
Homework 4
We will be building a game of CHUTES & LADDERS.

See Canvas for due dates

130 points

Objectives:
Implement a GUI with elements that interact with one another

Understand timer mechanics and how to advance state automatically

Become more familiar with the observer pattern in general (signals/slots in Qt)

Credit:
Deliverable 1: HW4_design.pdf

Deliverable 2: All the .h, .cpp, .pro, .ui files for your Qt project (do not include
your .pro.user file). Github link if you are working with a partner.

Instructions:
You may work in a pair though I encourage that you attempt this project on your own. If
you are working with a partner, create a private github repository and add
chaitanyab2311 and sreeshanath as collaborators to it. You will submit this link along
with the rest of your submission on Gradescope.

YOU MAY NOT POST ANY OF THIS CODE IN A PUBLIC GIT REPOSITORY

Deliverable 1: Design document

First, carefully read the entirety of this design document.You will make a plan of which
classes are in charge of what, how they will communicate (what methods they will have,
what signals will they emit, what slots will they have), and what data they will control
(what fields will they have). You should also indicate what signals will be emitted by UI
elements and which objects will respond to these signals.

1. Use the plot project that we'll be working on in class from Weeks 8, 9 & 10 as well as
the Qt documentation to help guide your design.

2. Your design document does not need to be a 100% final plan, but should account
for all features that you plan on having.

Game rules (modified from original):

Note: Each of the operations are explained in detail in Program Flow.

1. Each player has a pawn assigned to them. These pawns will reside in a container
outside the board.

2. To get placed on the board, the player should get a 6 upon rolling the die(s). They
get placed on tile 1 to get started.

3. In each turn the player can do one of the following:

undo a previous move

roll the die(s) and play the move based on the number generated

re-roll the die for a different number

quit the game

4. If the player does not make their move within 10 seconds, their turn should be
skipped and the next player will have a chance to play.

5. If the player lands on a tile that is the bottom of the ladder, they should
automatically be moved to the top of the ladder.

6. If the player lands on the top of the chute, they should automatically be transported
to the bottom of the chute.

7. The player to reach tile 100 first is declared the winner.

Program Flow:

Number of Players

Your application should load a dialog at the start that allows the user to choose the
number of players for a given game. You can have a minimum of 2 to a maximum of 4
players. Users shouldn't have the option to choose outside of this range.

Hint: sliders

Player Information

We intend to store player information to allow us to track their scores and be able to
generate a leaderboard. For this purpose, the users should be able to enter names only
for the number of players they have chosen for a given game. For eg: If the user chose a
2-player game, then the next prompt should allow the user to enter names only for 2
players.

Board initialization

The board is then loaded onto window. This board should be randomly generated with
a minimum of 6 chutes and 7 ladders. They can be placed anywhere on the board and
can be of variable random lengths. The only caveat is that no tile on the board can serve
as an endpoint to more than any one chute or ladder. Below is an example of the
board:

Here the darkMagenta solid lines denotes the chutes and the darkGreen dashed lines
denotes the ladders. We have used a QPen object to define the look of the chutes and
ladders. You can choose your options to determine the appearance of the chutes and
ladders.

Our playing field:

We will play on a 2d square field.

Graph: Underneath our playing field is a graph that tracks the tiles on the board. Each
tile has a number associated with it and a player can land on any tile on the board
depending on the number from the rolled die(s). You may want to track if the tile is an
endpoint for a chute or ladder. It will help with board initialization.

Rolling the die

We're simulating rolling 2 die(s) as in the original board game. You may choose to
represent this using either 1 or 2 labels/textboxes.

If you are working with 2 die(s) - generate a number between 1 & 6 for each die and
you will sum these numbers to get the final count of moves to make

If you are working with 1 die - generate a number between 1 & 12 and that would
be the number of tiles the player can move forward to.

Start the game

User needs to click on the start button when they are ready to play. The players will play
this game in a round robin fashion. Each player has 10 seconds to make their move. All
the player pawns will reside in a widget outside of the board. To get their pawn placed
on the board, the player has to roll the die(s) and get an exact 6. This will place them on
tile 1 on the board. Except for this move, the player should be able to undo all moves
that they may play in the future.

Player Turns

You must indicate on the UI who the current player is. You can use color coding to link a
player to their pawn as seen in the image above.

If the player is unhappy with their move in the previous turn, they can undo it - even if it
means moving up the chute or down the ladder. Each player has a maximum of 3
undos in a single game. Undo-ing a previous move in a turn is optional for the player.
They can proceed to the next step without this.

The player can choose to roll the die(s). If the player is satisfied with the number rolled
by the die(s) they can choose to make the move to the next tile. If not, they can re-roll
the die. A player can re-roll the die for a maximum of 5 times in a game.

