A Language for Access Control 23

p q r |pra| (pAg)Dr
true | true | true || true true
true | true | false || true false
true | false | true | false true
true | false | false || false true
false | true | true || false true
false | true | false || false true
false | false | true || false true
false | false | false || false true

Table 2.1: Truth table for the propositional formula (pAgq) D r

The key to answering these questions for any logic is to have rigorous, mathemat-
ical semantics that define precisely what a given statement means. These formal
semantics provide a basis by which one can independently assess the trustworthiness
of a logical system. For example, in propositional logic, the formal meaning of a
statement such as

(pAg) DT

can be calculated using a truth table, as illustrated in Table 2.1. Each line in the truth
table corresponds to a particular interpretation of the propositional variables (i.e., a
mapping of variables to specific truth values). Truth tables calculate the meaning
of larger formulas in a syntax-directed way, based on the meanings of their compo-
nents: for example, the meaning of (p Ag) D r for a given interpretation is calculated
using the meanings of p A g and r, as well as a specific rule for the operator D. A
propositional-logic formula is a tautology—and therefore safe to use as an axiom of
the system—if it is true for every possible interpretation of the propositional vari-
ables.

These same core ideas apply to the semantics for our access-control logic. Because
we must account for the interpretation of principals in addition to propositional vari-
ables, the semantics requires a little more structure than truth tables provide. We can
find this additional structure in the form of| Kripke structures.

2.3.1 Kripke Structures

Kripke structures are useful models for analyzing a variety of situations. They
are commonly used to provide semantics for modal and temporal logics, providing a
basis for automated model checking.

Definition 2.1 A Kripke structure M is a three-tuple (W,1,J), where:
o W is a nonempty set, whose elements are called worlds.

e [: PropVar — P(W) is an interpretation function that maps each propositional
variable to a set of worlds.

24 Access Control, Security, and Trust: A Logical Approach

e J: PName — P(W x W) is a function that maps each principal name to a
relation on worlds (i.e., a subset of W x W). .

Before we look at some examples of Kripke structures, a few comments about this
definition are in order. (First, the concept of worlds is an abstract one. In reality,
W is simply a set: its contents (whatever they may be) are called worlds. In many
situations, the notion of worlds corresponds to the notion of system states or to the
concept of possible alternatives.

Second, the functions I and J provide meanings (or interpretations) for our propo-
sitional variables and simple principals. These meanings will form the basis for our
semantics of arbitrary formulas in our logic. Intuitively, I(p) is the set of worlds in
which we consider p to be true. J(A) is a relation that describes how the simple prin-
cipal A views the relationships between worlds: each pair (w,w') € J(A) indicates
that, when the current world is w, principal A believes it possible that the current
world is w'.

For illustration purposes, we introduce some examples of Kripke structures. The
first example provides some intuition as to what the interpretation functions / and J
represent, illustrating how each relation J(P) might reflect principal P’s understand-
ing of the universe.

Example 2.7

Consider the situation of three young children (Flo, Gil, and Hal), who are being
looked after by an overprotective babysitter. This babysitter will let them go outside
to play only if the weather is both sunny and sufficiently warm.

To keep things simple, let us imagine that there are only three possible situations:
it is sunny and warm, it is sunny but cool, or it is not sunny. We can represent these
possible alternatives with a set of three worlds: Wy = {sw,sc,ns}.

We use the propositional variable g to represent the proposition “The children
can go outside.” The baby sitter’s overprotectiveness can be represented by any
interpretation function

Iy : PropVar — P({sw,sc,ns})

for which Ip(g) = {sw}. That is, the proposition g (“the children can go outside”) is
true only in the world sw (i.e., when the weather is both sunny and warm).

Now, the children themselves are standing by the window, trying to determine
whether or not they’ll be allowed to go outside. Gil, who is tall enough to see the
outdoor thermometer, possesses perfect knowledge of the situation, as he will be able
to determine whether it is both sunny and sufficiently warm. This perfect knowledge
corresponds to a possible-worlds relation

Jo(Gil) = {(sw,sw), (sc,sc), (ns,ns)}.

