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CAP 5625: Programming Assignment 1 
 

 
 
Preliminary instructions 

You may consult with other students currently taking CAP 5625 in your section at FAU on this 
programming assignment. If you do consult with others, then you must indicate this by 
providing their names with your submitted assignment. However, all analyses must be 
performed independently, all source code must be written independently, and all students 
must turn in their own independent assignment. Note that for this assignment, you may choose 
to pair up with one other student in your section of CAP 5625 and submit a joint assignment. If 
you choose to do this, then both your names must be associated with the assignment and you 
will each receive the same grade. 
 

Though it should be unnecessary to state in a graduate class, I am reminding you 
that you may not turn in code (partial or complete) that is written or inspired by 
others, including code from other students, websites, past code that I release 
from prior assignments in this class or from past semesters in other classes I 
teach, or any other source that would constitute an academic integrity violation. 
All instances of academic integrity violations will receive a zero on the 
assignment and will be referred to the Department Chair and College Dean for 
further administrative action. 

 
You may choose to use whatever programming language you want. However, you must provide 
clear instructions on how to compile and/or run your source code. I recommend using a 
modern language, such as Python, R, or Matlab as learning these languages can help you if you 
were to enter the data science, machine learning, or artificial intelligence field in the future. 
 
All analyses performed and algorithms run must be written from scratch. That is, you may not 
use a library that can perform gradient descent, regression, least squares regression, 
optimization, etc. to successfully complete this programing assignment. The goal of this 
assignment is not to learn how to use particular libraries of a language, but to instead 
understand how key methods in statistical machine learning are implemented. 
 
Note, credit for deliverables that request graphs, discussion of results, or specific values will not 
be given if the instructor must run your code to obtain these graphs, results, or specific values. 
 
Brief overview of assignment 

In this assignment you will be given advertising data from 𝑁 = 200 training observations. The 
goal is to fit a model that can predict the amount of sales (in thousands of units) based on 𝑝 =
3 features describing the amount of advertising budgets (in thousands of dollars) for TV, radio, 
and newspaper. Specifically, you will perform a least squares fit of a linear model using linear 
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regression, with the model parameters obtained by mini-batch gradient descent when applied 
to the training dataset. 
 
Data 

Data for these observations are given in Advertising_N200_p3.csv, with observations 

provided on each row (rows 2 through 201), and input features and response given on the 
columns (with the first row representing a header for each column). There are three 
quantitative features, given by columns labeled “TV”, “radio”, and “newspaper”. 
 
Detailed description of the task 

Recall that the task of performing a least squares regression fit to training data 
{(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑁 , 𝑦𝑁)} with mini-batch gradient descent is to minimize the cost 
function 

𝐽𝒮(𝛽) =  ∑ (𝑦𝑖 − 𝛽0 − ∑ 𝑥𝑖𝑗𝛽𝑗

𝑝

𝑗=1

)
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(𝑥𝑖,𝑦𝑖)∈𝒮

 

where 𝑦𝑖 is a response for observation 𝑖, 𝑥𝑖𝑗 is the value of feature 𝑗 for observation 𝑖, and 𝒮 is 

the set of size 𝑛 < 𝑁 containing randomly chosen observations within a given mini batch, with 
the minimization is across all mini batches each evaluated in turn. Moreover, recall that mini-

batch gradient descent first computes the (𝑝 + 1)-dimensional gradient vector 
𝜕𝐽𝒮(𝛽)

𝜕𝛽
, and then 

simultaneously updates each parameter 𝑘, 𝑘 = 0,1, … , 𝑝, as follows: 

𝛽𝑘 ≔ 𝛽𝑘 − 𝛼
𝜕

𝜕𝛽𝑘
𝐽𝒮(𝛽) 

where 𝛼 is the learning rate and where the partial derivative of the cost function for 
observation 𝑖 with respect to the 𝑘th parameter is 

𝜕

𝜕𝛽𝑘
𝐽𝒮(𝛽) = −2 ∑ 𝑥𝑖𝑘 (𝑦𝑖 − 𝛽0 − ∑ 𝑥𝑖𝑗𝛽𝑗

𝑝

𝑗=1

)
(𝑥𝑖,𝑦𝑖)∈𝒮

 

To implement this algorithm, depending on whether your chosen language can quickly compute 
vectorized operations, you may implement mini-batch gradient descent using either Algorithm 
1 or Algorithm 2 below (choose whichever you are more comfortable implementing). Note that 
in languages like R, Python, or Matlab, Algorithm 2 (which would be implemented by several 
nested loops) may be much slower than Algorithm 1. Note, if you are implementing Algorithm 1 
using Python, then use numpy arrays instead of Pandas data frames for computational speed. 
 
We will employ a batch size of 𝑛 = 10, and you may need to explore different learning rate 
values in order to identify one that is not too large and not too small, such that it is likely for the 
algorithm to converge in a reasonable period of time. I would consider a learning rate of 𝛼 =
2.5 × 10−6, though I encourage you to explore how your model trains for smaller and larger 
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learning rates as well. For this assignment, assume that we will get close to the optimal 
parameter estimates within a fixed number of steps, with the number of iterations being 
20,000. 
 

