
 Peer-to-Peer Music Sharing System

 Overview
 In this project, you are required to achieve two main goals.

 ○ (Phase I) Firstly, you are required to implement a graphical music player to play WAV audio
 files, control the playback, display music lyrics, and manage a music library.

 ○ (Phase II) Secondly, you are required to build a Peer-to-Peer (P2P) system for playing music
 (in the form of streaming) from remote computers. Each computer works as both client and
 server, which means you may get the audio data from other computers and share audio
 data for others to be downloaded.

 Evaluation Metrics Score (100% in total)

 Basic Requirements: Phase I 30%

 Basic Requirements: Phase II 30%

 Enhanced Features (Phase I & II) 25%

 Demonstration & Report 15%

 1

 Basic Requirements

 Apple Music, https://www.apple.com/hk/en/itunes , is a well-designed music player.

 Basic User Interface
 Your program shall have a basic user interface. The interface should at least include a
 play/stop button and a list control of audio files. The user can select the music in the list
 control to play the audio file. You also need to provide an interface for users to edit the
 information of audio files.

 A demonstration of playback controls. You can add any function as you wish, but the
 controls should contain at least a play/stop (or a play/pause) button .

 Music Decoding and Playback
 You are required to understand the inside structure of wave format and write your own
 codes that can open, analyze, and playback a WAV file. The fmt sub-chunk and the data
 sub-chunk of the WAV file must be read and extracted by yourselves, which means you
 cannot use any third-party libraries/programs . The sound data should be played fluently
 and bring the users beautiful music.

https://www.apple.com/hk/en/itunes

 2

 Music Management
 Your program should have a database that stores music information (e.g., album, title,
 length) such that the program can detect the music files in the database and then display
 them in the playlist. Your program should also have a database (or a text file) to store the
 information of the audio files. The information of the audio files should be manually input
 and removed by the user or automatically generated.

 A demonstration of music info management using a simple .TXT file.

 Information Display
 Your program shall be able to display the information of the music, including the music
 title, singer, and album name according to your database. The corresponding information
 should be displayed when the user plays a song in the list control. The program should
 display "None" in certain places if certain information is unavailable.

 A demonstration of the music info display interface.

 Music Searching
 Users can type in keywords to search music based on your database. Your program can
 search the music from the music database according to the keywords. The results should
 be displayed in the list control of your program. What's more, the user could search from
 any properties of the music, including music title, singer, and the album as the keywords.

 3

 Lyrics Display
 Your program should be able to play music and show lyrics. The lyrics file can be simple
 text files or in LRC format. The location of the lyric file can be maintained by the database,
 or simply place the file in the same folder as the music file with similar names.

 Sample Enhanced Features
 You are welcome to come up with more creative ideas to enhance your project!

 Support for other music formats
 You can use any 3rd-party libs/programs or implement them by yourself to extend your
 music player to support other audio formats, such as mp3, aac, ogg, and others.

 Progress bar
 You may implement a progress bar on the GUI to support fast seeking for playback.

 Synchronized lyric display
 LRC format contains lyrics with the addition of timing information. You may play the music
 and show the lyrics synchronously. You should download a .LRC file of your favorite song
 from the internet or type the lyrics text without time-info, and then edit it by yourself.

 Visualization
 You may create beautiful music visualization effects based on the music. For example,
 display music spectrum based on Fourier analysis. You may grab some inspiration from
 here: https://github.com/willianjusten/awesome-audio-visualization

 Source: https://soniaboller.github.io/audible-visuals/

https://github.com/willianjusten/awesome-audio-visualization
https://soniaboller.github.io/audible-visuals/

 1

 Basic Requirements
 Network connection
 Your program should be able to connect to other PCs using TCP/IP network stack.
 You can use any method to get the IP address of the connectable PCs except hard
 coding. (For example, manually inputting IP addresses, using a tracker server, or
 broadcasting are appropriate). The network should support at least three
 terminals.

 Music Searching (Online)
 Besides local music searching, network searching should be supported in this
 phase. The search interface should be the same one as those in phase 1.
 What’s more, your program should search the audio files not only in the local
 database but also in the database of the other PC connected to your program. All
 the results from the local and network databases should be displayed in the same
 list control of the UI . Identical results (e.g., different computers have the same
 audio file) must be displayed only once.

 Availability Check
 As the user may not know where the audio is, the program should check whether
 the audio file exists locally when the user selects audio from the search results. If
 the audio file exists, your program shall playback the audio directly. Otherwise, your
 program will stream the audio file from other computers.

 Real-Time Audio Streaming
 When the program is streaming from other computers, your program should
 automatically play the audio as soon as possible when it receives a piece of audio
 data (after a certain amount of buffering). You are only allowed to buffer no more
 than 50% of a music file before you play the music .