A player could use multiple undos and re-rolls in a turn. However, if the player reaches
the limit for undos or re-rolls, those options should be disabled for the player's
remaining turns in that game.

The player also has the option to quit the game. If upon a player quitting, the number of
players is reduced below the minimum, the game should automatically end with a
warning dialog with an appropriate message to let the user know.

Irrespective of their sequence of actions, each player has 10 seconds to complete their
turn else their turn is skipped. You should display a timer on the UI. It could be
simulated using a label that updates the text/number each second. Choose a medium
to indicate to the user if their turn was skipped.

Visualizing player movement

When the player's pawn is being moved on the board, it should step on each tile along
the way till it reaches the destination tile. This is applicable when the pawn is moving
forward in a regular move or moving backward while undo-ing a move. The only
exception is when the player is moving up/down the ladder or chute.

When the pawn is being moved on the board, all actions for the player should be
disabled till the move is completed. Note here that when the move is completed, the
player's turn is considered done and it is the next player's chance to play.

OPTIONAL : You can add appropriate labels/dialogs to indicate when the player is
moving up a ladder or down the chute.

Ending the game

The game ends in one of the following situations:

If a player reaches tile 100, the game ends with declaring that player the winner.

If the number of players reaches a value below the minimum

User chooses to click on "End Game"

Leaderboard

You will track the player name, number of games won, number of games played, and %
of wins for each player in a csv file. For this game, treat the csv as a read-write database
for player statistics.

The user should be able to click on a button to view the leaderboard They should be
able to view all the statistics for each player, stored in the csv file, arranged in a
descending order of % wins. You can choose which widget to use to display this
information.

If the number of player exceeds 10, you can choose to display only the top 10 players.
You will, however, retain information about all players that have played the game
across multiple sessions in the csv file.

Extra Credit (20 points)

For extra credit you need to do both of the following tasks:

1. Save the game state: If the user decides to save the game to be played later, you
should save the below in csv file(s):
a. players' information and state: names, positions, number of undos, number of
re-rolls for each
b. board state: since each board is randomly generated, you should save the
positions of the chutes and ladders on the board

2. Load a game from the given csv(s): You should be able to load a game with the
information that was stored in the previous task and the players should be able to
proceed with the game from where it was left off.

Object Design:

The design of this program and the underlying objects is entirely up to you.

Tips:

1. Items that do not inherit QObject or include the Q_OBJECT macro cannot emit
signals, nor have slots.

2. QGraphicsScene has an ItemAt function that you can use to tell what item was
clicked in your scene. The QGraphicsItem must implement both the shape() and the
boundingRect() methods correctly to be properly detected by ItemAt().To do this,
you will need to subclass QGraphicsScene so that you can override whatever event
methods (such as mousePressEvent) that are necessary.

3. Take a look at the QTimer documentation. You may choose to use QTimer, or you
may use one of the alternatives; our game doesn’t require single-shot timers or
signals (from the timer).

http://doc.qt.io/qt-5/qtimer.html

4. Use QDebug. The easiest way to use this class is to import it and direct whatever
you want to print to qDebug(). (e.g. qDebug() << “click”;) QDebug handles correctly
routing the output to the console so that you don’t end up with the weird behavior
that can happen with cout, such as the console not updating until after you exit the
application.

5. Feel free to use any parts of the plot project as inspiration.

6. We highly recommend using only QGraphicsScenes and QGraphicsItems to
visualize your board, player pawns, chutes and ladders. We do not recommend
using QTables or QGraphs. You may use QPixMap to give your game a better visual
appearance but indulge in it only after completing a basic implementation of the
game.

Rubric

http://doc.qt.io/qt-5/qdebug.html

Criteria Description Points

Design
Document

 10

UI
Contains all UI components and dialogs to accept
number of players and player names

30

Rolling the
dies(s)

The total should not be less than 1 or more than 12 5

Start the
game

Player pawn is placed on board at the right time 10

Player turn
actions

 45

 Update current player information 5

 Undo 15

 Re-Roll the die(s) 5

 Make the move based on number rolled on die(s) 10

 Quit the game 10

Disable player actions when pawn is moving on the
board

5

End game
Games ends appropriately under specified
circumstances

10

Leaderboard View leader board with player stats 15

Extra Credit Save and load games 20

	Homework 4
	Objectives:
	Credit:
	Instructions:
	Deliverable 1: Design document
	Game rules (modified from original):
	Program Flow:
	Number of Players
	Player Information
	Board initialization
	Our playing field:
	Rolling the die
	Start the game
	Player Turns
	Visualizing player movement
	Ending the game
	Leaderboard

	Extra Credit (20 points)
	Object Design:
	Tips:

	Rubric

