
COMP 5421-BB Assignment 4 Due Date: 23 July 2023
Inheritance and Runtime Polymorphism

Contents
1 Purpose 1

2 Overview 1

3 Modeling 2D Geometric Shapes 2
3.1 Common Attributes: Data . 2
3.2 Common Operations: Interface . 2

4 Modeling Specialized 2D Geometric Shapes 3

5 Concrete Shapes 4

6 Task 1 of 2 5
6.1 Requirements . 5

7 Some Examples 6
7.1 Polymorphic Magic . 8
7.2 Shape’s Draw Function . 9
7.3 Examples Continued . 9
7.4 Flipping Canvas Objects . 11
7.5 Using Smart Pointers to Shape objects . 12

8 Task 2 of 2 13

9 Specific Grading scheme 14

10 General Grading scheme 14

11 Sample Test Driver 15
11.1 ShapeTestDriver.cpp . 15
11.2 Drawing Front View of a House . 16
11.3 Output . 18

0

1 Purpose
• Implement an inheritance hierarchy of classes in C++

• Learn about virtual functions, overriding, and polymorphism in C++

• Use two-dimensional arrays using vector<T>, one of the simplest container class
templates in the C++ Standard Template Library (STL)

• Use modern C++ smart pointers, which automate the process of resource deallocation

2 Overview
Using simple two-dimensional geometric shapes, this assignment will give you practice with the
fundamental principles of object-oriented programming (OOP).

The assignment starts by abstracting the essential attributes and operations common to four
geometric shapes of interest in this assignment, namely, rhombus, rectangle, and two kinds of
triangle shapes.

You will then be tasked to implement the shape abstractions using the C++ features that support
encapsulation, information hiding, inheritance and polymorphism.

In addition to implementing the shape classes, you will be tasked to implement a Canvas class
whose objects can be used by the shape objects to draw on.

The four geometric shapes of interest in this assignment can be textually rendered into visually
identifiable images on the computer screen; for example:

* * * * * * * * *
* * * * * * * * *
* * * * * * * * *
* * * * * * * * *
* * * * * * * * *
* * * * * * * * *
Rectangle,
6 × 9

*
* * *

* * * * *
* * *

*
Rhombus,
5 × 5

*
* *
* * *
* * * *
* * * * *
* * * * * *
Right Triangle,
6 × 6

*
* * *

* * * * *
* * * * * * *

* * * * * * * * *
Acute Triangle,
5 × 9

July 2023 Assignment 4: Inheritance and Runtime Polymorphism Page 1 of 19

https://en.wikipedia.org/wiki/Object-oriented_programming

3 Modeling 2D Geometric Shapes

3.1 Common Attributes: Data

height the length of the vertical attribute of the shape, a positive integer

width the length of the horizontal attribute of the shape, a positive integer

name a string object; for example, “Book” for a rectangular shape

pen a character to draw the shape with

ID number a unique positive integer, distinct from that of all the other shape objects

3.2 Common Operations: Interface

1. A constructor that accepts as parameters the initial values of a shape’s height, width,
name, and pen data members

2. Five accessor (getter) member-functions, one for each attribute

3. Four mutator (setter) member-functions for setting the name, height, width and pen
data members

4. A toString() member-function that returns a std::string representation of the Shape
object invoking it

5. An overloaded polymorphic output operator <<

6. A member-function areaGeo() that computes and returns the shape’s geometric area

7. A member-function preimeterGeo() that computes and returns the shape’s geometric
perimeter

8. A member-function areaScr() that computes and returns the shape’s screen area, the
number of characters forming the textual image of the shape

9. A member-function preimeterScr() that computes and returns the shape’s screen perime-
ter, the number of characters on the borders of the textual image of the shape

10. A member-function that draws a textual image of the shape on a Canvas object using the
shape’s pen character

July 2023 Assignment 4: Inheritance and Runtime Polymorphism Page 2 of 19

4 Modeling Specialized 2D Geometric Shapes
There are several ways to classify 2D shapes, but we use the following, which is specifically
designed for you to gain experience with implementing inheritance and polymorphism in C++:

Shape

Canvas

uses

Rhombus TriangleRectangle

RightTriangleAcuteTriangle

is-ais-a

is-ais-a

Figure 1: A UML class diagram showing an inheritance hierarchy specified
by two abstract classes Shape and Triangle, and by four concrete classes
Rectangle, Rhombus, AcuteTriangle, and RightTriangle.