 2

 Peer-to-Peer Playing
 Your program should be able to receive one audio file from at least two other
 computers simultaneously. The audio data from different computers should be
 played in an interleaving way. For example, suppose PC1 wants to play a file, and it
 cannot be found locally. It should get audio data from PC2 and PC3, the file is
 divided into (at least) 4 parts, and PC1 may get the first part from PC2, the second
 part from PC3, the third part from PC2, and the fourth part from PC3.

 To verify the interleaving feature, you should also implement a function in your
 project to show your interleaving feature using images. We will give you three
 images in different colors but have the same file name in bitmap format with the
 same resolution. Let’s say PC1 wants to download this image from other endpoints
 in an interleaving way; you must achieve that your data are completed but collected
 from different endpoints. The bottom figure shows an example of an interleaving
 feature.

 Sample Enhanced Features

 1. Support streaming other audio formats
 2. Support more than three clients
 3. Support more than two sources
 4. Do any other your own ideas to enhance the system

 3

 Demonstration and Report

 For this project, you need to do a demonstration of your program and submit a
 hard copy of the project report in the demonstration.

 The report is a brief description, up to 6 pages, to describe your program. You must
 write down your team number, team member’s name and student ID, workload
 division, and program’s operation manual (README). You must also state which
 third-party libraries have been used in your program and what enhanced features
 you have implemented.

 You need to do a demonstration in front of a tutor. In the demonstration, you
 should introduce every basic requirement you have fulfilled and every enhanced
 feature you have implemented clearly and efficiently. Please tell tutors if you have
 any special requirements on the library, tools, or resources. What’s more, you will
 only have 12-min to demonstrate your program, and a mark will be deducted if you
 do your demonstration for more than 12 mins.

 The following requirements must also be followed:

 Before the demonstration:

 ● You can use any machines, including your PC, in the demonstration venue.
 Please be well prepared before you do the demonstration (e.g., setting up
 your environment, downloading the necessary resources, and preparing your
 own audio files other than .wav format).

 ● The demonstration starts when you run your program.

 During the demonstration:

 ● You need to demonstrate all your program features.
 ● Tutors may ask you questions about your program, and your answers will

 affect your grades.
 ● You are not allowed to close/restart your program without permission.
 ● Unstable performance (e.g., No responses or unexpected results) may lead to

 mark deduction.

 4

 Technical Handout - Will be explained in tutorials in detail

 Network Connections with Socket + TCP/UDP

 Protocol (TCP/UDP)
 ● TCP/IP (Transmission Control Protocol/Internet Protocol) is the set of protocols that

 governs communication over the internet. It is a standardized communication
 protocol used for transferring data between different computers and networks.

 ● An IP address is a unique identifier assigned to each device on a network that uses
 the Internet Protocol for communication. It consists of four numbers separated by
 dots, such as 192.168.0.1. IP addresses can be either static (permanently assigned to
 a device) or dynamic (assigned by a DHCP server).

 What is a port?
 ● A port is a communication endpoint used in computer networking. Ports are

 identified by a number and are used to differentiate between different network
 services running on the same device.

 Socket:

 ● Socket is the endpoint of a communication channel, A network programming
 interface, abstracting away underlying mechanism

 ● On the Windows platform, we use WinSock
 (https://learn.microsoft.com/en-us/windows/win32/winsock/using-winsock)

 ● Two types of sockets (for two different transport layer protocols): SOCK_STREAM
 (TCP) / SOCK_DGRAM (UDP)

 Some useful functions for Sockets
 // Start-up call - initialize the underlying Windows Sockets DLL
 int WSAStartup (WORD wVersionRequested, LPWSADATA lpWSAData) ;

 // Socket creation - create an endpoint for communication, return a socket.
 SOCKET socket (int addr_family, int type, int protocol) ;

 // Socket binding - bind a SOCKET descriptor to a local port and local IP address
 int bind (SOCKET socket, const struct sockaddr *address, int address_len) ;

https://learn.microsoft.com/en-us/windows/win32/winsock/using-winsock

 5

 // Let the socket to wait for connection requests (stream socket, server-sided)
 int listen (SOCKET s, int backlog) ;

 // Try to connect to the server (stream socket, client-sided)
 int connect (SOCKET s, const struct sockaddr *remote_addr, int address_len) ;
 // Accepting connection (stream socket, server-sided), after accepting the original
 socket, s, remains in "listen" state.
 SOCKET accept (SOCKET s, struct sockaddr *addr, int *len) ;

 // Receive or send data with socket
 // recvfrom()/sendto(): please refer to the official doc.
 int recv (SOCKET s, char *buf, int len, int flags) ;
 int WSAAPI send (SOCKET s, const char *buf, int len, int flags) ;

 // Close a socket - kill the connection
 int closesocket (SOCKET s) ;

 // Cleanup - terminates the use of the Windows Sockets DLL
 int WSACleanup () ;

 // Error checking - to get the error code after a failed call, the meaning of the
 code can be checked in the header file
 int WSAGetLastError () ;

 The pipeline of TCP/UDP data transfer.