Whatever the current situation is, Gil has the correct understanding of the situation.
(Note that Jo(Gil) is the identity relation idy, over the set Wp.)

A Language for Access Control 25

In contrast, Flo is too short to see the outdoor thermometer, and thus she cannot
distinguish between the “sunny and warm” and “sunny and cool” alternatives. This
uncertainty corresponds to a possible-worlds relation

Jo(Flo) = {(sw,sw), (sw,sc), (sc,sw), (sc,sc), (ns,ns)}.

Thus, for example, if the current situation is “sunny and warm” (i.e., sw), Flo con-
siders both “sunny and warm” and “sunny and cool” as legitimate possibilities. That
is, Jo(Flo)(sw) = {sw, sc}.

Finally, Hal is too young to understand that it can be simultaneously sunny and
cool: he believes that the presence of the sun automatically makes it warm outside.
His confusion corresponds to a possible-worlds relation

Jo(Hal) = {(sw,sw), (sc,sw), (ns,ns)}.

Whenever the actual weather is sunny and cool, Hal believes it to be sunny and
warm: Jo(Hal)(sc) = {sw}.
The tuple (Wy, I, Jo) forms a Kripke structure. O

The next example introduces a Kripke structure that does not necessarily reflect
any particular scenario or vignette. Rather, the Kripke structure is merely a three-
tuple that contains a set and two functions that match the requirements of Defini-
tion 2.1.

Example 2.8
Let Wi = {wo,w;,wz2} be a set of worlds, and let I; : PropVar — P(W;) be the
interpretation function defined as follows?:

Ii(q) = {wo,w2},
Li(r) = {w},
Li(s) = {wi,w2}.
In addition, let J; : PName — P(W; x W}) be the function defined as follows?:

Jl (Allce) = {(W07W0)7 (Wl 3 Wl)7 (W27 WZ)}7
‘]1 (BOb) = {(W(),W()), (W(),W[), (WlaWZ)a (Wszl)}'
The three-tuple (W;,1;,J;) is a Kripke structure. Intuitively, proposition ¢ is true in

worlds wy and wy, r is true in world wy, and s is true in worlds w; and w,. All other
propositions are false in all worlds. O

2In this example and those that follow, we adopt the convention of specifying only those propositional
variables that the interpretation function maps to nonempty sets of worlds. Thus, for any propositional
variable p not explicitly mentioned, we assume that /; (p) = 0.

3We adopt a similar convention for principal-mapping functions J: for any principal name A for which
J(A) is not explicitly defined, we assume that J(A) = 0.

26 Access Control, Security, and Trust: A Logical Approach

Next State
Present State | x=0 x=1

T Aaw
aa >
>0l

Table 2.2: State-transition table for finite-state machine M

World | p q r s

A true true false true
B false true false true
C true false false true

D false true false true

Table 2.3: Truth values of primitive propositions p, g, , and s in each world

The next example illustrates how a Kripke structure might be used to represent a
state machine.

Example 2.9
Consider the state-transition table for a finite-state machine M shown in Table 2.2.
This machine has four states: A, B, C, and D. The column labeled “Present State”
lists the possible present states of M. The two columns under the label “Next State”
list the next states of M if the input x is either 0 or 1, respectively. For example, the
second row of Table 2.2 describes M’s behavior whenever it is currently in state B: if
the input is x is O, then the next state will be A; if x is 1, then the next state will be C.
We can construct a Kripke structure (W5, I, J>) to model this machine by defining
W to be the set of M’s states:

W, = {A,B,C,D}.

Now, suppose that there are four primitive propositions (p, g, r,s) associated with
the state machine M, with their truth values in the various states given by Table 2.3.
This table effectively specifies the interpretation function I, on these propositions,
namely:

12(p) = {A7C}7
IZ(Q) = {A,B7D},
L(r) =A{}

L(s) = {A,B,C,D}

Finally, imagine that there is an observer Obs of the machine’s execution. This
observer has faulty knowledge of M’s states: whenever M is in state C, Obs incor-
rectly believes M to be in state D. We’ll assume that the observer does correctly
know when M is in states A, B, or D.