Encapsulating the attributes and operations common to all shapes, the Shape class must neces-
sarily be abstract because the shapes it models are so general that it simply would not know how
to implement several of the operations specified in section 3.2.

As a base class, Shape serves as a common interface to all classes in the class hierarchy.

As an abstract class, Shape enables polymorphism, allowing variables of types Shape* and
Shape& to make polymorphic calls.

Similarly, the class Triangle must be abstract, since it has no knowledge about the shape-
dependent data and operations of the shapes it generalizes.

Classes Rectangle, Rhombus, RightTriangle and AcuteTriangle are concrete because they
each fully implement their respective interface.

July 2023 Assignment 4: Inheritance and Runtime Polymorphism Page 3 of 19

5 Concrete Shapes
The specific characteristic properties of our concrete shapes are listed in the following table.

Properties
Concrete Shapes

Rectangle Rhombus Right Triangle Acute Triangle

attributes h, w d b b

Invariants h ≥ 1, w ≥ 1 d is odd, d ≥ 1 b ≥ 1 b is odd, b ≥ 1

Height h d b (b + 1)/2

Width w d b b

Geometric area hw d2/2 hb/2 hb/2

Geometric perimeter 2(h + w) (2
√

2)d (2 +
√

2)h b +
√

b2 + 4h2

textual area hw
2n(n+1)+1,
n = ⌊d/2⌋ h(h + 1)/2 h2

textual perimeter if
Height>1 and Width>1 2(h + w) − 4 2(d − 1) 3(h − 1) 4(h − 1)

textual perimeter if
Height=1 or Width=1 hw 1 1 1

Sample textual images
of the concrete shapes
and their dimensions, w

(width) and h (height)

*

*

*
**

*

w = 9, h = 5 d = 5 b = 5, h = b b = 9, h = b+1
2

Default name Door Diamond Ladder Wedge

Default pen character * * * *

h : height, w : width, b : base, d : diagonal

July 2023 Assignment 4: Inheritance and Runtime Polymorphism Page 4 of 19

6 Task 1 of 2
Implement the Shape inheritance class hierarchy described above. It is completely up to you to
decide which operations should be virtual, pure virtual, or non-virtual, provided that it satisfies a
few simple requirements.

The amount of coding required for this task is not a lot as your shape classes will be small. Be
sure that common behavior (shared operations) and common attributes (shared data) are pushed
toward the top of your class hierarchy.

You may add private member functions to facilitate your operations, but you may not add data
members other than those given in the attribute row of Table on page 4.

6.1 Requirements

• The unit of length is a single character; thus, all shape attributes such as height, width,
base, and diagonal are measured in characters.

• At construction, a Rectangle shape requires the values of both its height and width,
whereas the other three concrete shapes each require a single value for the length of their
respective horizontal attribute.

• The constructor of Rhombus must select the next integer if the supplied value for its diagonal
is not odd.

• The constructor of AcuteTriangle must select the next integer if the supplied value for
its base length is not odd.

July 2023 Assignment 4: Inheritance and Runtime Polymorphism Page 5 of 19

7 Some Examples

Sourse code

1 Rectangle rect{ 5, 7 };
2 cout << rect.toString() << endl;
3 // or equivalently
4 // cout << rect << endl;

Output

1 Shape Information
2 -----------------
3 id: 1
4 Shape name: Rectangle
5 Pen character: *
6 Height: 5
7 Width: 7
8 Textual area: 35
9 Geometric area: 35.00

10 Textual perimeter: 20
11 Geometric perimeter: 24.00
12 Static type: PK5Shape
13 Dynamic type: 9Rectangle

The call rect.toString() on line 2 of the source code generates the entire output shown.
However, note that line 4 would produce the same output as the overloaded output operator
itself internally would call toString().

Line 3 of the output shows that rect’s ID number is 1. The ID number of the next shape will be
2, the one after 3, and so on. These unique ID numbers are generated and assigned when shape
objects are first constructed.