 6

 Network Connections with Socket + TCP/UDP

 HTTP is a protocol that stands for Hypertext Transfer Protocol. It is widely used to
 retrieve data from servers using Uniform Resource Identifiers (URI) or URLs. HTTP
 requests are initiated by clients and responded to by servers. HTTP is a symmetry network ,
 a type of network architecture that operates in a way that every node in the network is
 both a client and server. This allows for more efficient and dynamic communication
 between nodes.

 In HTTP, we can retrieve data using URIs. Here's an example:

 http://pc1/get_data?filename=somnus.wav&start=4096&length=4096 .

 In this example, we request data from the "pc1" node. We are asking for a specific file
 named "somnus.wav". We also specify the start position and length of the data we want.
 Similarly, we can request data from other nodes in the network:

 http://pc2/get_data?filename=somnus.wav&start=0&length=4096 .

 This request asks the "pc2" node to send data from the beginning of the file.
 We can also check if a file exists in the network using the URL:

 http://pc1/check_existence?filename=somnus.wav .

 Depending on the request, the server will respond with the appropriate data fragments
 or status.

 ● To handle these requests, we will need to implement routing on our server. This
 means that we will have to define functions to handle different types of requests,
 such as reading and transferring file fragments or checking the existence of a file.

 ● When processing these requests, we will also need to extract HTTP GET
 parameters. In our examples, these are the parameters passed through the URI,
 such as the filename, start position, and length.

http://pc1/get_data?filename=somnus.wav&start=4096&length=4096
http://pc2/get_data?filename=somnus.wav&start=0&length=4096
http://pc1/check_existence?filename=somnus.wav

 7

 ● Once we have processed the request, we will need to respond to the client. For
 text data, we can use plain text or JSON formats. For binary data, such as audio
 files, we will need to use the application/octet-stream content type in our header.

 ● To implement our HTTP server, we can use libraries such as libcurl or Pistache in
 C++, or Flask in Python.

 P2P Client and Multi-Threads.
 Why do we need Multi-threads? In audio playback, waveOutWrite() blocks everything.
 We need to do other stuff during the audio playback for real-time response.

 while (notEOF){
 loadDataIntoBuffer(); // fread/memcpy or others
 waveOutPrepareHeader(...);
 waveOutWrite(...);
 waitForSingleObject(); // block until playback finished

 }

 Also, in the socket programming, a single thread cannot accept the connection and
 receive data simultaneously.

 while (1){
 client_sd = accept(...); // blocked
 ...

 }
 while (1) {

 len = recv(...); // blocked
 ...

 }

 A thread is a sequence of such instructions within a program that can be executed
 independently of other code. The multi-threading design allows an application to do
 parallel tasks simultaneously.

 8

 The P2P process can be represented in the above two figures. When one node is requested
 for an audio file (client), it can create multiple threads to make connections for servers.
 Then multiple servers will send data chunks to the client for audio playback. When the
 single node is served as a server, it will listen to multiple connections. Each connection will
 create a thread and transfer data to each requesting client.

 Multiple threads are also helpful for real-time streaming: we can simultaneously read and
 play with two buffers:

 9

 STD::Thread (https://cplusplus.com/reference/thread/thread):

 ● Add #include <thread> to your source file
 ● Creation:

 Std::thread t (void *(*start_routine)(void *) , void *arg);

 void *(*start_routine)(void *): the function this thread executes
 void *arg: arguments to pass to thread function above

 ● Thread type: std::thread

 ● Join threads: join() - Suspends the calling thread to wait for successful termination
 of the thread specified as the first argument pthread_t thread with an optional
 *value_ptr data passed from the terminating thread's call to pthread_exit().

 Code Example:

 #include <iostream>
 #include <thread>

 using namespace std ;

 void hello (const char * input) {
 cout << input << endl ;

 }

 int main () {
 thread t (hello, "hello world") ;
 t.join();
 return 0 ;

 }

https://cplusplus.com/reference/thread/thread

 10

 Thread Communications:

 Thread Communications are essential in any concurrent program, where multiple threads
 execute simultaneously.

 1. Global variables
 Firstly, Global variables can be used to share data between threads. Global variables are
 variables that are declared outside any function and can be accessed by any function in the
 program. Here's an example of using a global variable for thread communication:

 #include <iostream>
 #include <thread>
 using namespace std ;

 int globalVar = 0 ;

 void threadFunction () {
 globalVar = 10 ;

 }

 int main () {
 thread t (threadFunction) ;
 t.join();
 cout << "Global variable value: " << globalVar << endl ;
 return 0 ;

 }

 In this example, the threadFunction() updates the value of the globalVar variable, and
 the main thread prints its value after the thread has completed execution.

 2. Pointers as thread arguments
 Secondly, Pointers can be used as thread arguments to share data between threads.
 Pointers are variables that store the memory addresses of other variables. Here's an
 example of using pointers for thread communication:

 void threadFunction (int * ptr) {
 *ptr = 10 ;

 }

 int main () {
 int var = 0 ;
 thread t (threadFunction, &var) ;

 11

 t.join();
 cout << "Pointer value: " << var << endl ;
 return 0 ;

 }

 In this example, the threadFunction() updates the value of the var variable indirectly, by
 using a pointer to its memory location.