A Language for Access Control 27

This observer’s state knowledge can be captured by the following relation:
JZ(ObS) = {(AaA)v (BaB)v (CvD)v (DvD)}

In the relation J,(Obs), the first element of each pair represents the present state of
M, and the second element is the observed state of M. Thus the pair (C,D) reflects
that, whenever M is in state C, Obs always believes the current state is D.

The tuple ({A,B,C,D},I,J>) forms a Kripke structure. O

In the next example, we model the same state machine, but we consider the inputs
(i.e., “x=0" or “x=1") as the “observers” of the state machine, and we use each “next
state” as the perceived state by the particular observer. Although the set of worlds
and the interpretation function do not change, the principal-mapping function does
change.

Example 2.10

Let W, and I, be as defined in Example 2.9, and define J3 as follows:
‘]3(X0) = {(AvA)a (BvA)v (C,C), (D,C)},
J3(X1) = {(AvD)a (B’C)’ (C’B)’ (D’A)}'

The tuple ({A,B,C,D},1,J3) forms a Kripke structure. O

Just as the interpretation function / of a Kripke structure provides the base inter-
pretation for propositional variables, the function J provides a base interpretation for
simple principal names. We extend J to work over arbitrary principal expressions,
using set union and relational composition as follows:

J(P&Q) = J(P)UJ(Q),
JP| Q) = I(P)o(Q).

Example 2.11
Suppose that we have the following relations:
J(Andy) = {(wo,wo), (wo,w2), (w1, w1), (w2, w1)},
J(Stu) = {(wi,w2)},
J(Keri) = {(wo,w2), (wi,w2),(w2,w2)}.
Then J(Keri | (Andy & Stu)) is calculated as follows:

J(Keri | (Andy & Stu))

= J(Keri) o J(Andy & Stu),

= J(Keri) o (J(Andy) UJ(Stu)),

= J(Keri) o {(wo,wo), (wo,w2), (wi,w1),(w2,w1), (wi,w2)}
(

= {(wo,w1), (wi,w1), (w2, w1)}. O

28 Access Control, Security, and Trust: A Logical Approach

Exercise 2.3.1 Recall the Kripke structure (Wy,lo,Jo) from Example 2.7, and fur-
ther suppose that

Jo(Ida) = {(sw,sc), (sc,sw), (ns,sc), (ns,ns)}.
Calculate the following relations:
a. Jo(Hal & Gil)
b. Jo(Gil | Hal)
c. Jo(Flo & Ida)

e. Jo(Ida | Hal)

(
(

d. Jo(Hal| Ida)
(

f Jo(Hal & (Ida | Hal))

(

g Jo(Hal | (Ida & Hal))

2.3.2 Semantics of the Logic

The Kripke structures provide the foundation for a formal, precise, and rigorous
interpretation of formulas in our logic. For each Kripke structure M = (W,1,J), we
can define what it means for formulas in our logic to be satisfied in the structure. We
can also identify those worlds in W for which a given formula is said to be true.

To define the semantics, we introduce a family of levaluation functions. Each
Kripke structure M = (W,1,J) gives rise to an evaluation function £, that maps
well-formed formulas in the logic to subsets of W. Intuitively, Eq,[[@] is the set of
worlds from the Kripke structure M for which the well-formed formula ¢ is consid-
ered true. We say that M sarisfies @ (written M = @) whenever @ is true in all of
the worlds of M : that is, when E,,[[¢]] = W. {It follows that a Kripke structure M
does not satisfy @ (written M [~ @) when there exists at least one w € W such that
w & Egr[lo].

Each £,/ is defined inductively on the structure of well-formed formulas, making
use of the interpretation functions I and J within the Kripke structure M = (W,1,J).
We discuss the individual cases separately, starting with the standard propositional
operators and then moving on to the access-control specific cases. The full set of
definitions is also summarized in Figure 2.1.