Lines 4-5 of the output show object rect’s name and pen character, and lines 6-7 show rect’s
height and width, respectively.

Now let’s see how rect’s static and dynamic types are produced on lines 12-13 of the output.

To get the name of the static type of a pointer p at runtime you use typeid(p).name(), and
to get its dynamic type you use typeid(*p).name(). That’s exactly what toString() does
using this1instead of p. You need to include the <typeinfo> header for this.

Lines 12-13 show that rect’s static type name is PK5Shape and it’s dynamic type name is
9Rectangle. The actual names returned by these calls are implementation defined. For example,
the output above was generated under g++ (GCC) 10.2.0, where PK in PK5Shape means “pointer
to konst const”, and 5 in 5Shape means that the name “Shape” that follows it is 5 character
long.

Your C++ compiler may generate different text to indicate the static and dynamic types of a
pointer. Microsoft VC++ 2022 produces a more readable output as shown below.

1During the call rect.toString(), inside toString(), the object rect is represented by the pointer this,
which points to rect.

July 2023 Assignment 4: Inheritance and Runtime Polymorphism Page 6 of 19

1 Rectangle rect{ 5, 7 };
2 cout << rect.toString() << endl;
3 // or equivalently
4 // cout << rect << endl;

1 Shape Information
2 -----------------
3 id: 1
4 Shape name: Rectangle
5 Pen character: *
6 Height: 5
7 Width: 7
8 Textual area: 35
9 Geometric area: 35.00

10 Textual perimeter: 20
11 Geometric perimeter: 24.00
12 Static type: class Shape const * __ptr64
13 Dynamic type: class Rectangle

Here is an example of a Rhombus object:

5 Rhombus
6 ace{16, ’v’, "Ace of diamond"};
7 // cout << ace.toString() << endl;
8 // or, equivalently:
9 cout << ace << endl;

14 Shape Information
15 -----------------
16 id: 2
17 Shape name: Ace of diamond
18 Pen character: v
19 Height: 17
20 Width: 17
21 Textual area: 145
22 Geometric area: 144.50
23 Textual perimeter: 32
24 Geometric perimeter: 48.08
25 Static type: class Shape const * __ptr64
26 Dynamic type: class Rhombus

Notice that in line 6, the supplied height 16 is invalid because it is even; to correct it, Rhombus’s
constructor uses the next odd integer, 17, as the diagonal of object ace.

Again, lines 7 and 9 would produce the same output; the difference is that the call to toString()
is implicit in line 9.

Here are examples of AcuteTriangle and RightTriangle shape objects.

July 2023 Assignment 4: Inheritance and Runtime Polymorphism Page 7 of 19

10 AcuteTriangle at{ 17 };
11 cout << at << endl;
12 /*
13 // equivalently:
14

15 Shape *atPtr = &at;
16 cout << *atPtr << endl;
17

18 Shape &atRef = at;
19 cout << atRef << endl;
20 */

27 Shape Information
28 -----------------
29 id: 3
30 Shape name: Wedge
31 Pen character: *
32 Height: 9
33 Width: 17
34 Textual area: 81
35 Geometric area: 76.50
36 Textual perimeter: 32
37 Geometric perimeter: 41.76
38 Static type: class Shape const * __ptr64
39 Dynamic type: class AcuteTriangle

21 RightTriangle
22 rt{ 10, ’L’, "Carpenter’s square" };
23 cout << rt << endl;
24 // or equivalently
25 // cout << rt.toString() << endl;

40 Shape Information
41 -----------------
42 id: 4
43 Shape name: Carpenter‘s square
44 Pen character: L
45 Height: 10
46 Width: 10
47 Textual area: 55
48 Geometric area: 50.00
49 Textual perimeter: 27
50 Geometric perimeter: 34.14
51 Static type: class Shape const *
52 Dynamic type: class RightTriangle

7.1 Polymorphic Magic

Note that on line 22 in the source code above, rt is a regular object variable, as opposed to a
pointer (or reference) variable pointing to (or referencing) an object; as such, rt cannot make
polymorphic calls. That’s because in C++ the calls made by a regular object, such as rect, ace,
at, and rt, to any function (virtual or not) are bound at compile time (early binding).