 3. Take care of every WRITE operation
 Thirdly, it's important to take care of every WRITE operation, since multiple threads may
 attempt to write to the same variable simultaneously, leading to data inconsistencies.
 Here's an example of a program that doesn't take care of WRITE operations:

 int var = 0 ;

 void threadFunction () {
 var++;

 }

 int main () {
 thread t1 (threadFunction) ;
 thread t2 (threadFunction) ;
 t1.join();
 t2.join();
 cout << "Variable value: " << var << endl ;
 return 0 ;

 }

 In this example, the threadFunction() increments the value of the var variable. Since two
 threads are executing simultaneously and both are incrementing the same variable, the
 final value of the variable can be unpredictable.

 12

 4. Mutex: https://en.cppreference.com/w/cpp/thread/mutex

 Lastly, a Mutex (short for Mutual Exclusion) can be used to protect shared resources from
 simultaneous access by multiple threads. A Mutex is a lock that only one thread can hold at
 a time, preventing other threads from accessing the resource until the lock is released.
 Here's an example of using a Mutex for thread communication:

 int var = 0 ;
 mutex m;

 void threadFunction () {
m.lock();
 var++;
 m.unlock();

 }

 int main () {
 thread t1 (threadFunction) ;
 thread t2 (threadFunction) ;
 t1.join();
 t2.join();
 cout << "Variable value: " << var << endl ;
 return 0 ;

 }

 In this example, the threadFunction() uses a Mutex to protect the var variable from
 simultaneous access by multiple threads. The m.lock() statement acquires the Mutex lock,
 allowing only one thread to access the shared variable at a time. Once the update is
 complete, the m.unlock() statement releases the lock, allowing other threads to access the
 variable.

https://en.cppreference.com/w/cpp/thread/mutex

Objective (Basic Requirements)

• Music Searching & Lyrics Display
• Users can type in keywords to search

music based on your database. The results
should be displayed in the list control of
your program.
• Your program should be able to play music

and show lyrics. The lyrics file can be
simple text files or in LRC format.

Objective (Basic Requirements)

• Music Decoding and Playback
• You are required to understand the inside

structure of wave format and write your
own codes that can open, analyze, and
playback a WAV file.
• The fmt sub-chunk and the data sub-

chunk of the WAV file must be read and
extracted manually, which means you
cannot use any third-party
libraries/programs.
• The sound data should be played fluently

and bring the users beautiful music.

A segment of sampled audio data

Objective (Basic Requirements)
• Music Decoding and Playback
• How to read binary file?
• Endianness, 0x 0A 0B 0C 0D:
• Big endian: 0A 0B 0C 0D
• Little endian: 0D 0C 0B 0A

• Tips:
1. Follow the data size of each chunk (fseek)
2. Simply ignore unnecessary data
3. Build a routine to convert little-endian data

My naïve python code on converting hex code to integer

• Format of Uncompressed audio file.
• A python example is given to parse the header

Sample values. Ref: lecture 02

24080000 -> 00000824 -> 8*16*16 + 2*16 + 4

NumChannels: Channels of audio data
SampleRate: number of samples per
second
ByteRate: number of bytes per second

My naïve
python code to
parse the
header.

Objective (Enhanced Features)
• Following are just some basic examples. You are welcome to come up with more creative ideas to

enhance your project!

• Support for other music formats

MP3? OGG?

You can use third-party libraries (but please quote them in your code and report)

• Progress bar

We only require play / stop in the basic requirements

A progress bar is necessary for playback.

Try to make it draggable!

Objective (Enhanced Features)

Synchronized lyric display
It is simple! Try to make it display more smoothly?

Audio visualization
Visualize the audio data.

Enhancements on the basic features are also welcome! Examples:
A. A better audio data decoder for faster/ high quality data loading
B. You can download data online and update your database automatically
C. A well-designed user interface with smooth-and-easy user interactions
…

Please specify your valuable works in the report!
Scores are based on the overall quality; We are not just counting the number of implemented features
and give you scores.

Decode
WAVE (RIFF)
header for bit
depth /
sample rate /
etc.

01
Extract data
chunk to a
buffer.

02
Play the
buffer
through
system API.

03
Loop though
2-3 until file
end.

04
Close the file.
05

WAV Playback Pipeline

Windows API

• Function: waveOutXXXX()
• Google & MSDN are good references

#include "stdafx.h"
#include <Windows.h>
#pragma comment(lib, "winmm.lib")

// For Function: waveOutXXXX()

[C++] Import Libraries.