Algorithm 1 (vectorized): 
Step 1. Choose learning rate 𝛼 and batch size 𝑛 
Step 2. Generate 𝑁-dimensional response vector 𝐲 and 𝑁 × (𝑝 + 1) design matrix 𝐗, where 

the first column of 𝐗 has all elements equal to one 
Step 3. Randomly initialize the parameter vector 𝛽 = [𝛽0, 𝛽1, … , 𝛽𝑝] 

Step 4. Randomly assign the 𝑁 observations to a given batch, where the number of batches 
is 𝐵 =  𝑁/𝑛 

Step 5. For each batch 𝑏, 𝑏 =  1,2, … , 𝐵, update the parameter vector with the 𝑛 
observations in this batch as 

𝛽 ≔ 𝛽 + 2𝛼𝐗𝑏
𝑇(𝐲𝑏 − 𝐗𝑏𝛽)  

where 𝐗𝑏 is the 𝑛 × (𝑝 + 1) design matrix of the 𝑛 observations in batch 𝑏 and 𝐲𝑏 is 
the 𝑛-dimensional response vector of the 𝑛 observations in batch 𝑏 

Step 6. Repeat Steps 4 and 5 for 20,000 iterations 

Step 7. Set the last updated parameter vector as 𝛽̂ = [𝛽̂0, 𝛽̂1, … , 𝛽̂𝑝] 

 
 
Algorithm 2 (non-vectorized): 
Step 1. Choose learning rate 𝛼 and batch size 𝑛 
Step 2. Generate 𝑁-dimensional response vector 𝐲 and 𝑁 × (𝑝 + 1) design matrix 𝐗, where 

the first column of 𝐗 has all elements equal to one 
Step 3. Randomly initialize the parameter vector 𝛽 = [𝛽0, 𝛽1, … , 𝛽𝑝] 

Step 4. Create temporary parameter vector 𝛽temp = [𝛽0
temp

, 𝛽1
temp

, … , 𝛽𝑝
temp

] 

Step 5. Randomly assign the 𝑁 observations to a given batch, where the number of batches 
is 𝐵 =  𝑁/𝑛 to create 𝐵 batches (sets) of size 𝑛 observations denoted 𝒮1, 𝒮2, … , 𝒮𝐵  

Step 6. For each batch 𝑏, 𝑏 =  1,2, … , 𝐵, update parameters with the 𝑛 observations in this 
batch as  

For each 𝑘, 𝑘 = 0,1, … , 𝑝, find next value for parameter 𝑘 as 

𝛽𝑘
temp

≔ 𝛽𝑘 + 2𝛼 ∑ 𝑥𝑖𝑘 (𝑦𝑖 − 𝛽0 − ∑ 𝑥𝑖𝑗𝛽𝑗

𝑝

𝑗=1

)
(𝑥𝑖,𝑦𝑖)∈𝒮𝑏

 

Step 7. Update the parameter vector as 𝛽 = 𝛽temp 

Step 8. Repeat Steps 5 to 7 for 20,000 iterations 

Step 9. Set the last updated parameter vector as 𝛽̂ 
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When randomly initializing the parameter vector, I would make sure that the parameters start 
at small values. A good strategy here may be to randomly initialize each of the 𝛽𝑗, 𝑗 = 0,1, … , 𝑝, 

parameters from a uniform distribution between −1 and 1. 
 
 
Deliverable 1: Illustrate the effect of iteration number of mini-batch gradient descent on the 
inferred regression coefficients by generating a plot (e.g., using Excel, Matlab, R, etc.) of four 

lines (one for each of the 𝑝 = 3 features and the intercept), with the 𝑦-axis as 𝛽̂𝑗, 𝑗 = 0,1, … , 𝑝, 

and the 𝑥-axis the corresponding iteration of mini-batch gradient descent that generated the 

particular 𝛽̂𝑗. Label both axes in the plot.  

 
Deliverable 2: Illustrate the effect of iteration number of mini-batch gradient descent on the 
cost by generating a plot (e.g., using Excel, Matlab, R, Python, etc.) with the 𝑦-axis as the cost  

𝐽(𝛽̂) = (𝐲 − 𝐗𝛽̂)
𝑇

(𝐲 − 𝐗𝛽̂) 

                         = ∑  (𝑦𝑖 − 𝛽̂0 − ∑ 𝑥𝑖𝑗𝛽̂𝑗

𝑝

𝑗=1

)

2
𝑁

𝑖=1

 

and the 𝑥-axis the corresponding iteration of mini-batch gradient descent that generated the 
particular cost. Label both axes in the plot. 
 

Deliverable 3: Provide the estimates 𝛽̂ = [𝛽̂0, 𝛽̂1, … , 𝛽̂𝑝] of the best-fit model parameters. 

 
Deliverable 4: Using the best-fit model parameters, compute the mean squared error (MSE) on 
the training set and report this value. 
 
Deliverable 5: Provide all your source code that you wrote from scratch to perform all analyses 
(aside from plotting scripts, which you do not need to turn in) in this assignment, along with 
instructions on how to compile and run your code. 
 
Deliverable 6 (extra credit): Upload your certificate for HackerRank Python(Basic) to the Canvas 
assignment titled “Submission of HackerRank Python(Basic) certification” before the submission 
deadline for Programming Assignment 1. This is worth up to 5% additional credit, which would 
allow you to get up to 105% out of 100 for this assignment. 
 