Polymorphic magic happens through the second argument in the calls to the output operator<<
at lines 4, 9, 11, and 23. For example, consider the call cout << rt on line 23, which is
equivalent to operator<<(cout, rt). The second argument in the call, rt, corresponds to the
second parameter of the overloaded output operator:

ostream& operator<< (ostream& out, const Shape& shp);

July 2023 Assignment 4: Inheritance and Runtime Polymorphism Page 8 of 19

Specifically, rt in line 23 is bound to the parameter shp, which is a reference, and as such,
shp can call virtual functions of Shape polymorphically; in other words, the decision as to which
virtual function to run depends on the type of the object referenced by shp at run time (late
binding). For example, if shp references a Rhombus object, then the call shp.areaGeo() binds
to Rhombus::areaGeo(), if shp references a Rectangle object, then shp.areaGeo() binds to
Rectangle::areaGeo(), and so on.

Now, consider the call rt.toString() on line 25. Since, Shape::toString() is non-virtual,
the call rt.toString() is bound at compile time (early binding). However, the object rt in
the call rt.toString() is represented inside the function Shape::toString() through this,
a pointer of type Shape*, which can in fact call virtual functions of Shape polymorphically.

7.2 Shape’s Draw Function

virtual Canvas draw() const = 0; // concrete derived classes must implement it

Introduced in Shape as a pure virtual function, the draw() function forces concrete derived
classes to implement it.

Defining a local Canvas object like so

Canvas can { getHeight(), getWidth() };

the draw function draws on can using its put members function, something like this:

can.put(r, c, penChar); // write penChar in the cell at row r and column c

A Canvas object models a two-dimensional grid as abstracted in the Figure
at right. The rows of the grid are parallel to the x-axis, with row numbers
increasing down. The columns of the grid are parallel to the y-axis, with
column numbers increasing to the right. The origin of the grid is located at
the top-left grid cell (0, 0) at row 0 and column 0.

x0 1 2 3 4

y

0
1
2
3
4
5

7.3 Examples Continued

26

27 Canvas rectCan{ rect.draw() };
28 cout << rectCan << endl;

53 *******
54 *******
55 *******
56 *******
57 *******

July 2023 Assignment 4: Inheritance and Runtime Polymorphism Page 9 of 19

29

30 Canvas aceCan{ ace.draw() }; // or, Canvas aceCan = ace.draw();
31 cout << aceCan << endl;

58 v
59 vvv
60 vvvvv
61 vvvvvvv
62 vvvvvvvvv
63 vvvvvvvvvvv
64 vvvvvvvvvvvvv
65 vvvvvvvvvvvvvvv
66 vvvvvvvvvvvvvvvvv
67 vvvvvvvvvvvvvvv
68 vvvvvvvvvvvvv
69 vvvvvvvvvvv
70 vvvvvvvvv
71 vvvvvvv
72 vvvvv
73 vvv
74 v

32

33 at.setPen(’^’);
34 Canvas atCan{ at.draw() };
35 cout << atCan << endl;

75 ^
76 ^^^
77 ^^^^^
78 ^^^^^^^
79 ^^^^^^^^^
80 ^^^^^^^^^^^
81 ^^^^^^^^^^^^^
82 ^^^^^^^^^^^^^^^
83 ^^^^^^^^^^^^^^^^^

36

37 Canvas rtCan{ rt.draw() };
38 cout << rtCan << endl;

84 L
85 LL
86 LLL
87 LLLL
88 LLLLL
89 LLLLLL
90 LLLLLLL
91 LLLLLLLL
92 LLLLLLLLL
93 LLLLLLLLLL

July 2023 Assignment 4: Inheritance and Runtime Polymorphism Page 10 of 19

7.4 Flipping Canvas Objects
A Canvas object can be flipped both vertically and horizontally:

39

40 rt.setPen(’O’);
41 Canvas rtQuadrant_1{ rt.draw() };
42 cout << rtQuadrant_1 << endl;