Open An Output Device
• Use waveOutOpen():

HWAVEOUT hwo;
WAVEFORMATEX wfx;
HANDLE wait;
wfx.wFormatTag = WAVE_FORMAT_PCM;
wfx.nChannels = 2;
wfx.nSamplesPerSec = 22050;
// You may set more properties above
wait = CreateEvent(NULL, 0, 0, NULL);
waveOutOpen(&hwo, WAVE_MAPPER, &wfx, (DWORD_PTR)wait, 0L,
CALLBACK_EVENT);

[C++] Open Device.

https://msdn.microsoft.com/zh-cn/library/windows/desktop/dd743866(v=vs.85).aspx

• Read data into buffer:

// assume src is pointing to the data chunk
// otherwise use fseek to locate
int bufSize = 204800;
char *buf = (char*)malloc(bufSize*sizeof(char));
cnt = fread(buf, sizeof(char), bufSize, src);

Prepare Chunk Data

[C++] Load Buffer.

• Prepare a header:

Prepare Chunk Data

WAVEHDR wh;
wh.lpData = buf;
wh.dwBufferLength = bufSize;
wh.dwFlags = 0L;
wh.dwLoops = 1L;
waveOutPrepareHeader(hwo, &wh, sizeof(WAVEHDR));

[C++] Header Preparation.

Playback from Audio Buffer

• Use waveOutWrite():

waveOutWrite(hwo, &wh, sizeof(WAVEHDR));
// wait until playback is finished
// useful for buffered playback
WaitForSingleObject(wait, INFINITE);

// do some cleanup
waveOutClose(hwo);

[C++] Write data buffer to device.

https://msdn.microsoft.com/zh-cn/library/windows/desktop/dd743876(v=vs.85).aspx

Other Useful Functions

o waveOutSetVolume(HWAVEOUT hwo,DWORD dwVolume);
o between 0xFFFF and 0x0000
o 0xFFFF is the full volume.
o The low order word of dwVolume is the left-channel volume
o The high order word is the right-channel volume

o waveOutGetErrorText(MMRESULT mmrError, LPSTR pszText, UINT
cchText);
o almost every waveOut calls returns a MMRESULT variable, any value other

than MMSYSERR_NOERROR indicates failure
o pszText is the string buffer
o cchText is the size of the buffer

Useful Resources
1. A very initial version of my group project in JAVA:

AudioInputStream to playback audio
https://github.com/yxwang7/AudioPlayer_CSCI3280

2. A JS version of the complete project:
https://github.com/kyroslee/P2PMusicPlayer-csci3280

3. Windows Multimedia API Documentation (for C/C++)
https://learn.microsoft.com/en-us/windows/win32/api/mmeapi/

4. Python Blog for play music in python
https://realpython.com/playing-and-recording-sound-python/

https://github.com/yxwang7/AudioPlayer_CSCI3280
https://github.com/kyroslee/P2PMusicPlayer-csci3280
https://learn.microsoft.com/en-us/windows/win32/api/mmeapi/
https://realpython.com/playing-and-recording-sound-python/

Objective (Basic Requirements)
• Network connection (25% of basic)
Your program should be able to connect to other PCs using TCP/IP
network stack.
Use any method to get the IP address of the connectable PCs except
hard coding. (For example, manually inputting IP addresses, using a
tracker server, or broadcasting are appropriate).
The network should support at least three terminals.

• Online Music Searching (10% of basic)
Besides local music searching, network searching should be supported
in this phase.
Not only in the local database but also in the database of the other PC
connected to your program.
All the results from the local and network databases should be
displayed in the same list control of the UI.
Identical results must be displayed only once.

Music on other nodes:
searching “white”, information
can be listed locally.

Objective (Basic Requirements)
• Availability Check (5% of basic)

As the user may not know where the audio is, the program should check whether the audio file exists locally
when the user selects audio from the search results.

If the audio file exists, playback the audio directly. Otherwise, stream the audio file from other computers.

• Real-Time Audio Streaming (20% of basic)

When the program is streaming from other computers, your program should automatically play the audio as
soon as possible when it receives a piece of audio data (after a certain amount of buffering). You are only
allowed to buffer no more than 50% of a music file before you play the music.

Single buffer size <= 5% of the music OR streaming delay <50ms will be regard as enhanced.

Objective (Basic Requirements)
• Peer-to-Peer Playing (40% of basic)

Your program should be able to receive one audio file from at least two other computers simultaneously. The
audio data from different computers should be played in an interleaving way.

PC1 want to play the file

Objective (Basic Requirements)
• Peer-to-Peer Playing (40% of basic)

For example, suppose PC1 wants to play a file, and it cannot be found locally. It should get audio data from PC2
and PC3, the file is divided into (at least) 4 parts, and PC1 may get the first part from PC2, the second part from
PC3, the third part from PC2, and the fourth part from PC3.

Audio file

PC2 PC3 PC2 PC3

PC1 online search

PC2, PC3 has the file

Request PC2 for 1, 3;
Request PC3 for 2, 4

Buffering and playing

PC1

Objective (Basic Requirements)
• Peer-to-Peer Playing (40% of basic)

To verify the interleaving feature, you should also implement a function in your project to show your
interleaving feature using images.

Let’s say PC1 wants to download this image from other endpoints in an interleaving way; you must achieve that
your data are completed but collected from different endpoints.