Standard Propositional Operators

The semantics for propositional variables and the standard logical connectives
(e.g., negation, conjunction, implication) are very similar to the truth-table interpre-
tations for standard propositional logic. The interpretation function / identifies those
worlds in which the various propositional variables are true, while the semantics of
the other operators are defined using standard set operations. We handle these cases
1n turn.

A Language for Access Control 29

FIGURE 2.1 Semantics of core logic, for each M = (W, I,J)

Zar[pll = (P)
o[-0 = W — Exc[[0]
Egr[@1 A 92] = E:M (@10 Ear[[92]
Ear[91V @2] = Egrll@1] U Egr[92]
Ear91 D @2l = (W — Earll@1])) U Ear[l2]]
Ear[@01 = 02]] = Ear[91 D @] N Enr[92 D 1]
e+ 0 - {0

Eqc[[P says 0] = {w|J(P)(w) C Eac[]}
Ear[[P controls @]] = E4,[(P says ¢) D @]

Propositional Variables: The truth of a propositional variable p is determined by
the interpretation function /: a variable p is considered true in world w pre-
cisely when w € I(p). Thus, for all propositional variables p,

For example, if 7 is the Kripke structure (Wp,Iy,Jp) from Example 2.7,
Eag [8]] = Io(g) = {sw}.

Negation: A formula with form —@ is true in precisely those worlds in which @ is
not true. Because (by definition) Eq4,[[@] is the set of worlds in which @ is
true, we define

a [-0] =W — Eac [0l

Thus, returning to Example 2.7,
Eagy [~8] = Wo — Eag, [lg] = {sw,sc,ns} —{sw} = {sc,ns}.

Notice that Eqy, [[-g]] is the set of worlds in which the children are not allowed
to go outside.

Conjunction: A conjunctive formula @; A @, is considered true in those worlds for
which both @ and @, are true: that is, @; A @, is true in those worlds w for
which w € Eq,[[@1]] and w € Eqgr[[@2]]. Thus, we can define Eq,[[Q1 A Q2] in
terms of set intersection:

Ear[@1 A 92]] = Ear [01] N Ear [02]-

30 Access Control, Security, and Trust: A Logical Approach

Disjunction: Likewise, a disjunctive formula @ V ¢, is considered true in those
worlds for which at least one of @1 and @, is true: that is, Q1 V @, is true
in those worlds w for which w € Eu/[[@1]] or w € Eqs[[@2]. Thus, we define
Earll®1 V @2] in terms of set union:

Zar[01V Q2] = Ear[@1] U Enc[l@2]).

Implication: An implication @; D @, is true in those worlds w for which either
@y is true (i.e., w € Eqr[[@2]) or @; is not true (i.e., w € Eq,[[@1], and thus
w € Eqr[[-@01]). Thatis, @; D @, is true in those worlds in which, if @, is true,
then @, is also true; if @; is false, then @;’s interpretation is immaterial. Thus,
we define the semantics of implications as follows:

Ear91 O @2l = (W — Egr@1]]) U Egr 2]

Equivalence: An equivalence @ = @, is true in exactly those worlds w in which the
implications @ D @, and ¢, D @ are both truc. Thus, we define the semantics
of implications as follows:

Ear[91 = 02 = Ear[[01 D 2] N Enr[92 D 1]

Example 2.12

Let M; be the Kripke structure (Wy,1;,J;) from Example 2.8. The set Eqy, [[g D
(r As)]] of worlds in Wi in which the formula ¢ D (r As) is true is calculated as
follows:

Eagllg D (rAs)] = (W fMl [q]) U Eqy, [Ir As]
= (W1 —11(q)) U (Eag, [r] N Eag [5])
= (Wi —{wo,w2}) U (I (r) N1 (s))
= {wiU({wi}n{wi,wa})
= {wi}U{w}
= {w1}. O

In the following example, we evaluate the same formula as in the previous exam-
ple, but with respect to a different Kripke structure.