94 O
95 OO
96 OOO
97 OOOO
98 OOOOO
99 OOOOOO

100 OOOOOOO
101 OOOOOOOO
102 OOOOOOOOO
103 OOOOOOOOOO

43

44 Canvas rtQuadrant_2{ rtQuadrant_1.flip_horizontal() };
45 cout << rtQuadrant_2 << endl;

104 O
105 OO
106 OOO
107 OOOO
108 OOOOO
109 OOOOOO
110 OOOOOOO
111 OOOOOOOO
112 OOOOOOOOO
113 OOOOOOOOOO

46

47 Canvas rtQuadrant_3{ rtQuadrant_2.flip_vertical() };
48 cout << rtQuadrant_3 << endl;

114 OOOOOOOOOO
115 OOOOOOOOO
116 OOOOOOOO
117 OOOOOOO
118 OOOOOO
119 OOOOO
120 OOOO
121 OOO
122 OO
123 O

49

50 Canvas rtQuadrant_4{ rtQuadrant_3.flip_horizontal() };
51 cout << rtQuadrant_4 << endl;

124 OOOOOOOOOO
125 OOOOOOOOO
126 OOOOOOOO
127 OOOOOOO
128 OOOOOO
129 OOOOO
130 OOOO
131 OOO
132 OO
133 O

July 2023 Assignment 4: Inheritance and Runtime Polymorphism Page 11 of 19

7.5 Using Smart Pointers to Shape objects
Now, let’s create a vector of smart pointers pointing to concrete
shape objects and draw them polymorphically:

52

53 // create a vector of smart pointers to Shape
54 std::vector<std::unique_ptr<Shape>> shapeVec;
55

56 // Next, add some shapes to shapeVec
57 shapeVec.push_back
58 (std::make_unique<Rectangle>(5, 7));
59 shapeVec.push_back
60 (std::make_unique<Rhombus>(16, ’v’, "Ace"));
61 shapeVec.push_back
62 (std::make_unique<AcuteTriangle>(17));
63 shapeVec.push_back
64 (std::make_unique<RightTriangle>(10, ’L’));
65

66 // now, draw the shapes
67 for (const auto& shp : shapeVec)
68 {
69 cout << shp->draw() << endl;
70 }
71 // referncing a unique_ptr object that point to a
72 // concrete shape object, shp behaves like a pointer,
73 // calling the virtual function draw() polymorphically

Notice the absence of the operators new and delete in the code
above.

134 *******
135 *******
136 *******
137 *******
138 *******
139

140 v
141 vvv
142 vvvvv
143 vvvvvvv
144 vvvvvvvvv
145 vvvvvvvvvvv
146 vvvvvvvvvvvvv
147 vvvvvvvvvvvvvvv
148 vvvvvvvvvvvvvvvvv
149 vvvvvvvvvvvvvvv
150 vvvvvvvvvvvvv
151 vvvvvvvvvvv
152 vvvvvvvvv
153 vvvvvvv
154 vvvvv
155 vvv
156 v
157

158 *
159 ***
160 *****
161 *******
162 *********
163 ***********
164 *************
165 ***************
166 *****************
167

168 L
169 LL
170 LLL
171 LLLL
172 LLLLL
173 LLLLLL
174 LLLLLLL
175 LLLLLLLL
176 LLLLLLLLL
177 LLLLLLLLLL

July 2023 Assignment 4: Inheritance and Runtime Polymorphism Page 12 of 19

8 Task 2 of 2
Implement a Canvas class using the following declaration. Feel free to introduce other private
member functions, but no data members, of your choice to facilitate the operations of the other
members of the class.

1 class Canvas {
2 public:
3 // all special members are defaulted because ’grid’,
4 // a 2D std::vector, is self-sufficient and efficient,
5 // designed to handle the corresponding special operations efficiently
6 Canvas() = default;
7 virtual ~Canvas() = default;
8 Canvas(const Canvas&) = default;
9 Canvas(Canvas&&) = default;