Objective (Enhanced Features)
To get full mark (for a group of 4), a set of enhancements is provided (both Phase 1&2):

1. Synchronized lyric display

2. Progress Bar
3. Support more than 2 server & clients in Network & P2P

4. 1 other features that enhance the overall quality: e.g.,
• A pleasing UI control
• Network error handling: example: one of two servers down during the data transfer
• Support other audio formats

5. 1 other NOVEL feature

The above is NOT the golden rule, you can follow your designed plan.
For basic / enhanced features, mark will be deducted if the feature quality is not satisfying

The Network Model
• Networks are organized as a series of layers (or levels)
• The rules to communicate are called protocol
• Seven layers (OSI reference model):

Presentation

Session

Presentation

Session

Data Link

Physical

Data Link

Physical

usually not the concern of
network programmers

Network Network
e.g. IP

Transport Transport
e.g. TCP, UDP

Application Application
e.g. HTTP, FTP, SMTP

The Network Model

• Connection basics:
• Protocol (TCP/UDP)
• Local IP address, local port
• Remote IP address, remote port

IP address is in the form 123.23.23.22

• What is a port?
• Application-specific or process-specific
• A 16-bit integer for identification (0 to 65535)
• Need to use a local port for sending data

Socket
• Socket is the endpoints of a communication channel
• A network programming interface, abstracting away underlying mechanism
• On Windows platform, we use WinSock.
• Two types of sockets (for two different transport layer protocols)

• SOCK_STREAM (TCP)[Correctness Concern]
• SOCK_DGRAM (UDP) [Speed Concern]

TCP vs UDP

TCP UDP

Sequenced Unsequenced

Reliable Unreliable

Connection-oriented Connectionless

Virtual circuit Low overhead

Acknowledgements No acknowledgment

Windowing flow control No windowing or flow
control

Call the Socket
• Start-up call – initialize the underlying Windows Sockets DLL

int WSAStartup (WORD wVersionRequested, LPWSADATA lpWSAData);

• Socket creation – create an endpoint for communication, return a socket.

SOCKET socket(int addr_family, int type, int protocol);

• Socket binding – bind a SOCKET descriptor to a local port and local IP address

int bind(SOCKET socket, const struct sockaddr *address, int address_len);

“AF_INET” “SOCK_STREAM”/
“SOCK_DGRAM”

“0”

the descriptor length of sockaddrlocal IP address+port

Call the Socket
• Let the socket to wait for connection requests (stream socket, server-sided)

int listen(SOCKET s, int backlog);

• Try to connect to the server (stream socket, client-sided)
int connect(SOCKET s, const struct sockaddr *remote_addrint address_len);

• Accepting connection (stream socket, server-sided), after accept the original socket, s, remains
in “listen” state.

•
SOCKET accept (SOCKET s, struct sockaddr *addr, int *len);

the descriptor

Just like bind()!

set to NULL if you
don’t want it

length of the structure,
(remember the *)

returns a new socket descriptor for
the new connection

// Start-up call - initialize the underlying Windows Sockets DLL
int WSAStartup (WORD wVersionRequested, LPWSADATA lpWSAData);

// Socket creation - create an endpoint for communication, return a socket.
SOCKET socket(int addr_family, int type, int protocol);

// Socket binding - bind a SOCKET descriptor to a local port and local IP address
int bind(SOCKET socket, const struct sockaddr *address, int address_len);

// Let the socket to wait for connection requests (stream socket, server-sided)
int listen(SOCKET s, int backlog);

// Try to connect to the server (stream socket, client-sided)
int connect(SOCKET s, const struct sockaddr *remote_addr, int address_len);

// Accepting connection (stream socket, server-sided), after accepting the
// original socket, s, remains in "listen" state.
SOCKET accept (SOCKET s, struct sockaddr *addr, int *len);

Call the Socket
// Receive or send data with socket
// recvfrom()/sendto(): For UDP.
int recv(SOCKET s, char *buf, int len, int flags);
int WSAAPI send(SOCKET s, const char *buf, int len, int flags);

// Close a socket - kill the connection
int closesocket(SOCKET s);

// Cleanup - terminates the use of the Windows Sockets DLL
int WSACleanup();

// Error checking - to get the error code after a failed call,
the meaning of the code can be checked in the header file
int WSAGetLastError();

Blocking and Multi-tasking

• Some network I/O calls are in BLOCKING mode,
• i.e. the program waits until a call completes
• e.g. accept(), connect(), recv(), send(), sendto(), recvfrom()…

• How to serve multiple clients?
• FIFO serving
• Set the socket in non-blocking mode by ioctlsocket()
• Use select() to wait for any incoming activities on all the sockets
• Spawn a new thread/process for each connection request by pthread_create()
• …

Another Idea: HTTP
´ Symmetry network
´ Every node is both client and server
´ In HTTP, we can retrieve data using URLs. Here's an example:

http://pc1/get_data?filename=somnus.wav&start=4096&length=4096.

