignments 
correspond to a local optimal solution. It can be shown as: 

1. Construct a PSSM (Position Specific Scoring 
matrix) from initial alignments. 

2. Calculate eigenvectors of Hessian matrix. 
3. Find exit points (or saddle points) along each 

eigenvector. 
4. Apply EM from the new stability/convergence 

region. (Tier 1 Local Maxima) 
5. Repeat first step. (Tier 2 Local Maxima) 
6. Return max score {A, a1i, a2j} 

 
 

 
Fig. 4. Highlighting the Proposed Method. 

4.  RESULTS 
The performance is evaluated   using the performance coefficient, 
denoted as  Let K denote the set of t.l base positions in the t 
occurrences of a planted motif, and let P denote the 
corresponding set of base positions in the t occurrences predicted 
by an algorithm. Then the algorithm's performance coefficient on 
the motif is denoted to be K∩P/KỤP. When all occurrences of 
the motif are found correctly, the performance coefficient 
achieves its maximum value of one. Table 4.1 below compares 
the performance of projection with that of previous motif 
discovery algorithms on sets of twenty random problem 
instances, each generated as described above.  
 

TABLE 1. Showing Performance Coefficients for Planted 
Motifs 

l d GIBBS WINNO
WER 

SP 
STAR 

IMPROVED 
RANDOM 

10 2 0.20 0.78 0.56 0.82 
11 2 0.68 0.90 0.84 0.91 
12 3 0.03 0.75 0.33 0.81 
13 3 0.60 0.92 0.92 0.92 
14 4 0.02 0.02 0.20 0.77 
15 4 0.19 0.92 0.73 0.93 
16 5 0.02 0.03 0.04 0.70 
17 5 0.28 0.03 0.69 0.93 
18 6 0.03 0.03 0.03 0.74 
19 6 0.05 0.03 0.40 0.96 

 
 



 

 

Experimental results have shown that implementation is much 
more effective at recovering planted (l; d)-motifs in simulated 
data than existing algorithms. It has also proven effective in 
applications to real biological data. 
 

5. CONCLUSION  
The approach was an experiment to observe the proposed 
methodology’s ability to improve the score which partially 
succeeded with the given samples. The problems observed were   
i) Difficult to distinguish spurious motifs from true ones, ii) 
Equal base frequencies were used in implementation; if an 
unequal frequency is tried performance drops, iii) When length of 
the sequence is increased, performance coefficient is reduced,           
iv) Refinement stage consumes more time affecting performance 
since most of the planted motifs will be hashed to buckets. Other 
than planted buckets also, performance of success rate is less for 
higher values of l. Basic improvements include predicting the 
length of the motif, finding multiple motifs in the same input 
automatically, and handling features such as spacers (sequences 
of N’s) in the motif. A more challenging research problem is to 
extend the work to handle motifs whose instances contain 
insertions and deletions, which destroy the notion of fixed 
sequence positions used to define projections.  
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