10 Canvas& operator=(const Canvas&) = default;
11 Canvas& operator=(Canvas&&) = default;
12 protected:
13 vector<vector<char> > grid{}; // a 2D vector representing a canvas
14 char fillChar{ ’ ’ }; // fill or clear character
15 bool check(int r, int c)const; // validates row r and column c, 0-based
16 void resize(size_t rows, size_t cols); // resizes this Canvas’s dimensions
17 public:
18 // creates this canvas’s (rows x columns) grid filled with blank characters
19 Canvas(int rows, int columns, char fillChar = ’ ’);
20

21 char getFillChar()const;
22 void setFillChar(char ch);
23

24 int getRows()const; // returns height of this Canvas object
25 int getColumns()const; // returns width of this Canvas object
26 Canvas flip_horizontal()const; // flips this canvas horizontally
27 Canvas flip_vertical()const; // flips this canvas vertically
28 void print(ostream&) const; // prints this Canvas to ostream
29 char get(int r, int c) const; // returns char at row r and column c, 0-based;
30 // throws std::out_of_range{ "Canvas index out of range" }
31 // if r or c is invalid.
32 void put(int r, int c, char ch); // puts ch at row r and column c, 0-based;
33 // the only function used by a shape’s draw functon;
34 // throws std::out_of_range{ "Canvas index out of range" }
35 // if r or c is invalid.
36

37 // draws text starting at row r and col c on this canvas
38 void drawString(int r, int c, const std::string text);
39

40 // copies the non-fill characters of "can" onto the invoking Canvas object;
41 // maps can’s origin to row r and column c on the invoking Canvas object
42 void overlap(const Canvas& can, size_t r, size_t c);
43 };
44 ostream& operator<< (ostream& sout, const Canvas& can);

July 2023 Assignment 4: Inheritance and Runtime Polymorphism Page 13 of 19

Deliverables
Header files: Shape.h, Triangle.h, Rectangle.h, Rhombus.h, AcuteTriangle.h,

RightTriangle.h, Canvas.h,
Implementation files: Shape.cpp, Triangle.cpp, Rectangle.cpp, Rhombus.cpp, Acute-

Triangle.cpp, RightTriangle.cpp, Canvas.cpp, and ShapeTest-
Driver.cpp

README.txt A text file (see the course outline).

9 Specific Grading scheme
Task 1: 60% The Shape classes

Task 2: 40% The Canvas class

10 General Grading scheme

Functionality
• Correctness of execution of your program

60%• Proper implementation of all specified requirements
• Efficiency

OOP style

• Encapsulating only the necessary data inside objects

20%

• Information hiding
• Proper use of C++ constructs and facilities
• No global variables
• No use of the operator delete

• No C-style memory functions such as memset(), memmove,
memcpy, memcmp, malloc, alloc, free, etc.

Documentation
• Description of purpose of program

10%• Javadoc comment style for all methods and fields
• Comments for non-trivial code segments

Presentation
• Format, clarity, completeness of output

5%
• User friendly interface

Code readability • Meaningful identifiers, indentation, spacing 5%

July 2023 Assignment 4: Inheritance and Runtime Polymorphism Page 14 of 19

11 Sample Test Driver

11.1 ShapeTestDriver.cpp

1 #include<iostream>
2 #include<vector>
3

4 #include "Rhombus.h"
5 #include "Rectangle.h"
6 #include "AcuteTriangle.h"
7 #include "RightTriangle.h"
8 #include "Canvas.h"
9

10 using std::cout;
11 using std::endl;
12

13 void drawHouse(); // draws front view of a house image
14

15 int main()
16 {
17 drawHouse();
18

19 return 0;
20 }

July 2023 Assignment 4: Inheritance and Runtime Polymorphism Page 15 of 19

11.2 Drawing Front View of a House

21 // Using our four geometric shapes,
22 // draws a pattern that looks like the front view of a house
23 void drawHouse()
24 {
25 // create a vector of smart pointers to Shape
26 std::vector<std::unique_ptr<Shape>> shapeVec;
27

28 // create a 47-row by 72-column Canvas
29 Canvas houseCanvas(47, 72);
30 houseCanvas.drawString(1, 10, "a geometric house: front view");
31

32 shapeVec.push_back(std::make_unique<RightTriangle>(20, ’\\’, "Right half of roof"));
33 Canvas roof_right_can = shapeVec.back()->draw();
34 houseCanvas.overlap(roof_right_can, 4, 27);
35

