
Q. No.	Questions	Marks
1	Solve $u_{xx} = u_{tt}$ given that $u(x, 0) = 0$; $u(0, t) = 0$; $u_t(x, 0) = 0$ and $u(1, t) = 100 \sin(\pi t)$ in the range $0 \le t \le 1$ by taking $h = 0.25$.	10
2	Solve $u_{xx} = 32u_t$ subject to the conditions $u(0, t) = 0$; $u(1, t) = t$ and $u(x, 0) = 0$. Find the values of u upto $t = 5$ by Schmidt's process taking $h = 0.25$. [hint: $k = \frac{h^2}{2c^2}$]	08
3	Solve the elliptical equation $u_{xx} + u_{yy} = 0$ at the pivotal points for the square mesh using Leibmann's Method	08

4	Solve the Poisson's equation $\nabla^2 u = 8x^2y^2$ for the square mesh in the figure with $u(x,y) = 0$ on the boundary and mesh length 1.	08
	a u, u2 u1	
	o u ₂ u ₃ u ₂ o	
	0 0, 0, 0	
	0 0 0	
5.	Solve the equation $y_i'' = 2x - 2y$ with the boundary conditions $y(0) = y(1) = 0$ with the finite difference method.	8
6	Solve the equation $y_i'' = x + 2y$ with the boundary conditions $y(0) = y(1) = 0$ with the finite difference method.	8