A Language for Access Control 31

Example 2.13
Let M, be the Kripke structure (Wa,5,J2) from Example 2.9. The set Eqy,[lg O
(r As)]| of worlds W, in which the formula g D (r As) is true is calculated as follows:

Eaglg 2 (rAs)] = (Wa — Eag [q]) U Eag [As]
= (W2 = 12(q)) U (Eag,[r] N Eag [s])
= (W2 —{A,B,D}) U (h(r) N h(s))
= {C}U(0n{A,B,C,D})
={C}U0
={C}. 0

Access-Control Operators

The access-control operators of the logic (e.g., says, controls, and =) have more
interesting semantics.

Says: A formula P says ¢ is meant to denote a situation in which the principal P
makes the statement ¢. Intuitively, a principal should make statements that
they believe to be true. What does it mean for a principal to believe a statement
is true in a given world? The standard answer is that a principal P believes @
to be true in a specific world w if @ is true in all of the worlds w' that P can
conceive the current world to be (i.e., all w’ such that (w,w') is in J(P)). Of
course, this set of possible worlds is simply the set J(P)(w); @ is true in every
world in J(P)(w) if and only if J(P)(w) C Ey/[[¢]. Therefore, we define

Ea[[P says @ll = {w | J(P)(w) € Eqc[0]]}-

Controls: Formulas of the form P controls ¢ express a principal P’s jurisdiction or
authority regarding the statement ¢. We interpret P controls ¢ as syntactic sugar
for the statement (P says ¢) D @, which captures the desired intuition: if the
authority P says that @ is true, then @ is true. Thus, we give the meaning of
P controls @ directly as the meaning of this rewriting:

Ea [P controls @] = Eq,[[(P says @) D @]

Speaks For: To understand the semantics of formulas with form P = Q, recall the
purpose of such formulas: we wish to express a proxy relationship between P
and Q that will permit us to safely attribute P’s statements to Q as well, inde-
pendent of a particular world. That is, if P = Q, then it should be reasonable
to interpret any statement from P as being a statement that Q would also make.
In terms of the semantics, we have seen that a principal P making a statement
¢ in a world w means that J(P)(w) C E,[[@]. Thus, if we wish to associate
all of P’s statements to Q, then we need to know that J(Q)(w) C J(P)(w) for

32 Access Control, Security, and Trust: A Logical Approach

all worlds w. If J(Q) C J(P), then this relationship naturally holds. Therefore,
we define

W, ifJ(Q) C J(P)

0, otherwise.

Eq [P = O = {
The following examples illustrate these semantic definitions.

Example 2.14
Recall My = (W, Iy,Jo) from Example 2.7. The set of worlds in Wj in which the for-
mula Hal says g is true is given by Eq [[Hal says g], which is calculated as follows:

Ea, [Hal says g]] = {w | Jo(Hal)(w) C Eqy 8] }
= {w|Jo(Hal)(w) C {sw}}
= {sw,sc}.
This result captures Hal’s mistaken belief that, whenever it is sunny (i.e., when the
current world is either sw or sc), the children will be able to go outside.
In contrast, recall that Flo is unable to distinguish the two worlds sw and sc.
Specifically, the relation Jo(Flo) has the following properties:
Jo(Flo)(sw) = {sw,sc},
Jo(Flo)(sc) = {sw,sc},
Jo(Flo)(ns) = {ns}.

Thus, the worlds in which Flo says g is true can be calculated as follows:

Eagy [Flo says g] = {w | Jo(Flo)(w) € Eqy [g])}
= {w[Jo(Flo)(w) € {sw}}

=0.
That is, there are no worlds in which Flo is convinced that the children will be able
to go outside. O
Example 2.15

Recall M, = (Wy,1;,J;) from Examples 2.8 and Example 2.12. The set of worlds in
W1 in which the formula Alice says (¢ O (r/As)) is true is given by Eq [[Alice says (q O
(r As))]), calculated as follows:

Eay, [[Alice says (q O (rAs))]] = {w | Ji(Alice)(w) C Eqy [[q D (rAs)]}
= {w|Ji(Alice)(w) C{wi}}
={wi}.
This result is not surprising, because Alice had perfect knowledge of the separate

worlds: thus, she believes ¢ O (r A s) to be true in precisely those worlds in which it
is true. O