36 shapeVec.back()->setPen(’/’);
37 Canvas roof_left_can = shapeVec.back()->draw().flip_horizontal();
38 houseCanvas.overlap(roof_left_can, 4, 7);
39

40 houseCanvas.drawString(23, 8,
41 "[][][][][][][][][][][][][][][][][][][]");
42

43 shapeVec.push_back(std::make_unique<Rectangle>(5, 1, ’|’, "left chimeny edge"));
44 Canvas chimneyL = shapeVec.back()->draw();
45 houseCanvas.overlap(chimneyL, 14, 12);
46

47 shapeVec.push_back(std::make_unique<Rectangle>(4, 1, ’|’, "right chimeny edge"));
48 Canvas chimneyR = shapeVec.back()->draw();
49 houseCanvas.overlap(chimneyR, 14, 13);
50

51 shapeVec.push_back(std::make_unique<Rectangle>(11, 1, ’I’, "antenna stem"));
52 Canvas antenna_stem = shapeVec.back()->draw();
53 houseCanvas.overlap(antenna_stem, 11, 45);
54

55 shapeVec.push_back(std::make_unique<RightTriangle>(5, ’=’, "Right antenna wing"));
56 Canvas antenna_Q1 = shapeVec.back()->draw();
57 Canvas antenna_Q2 = antenna_Q1.flip_horizontal();
58 Canvas antenna_Q3 = antenna_Q2.flip_vertical();
59 Canvas antenna_Q4 = antenna_Q1.flip_vertical();
60 houseCanvas.overlap(antenna_Q3, 11, 40);
61 houseCanvas.overlap(antenna_Q4, 11, 46);
62

63 shapeVec.push_back(std::make_unique<Rectangle>(18, 1, ’[’, "vertical left and right brackets"));
64 Canvas wall = shapeVec.back()->draw();
65 houseCanvas.overlap(wall, 24, 8);
66 houseCanvas.overlap(wall, 24, 44);
67

68 shapeVec.back()->setPen(’]’); // use the same wall shape

July 2023 Assignment 4: Inheritance and Runtime Polymorphism Page 16 of 19

69 houseCanvas.overlap(wall, 24, 9);
70 houseCanvas.overlap(wall, 24, 45);
71

72 shapeVec.push_back(std::make_unique<Rectangle>(1, 66, ’-’, "horizontal lines depicting the ground"));
73 Canvas line = shapeVec.back()->draw();
74 for (int c = 1; c <= 6; c++)
75 {
76 houseCanvas.overlap(line, 40 + c, 7 - c);
77 }
78 houseCanvas.drawString(40, 8,
79 "[][][][][][][][][][][][][][][][][][][]");
80 houseCanvas.drawString(41, 8,
81 "[][][][][][][][][][][][][][][][][][][]");
82

83 shapeVec.push_back(std::make_unique<Rectangle>(1, 12, ’/’, "door step"));
84 Canvas door_step = shapeVec.back()->draw();
85 houseCanvas.overlap(door_step, 39, 21);
86

87 shapeVec.push_back(std::make_unique<Rectangle>(12, 12, ’|’, "door"));
88 Canvas door = shapeVec.back()->draw();
89 houseCanvas.overlap(door, 27, 21);
90

91 shapeVec.push_back(std::make_unique<Rectangle>(1, 10, ’=’, "door top/bottom edge"));
92 Canvas door_edge = shapeVec.back()->draw();
93 houseCanvas.overlap(door_edge, 27, 22);
94 houseCanvas.overlap(door_edge, 38, 22);
95

96 shapeVec.push_back(std::make_unique<Rectangle>(1, 1, ’O’, "door knob"));
97 Canvas door_knob = shapeVec.back()->draw();
98 houseCanvas.overlap(door_knob, 33, 22);
99

100 houseCanvas.drawString(26, 25, "5421");
101

102 shapeVec.push_back(std::make_unique<Rhombus>(5, ’+’, "left window"));
103 Canvas window = shapeVec.back()->draw();
104 houseCanvas.overlap(window, 28, 14);
105 houseCanvas.overlap(window, 28, 35);
106