In this example, we request data from the "pc1" node. We are asking for a specific file named
"somnus.wav". We also specify the start position and length of the data we want.
Similarly, we can request data from other nodes in the network:

http://pc2/get_data?filename=somnus.wav&start=0&length=4096.

This request asks the "pc2" node to send data from the beginning of the file.
We can also check if a file exists in the network using the URL:

http://pc1/check_existence?filename=somnus.wav.
•

Server send data fragments / status

13

http://pc1/get_data?filename=somnus.wav&start=4096&length=4096
http://pc2/get_data?filename=somnus.wav&start=0&length=4096
http://pc1/check_existence?filename=somnus.wav

Implementing HTTP Server

´Listening to port 80 (or others)
´Routing
´ /get_data -> a function to read and transfer file fragment
´ /check_existence -> a function to check existence of a file
´ … some others

´Parameters: Extracting HTTP GET parameters
´ Server response
´ Text data: using plain text/json
´ Binary data: using application/octet-stream in your header

´ Suggested Library: libmircohttpd(C++) / Pistache(C++) / flask(python)

14

Implementing HTTP Client

´Send HTTP requests to the servers
´Use GET request with proper parameters
´Handling JSON/binary data from the servers
´Take care of data orders
´Suggested Library: libcurl(C) / Pistache(C++) / urllib3 (python)

15

Network Error Handling
• If a network function call fails, use WSAGetLastError() to get the error number

• If a socket creation call fails, the returned value would be INVALID_SOCKET

• For other function calls, the returned value SOCKET_ERROR indicates a failure
• To make your program more robust, you should handle the errors if they ever

happened

Multiple-Threads

Why Need Multiple Threads?

• Audio playback
• waveOutWrite() blocks everything:

18

How to do some other stuff during playback?
How to make UI responsive during playback?

while (notEOF){
loadDataIntoBuffer(); // fread/memcpy or

others
waveOutPrepareHeader(...);
waveOutWrite(...);
waitForSingleObject(); // block until

playback finished
}

Why Need Multiple Threads?

• Socket programming
• Code is executed sequentially

19

Can you accept connection and receive data simultaneously?

while (1){
client_sd = accept(...); // blocked
...

}
while (1) {

len = recv(...); // blocked
...

}

Threads
• A thread is a sequence of

such instructions within a
program that can be executed
independently of other code.

• Multi-threading design
allows an application to do
parallel tasks simultaneously.

20

P2P Client (TCP)

21

P2P Client (TCP)

22

Page Flipping

• To minimize the audio playback delay:

23

Program

Buffer 1 Buffer 2

waveOutWrite()

Load

Play

Program

Buffer 1 Buffer 2

waveOutWrite()

Load

Play

STD::Thread
• Add #include <thread> to your source file
• Thread type: std::thread

Creation
Std::thread t(void *(*start_routine)(void *),
void *arg);
void *(*start_routine)(void *): the function this thread
executes void *arg: arguments to pass to thread function
above

Join threads: join()
• Suspends the calling thread to wait for successful

termination of the thread specified as the first argument
pthread_t thread with an optional *value_ptr data passed
from the terminating thread's call to pthread_exit().

24

Thread Communications

• Global variables
• Pointers as thread arguments
• Take care of every WRITE operations
• Mutex

Examples are in the specification.

25

Python-p2p (TCP):
https://github.com/GianisTsol/python-p2p

Python HTTP server/client:
https://www.tutorialspoint.com/python_network_programming/python_http_client.htm

Python multi-thread:
https://realpython.com/intro-to-python-threading/#working-with-many-threads

JS HTTP requests:
https://kinsta.com/knowledgebase/javascript-http-request/;
https://github.com/kyroslee/P2PMusicPlayer-csci3280/blob/master/src/main/httpSrv.js

JS multi-thread (workers):
https://www.loginradius.com/blog/engineering/adding-multi-threading-to-javascript-using-web-workers

JS p2p:
https://medium.com/@carloslfu/make-a-p2p-connection-in-10-minutes-57d9559fd1c

Please specify libraries/related functions you used in the report.

Additional References for JS\Python

26

https://github.com/GianisTsol/python-p2p
https://www.tutorialspoint.com/python_network_programming/python_http_client.htm
https://realpython.com/intro-to-python-threading/
https://kinsta.com/knowledgebase/javascript-http-request/
https://github.com/kyroslee/P2PMusicPlayer-csci3280/blob/master/src/main/httpSrv.js
https://www.loginradius.com/blog/engineering/adding-multi-threading-to-javascript-using-web-workers
https://medium.com/@carloslfu/make-a-p2p-connection-in-10-minutes-57d9559fd1c

Tutorial Plan about Project:
Network (TCP/IP, Socket, HTTP) / Peer-to-Peer (Multiple-Threads): Apr 6th

Multi-Threads Cont. /
[TBA, if necessary] Q&A: Apr 13th

Details are already provided in the specification, please check!
Be responsible to your teammates!

ZHANG Yuechen

zhangyc@link.cuhk.edu.hk

Thank you!

#include <winsock.h>

#define MY_PORT 3434

int main() {
SOCKET listen_sock, new_sock;
struct sockaddr_in my_addr;
int dummy;
char *buffer ="How old are you?\0";
WSADATA wsaData;

WSAStartup(MAKEWORD(2,1),&wsaData);

listen_sock = socket(AF_INET, SOCK_STREAM, 0);

my_addr.sin_family = AF_INET;
my_addr.sin_port = htons(MY_PORT);
my_addr.sin_addr.s_addr = INADDR_ANY;

bind(listen_sock, (struct sockaddr *)&my_addr, sizeof(struct
sockaddr));
listen(listen_sock, SOMAXCONN);
new_sock = accept(listen_sock, NULL, &dummy);
send(new_sock, buffer, strlen(buffer), 0);

closesocket(new_sock);
closesocket(listen_sock);
WSACleanup();

return 0;
}

TCP Server
create socket

bind

wait for
connection

close socket

r/w from
socket

create socket

connect to peer

close socket

r/w from
socket

connection-oriented
(SOCK_STREAM)

accept
connection

29

#include <winsock.h>
#include <stdio.h>

#define MY_PORT 3434

int main() {
SOCKET conn_sock;
struct sockaddr_in remote_addr;
int bytes_recvd;
char buffer[100];
WSADATA wsaData;

WSAStartup(MAKEWORD(2,1),&wsaData);

conn_sock = socket(AF_INET, SOCK_STREAM, 0);

remote_addr.sin_family = AF_INET;
remote_addr.sin_port = htons(MY_PORT);
remote_addr.sin_addr.s_addr = inet_addr("137.189.90.38");

connect(conn_sock, (struct sockaddr *)&remote_addr, sizeof
(struct sockaddr));

bytes_recvd = recv(conn_sock, buffer, sizeof(buffer), 0);

printf("Received (%d bytes): \"%s\"\n", bytes_recvd, buffer);

closesocket(conn_sock);
WSACleanup();

return 0;
}

TCP Client
create socket

bind

wait for
connection

close socket

r/w from
socket

create socket

connect to peer

close socket

r/w from
socket

connection-oriented
(SOCK_STREAM)

accept
connection

#include <winsock.h>
#include <stdio.h>
#define MY_PORT 3434
int main() {

SOCKET udp_sock;
struct sockaddr_in remote_addr, local_addr;
int bytes_recvd, dummy;
char buffer[100];
WSADATA wsaData;

WSAStartup(MAKEWORD(2,1),&wsaData);
udp_sock = socket(AF_INET, SOCK_DGRAM, 0);

local_addr.sin_family = AF_INET;
local_addr.sin_port = htons(MY_PORT);
local_addr.sin_addr.s_addr = INADDR_ANY;

bind(udp_sock, (sockaddr *)&local_addr, sizeof(struct
sockaddr_in));

bytes_recvd = recvfrom(udp_sock, buffer, sizeof(buffer), 0,
NULL, &dummy);

buffer[bytes_recvd] = '\0';
printf("Received (%d bytes): \"%s\"\n", bytes_recvd, buffer);
closesocket(udp_sock);
WSACleanup();
return 0;

}

create socket

bind

close socket

throw/receive
datagram
thru socket

connectionless
(SOCK_DGRAM)

create socket

bind

close socket

throw/receive
datagram
thru socket

UDP Server

31

#include <winsock.h>
#define MY_PORT 3434
int main() {

SOCKET udp_sock;
struct sockaddr_in remote_addr, local_addr;
char *buffer = "How do you do?";
WSADATA wsaData;
WSAStartup(MAKEWORD(2,1),&wsaData);
udp_sock = socket(AF_INET, SOCK_DGRAM, 0);

local_addr.sin_family = AF_INET;
local_addr.sin_port = htons(MY_PORT);
local_addr.sin_addr.s_addr = INADDR_ANY;

bind(udp_sock, (sockaddr *)&local_addr, sizeof(struct
sockaddr_in));

remote_addr.sin_family = AF_INET;
remote_addr.sin_port = htons(MY_PORT);
remote_addr.sin_addr.s_addr = inet_addr("137.189.90.38");

for (int i = 0; i < 10; i++)
sendto(udp_sock, buffer, strlen(buffer), 0, (struct sockaddr

*)&remote_addr, sizeof(struct sockaddr_in));
closesocket(udp_sock);
WSACleanup();
return 0;

}

create socket

bind

close socket

throw/receive
datagram
thru socket

connectionless
(SOCK_DGRAM)

create socket

bind

close socket

throw/receive
datagram
thru socket

UDP Client

	2023_CSCI3280_Project_Phase_I(1)
	CSCI3280 Project Phase 2(1)
	Tutorial 3 - Project Phase I(1)
	Tutorial 4 - Windows API
	Tutorial 7b - Project Phase 2
	Tutorial 9 - Project Phase 2