107 shapeVec.push_back(std::make_unique<Rectangle>(5, 3, ’H’, "tree trunk"));
108 Canvas tree_trunk = shapeVec.back()->draw();
109 houseCanvas.overlap(tree_trunk, 36, 60);
110

111 shapeVec.push_back(std::make_unique<AcuteTriangle>(7, ’*’, "top level leaves"));
112 Canvas leaves = shapeVec.back()->draw();
113 houseCanvas.overlap(leaves, 21, 58);
114

115 shapeVec.push_back(std::make_unique<AcuteTriangle>(11, ’*’, "middle level leaves"));
116 Canvas middleLeaves = shapeVec.back()->draw();
117 houseCanvas.overlap(middleLeaves, 23, 56);
118

July 2023 Assignment 4: Inheritance and Runtime Polymorphism Page 17 of 19

119 shapeVec.push_back(std::make_unique<AcuteTriangle>(19, ’*’, "bottom level leaves"));
120 Canvas bottomLeaves = shapeVec.back()->draw();
121 houseCanvas.overlap(bottomLeaves, 26, 52);
122

123 houseCanvas.drawString(13, 11, "\\||/");
124 houseCanvas.drawString(12, 11, "_/_");
125

126 // finally, reveal the house image
127 cout << houseCanvas;
128

129 // print the string representation of each shape
130 for (const auto& shp : shapeVec)
131 {
132 cout << *shp << endl;
133 }
134

135 return;
136 }

11.3 Output

For the sake of brevity, the string representation of the shape objects printed on line 135 are not
shown.

July 2023 Assignment 4: Inheritance and Runtime Polymorphism Page 18 of 19

Output
a geometric house: front view

/\
//\\

///\\\
////\\\\

/////\\\\\
//////\\\\\\

///////\\\\\\\
////////\\\\\\\\ =====I=====

/ /////////\\\\\\\\\ ====I====
\||/ //////////\\\\\\\\\\ ===I===
|| ///////////\\\\\\\\\\\ ==I==
|| ////////////\\\\\\\\\\\\ =I=
||/////////////\\\\\\\\\\\\\ I
||/////////////\\\\\\\\\\\\\\ I
|//////////////\\\\\\\\\\\\\\\ I

////////////////\\\\\\\\\\\\\\\\ I
/////////////////\\\\\\\\\\\\\\\\\ I

//////////////////\\\\\\\\\\\\\\\\\\I *
///////////////////\\\\\\\\\\\\\\\\\\\ ***

/[][][][][][][][][][][][][][][][][][][]\ *****
[] [] *******
[] [] *****
[] 5421 [] *******
[] |==========| [] *********
[] + |||||||||||| + [] ***********
[] +++ |||||||||||| +++ [] *******
[] +++++ |||||||||||| +++++ [] *********
[] +++ |||||||||||| +++ [] ***********
[] + |||||||||||| + [] *************
[] |O|||||||||| [] ***************
[] |||||||||||| [] *****************
[] |||||||||||| [] *******************
[] |||||||||||| [] HHH
[] |||||||||||| [] HHH
[] |==========| [] HHH
[] //////////// [] HHH
[][][][][][][][][][][][][][][][][][][] HHH

--[][][][][][][][][][][][][][][][][][][]--------------------------
--

--
--

--
--

July 2023 Assignment 4: Inheritance and Runtime Polymorphism Page 19 of 19

	1 Purpose
	2 Overview
	3 Modeling 2D Geometric Shapes
	3.1 Common Attributes: Data
	3.2 Common Operations: Interface

	4 Modeling Specialized 2D Geometric Shapes
	5 Concrete Shapes
	6 Task 1 of 2
	6.1 Requirements

	7 Some Examples
	7.1 Polymorphic Magic
	7.2 Shape's Draw Function
	7.3 Examples Continued
	7.4 Flipping Canvas Objects
	7.5 Using Smart Pointers to [style=Java1,basicstyle=blue]Shape objects

	8 Task 2 of 2
	9 Specific Grading scheme
	10 General Grading scheme
	11 Sample Test Driver
	11.1 ShapeTestDriver.cpp
	11.2 Drawing Front View of a House
	11.3 Output

