
 ASSIGNMENT 1 

 COMPUTATIONAL MODELLING 

 Task 1: 

 A  uniaxial  trailer  (total  mass  m  =  350  kg)  moves  with  constant  speed  v  =  1  m/s  along  an 
 uneven  road  (road  course  u  b  (x  ))  and  starts  to  oscillate.  Since  we  are  only  interested  in  the 
 dipping  motion  of  the  trailer,  a  model  with  one  degree  of  freedom,  the  1-DoF  system  shown 
 above,  is  used  to  study  these  oscillations.  The  equivalent  damping  d  =  1000  Ns/m  and 
 equivalent  stiffness  k  =  60000  N/m  result  from  the  design  spring  and  damper  elements 
 and  the  wheels.  The  vertical  displacement  u  (  t  )  of  the  hanger  is  always  measured  from  the 
 static  rest  position.Use  MATLAB  for  programming  subsequent  parts  along  with  numerical 
 solutions. 

 a)  Determine the equation of motion of the pendant for a general ground unevenness  u  b 
 (x  ). 

 b)  Investigate  the  eigenbehavior  of  the  pendant  by  first  calculating  the  eigenvalues  λ  1  ,  2 
 of  the  equivalent  system  and  plotting  them  in  the  complex  number  plane.  What  can 
 you  tell  about  the  system  behavior  by  the  position  of  the  eigenvalues  alone?  Then 
 calculate  the  time  history  of  the  free  oscillation  in  the  real  and  complex  notation  and 
 plot  the  displacement  u  (  t  )  and  oscillation  velocity  u  ̇  (  t  )  of  the  pendant.  Assume  that 
 the  stationary  trailer  initially  sinks  by  u  (0)  =  -0  .  01  m  due  to  a  load  and  that  the  load  is 
 suddenly unloaded afterwards. 

 c)  To  illustrate  the  complex  notation,  represent  the  solution  of  the  free  oscillation 
 additionally  as  a  sum  of  two  rotating  pointers  in  the  complex  plane.  What  are  the 
 advantages of the complex notation? 

 d)  The  analytically  calculated  results  are  now  to  be  compared  with  numerical 
 calculations.  Perform  a  transformation  into  the  state  space  and  apply  different  explicit 
 one-step  integration  methods  of  different  order  to  calculate  the  state  of  the  system 
 over  time.  How  does  the  numerical  solution  behave  as  a  function  of  the  step  size  and 
 the solver order? Contrast the analytical and numerical solution graphically. 

 e)  To  investigate  the  behavior  of  the  trailer  under  an  external  load,  the  ground 
 unevenness  is  first  assumed  to  be  a  harmonic  function  u  b  (x  )  =  0  .  02  cos(Ω  x  ).  The 
 excitation  angular  frequency  can  vary  between  0  (static)  and  5  times  the  natural 
 angular  frequency  of  the  pendant  ω  0  .  Calculate  the  particulate  solution  of  the 
 equivalent  system  using  the  augmentation  function  V  (  η,  D  )  and  the  phase  angle  γ  (  η, 
 D  ).  Plot  the  enlargement  function  V  (  η,  D  )  and  the  phase  angle  γ  (  η,  D  )  for  the 
 D¨ampf-values  d  =  [0  ,  600  ,  1000,  2000  ,  3000  ,  5000].  Where  is  the  resonance  point  of 
 the system and what is meant by it? 



 f)  The  stationary  trailer  is  again  loaded  with  a  load  which  leads  to  a  sinking  of  u  (0)  = 
 -0  .  01 
 m.  The  trailer  is  then  jerked  off  and  the  load  falls  off  the  trailer.  Afterwards  the  trailer 
 starts  to  move  jerkily  and  the  load  falls  off  the  traeli.rIt  can  be  assumed  that  the 
 velocity  v  =  1  m/s  is  reached  after  a  very  short  time  t  ≈  0.  Calculate  the  time  course  of 
 the  hanger  movement  and  its  vertical  velocity  for  different  values  of  Ω  and  present 
 the  results  graphically.  What  changes  in  the  solution  behavior  if  the  excitation  angular 
 frequency  Ω  is  very  small,  very  large  or  approximately  equal  to  the  natural  angular 
 frequency  ω  0  ? 

 g)  Finally,  the  analytical  results  are  to  be  compared  again  with  numerical  methods. 
 Proceed analogously to point d). 

 h)  For  the  investigations  of  the  system  behavior  under  periodic  excitation,  the  beam 
 unevenness is now represented by a periodic triangular function  u  b  (x  ) = 0  .  02 (|2 x| - 
 1)  for 
 -1  <  x  <  1  and  u  b  (x  +  k  -  2)  =  u  b  (x  )  (  k  ∈  Z  ).  First  determine  the  time-varying  load 
 p  (  t  )  acting  on  the  pendant.  Perform  a  Fourier  series  decomposition  and  calculate  the 
 first  N  =  50  elements  of  the  Fourier  series.  Compare  the  time  course  of  the  load  p  (  t  ) 
 and  the  Fourier  series.  How  does  the  result  change  with  decreasing  and  increasing 
 number of elements  N  ? 

 i)  Calculate  the  particle  solution  for  the  system  using  the  truncated  Fourier  series,  the 
 augmentation  function  V  (  η,  D)  and  the  phase  function  γ  (  η,  D  )  .  Furthermore,  plot  the 
 amplitude  and  phase  spectrum,  as  well  as  the  time  history,  of  the  excitation  and  the 
 system  response.  What  conclusions  can  you  already  draw  from  the  amplitude 
 spectrum for the system response? 

 j)  Determine  the  general  system  response  for  a  scenario  analogous  to  point  f)  and  plot 
 the results. 

 k)  Finally,  the  analytical  results  are  to  be  compared  again  with  numerical  methods. 
 Proceed analogously to point d) 



 Task 2:  A continuum body has the shape of a unit cube  Ω  0  = (0  ,  1)  3  (in the 
 undeformed configuration). It undergoes the following motion 

 where  γ  i  (  t  )  R  and  α  i  (  t  )  R  with  i  =  1  ,  2  ,  and  λ  j  (  t  )  R  >  0  with  j  =  1  ,  2  ,  3  ,  and  t 
 denotes  the  time.  In  order  to  obtain  x  (  X  ,  t  =  0)  =  X  in  the  reference  configuration  Ω(  t  =  0) 
 = Ω  0  ,  γ  i  (  t  = 0) =  α  i  (  t  = 0) = 0  , and  λ  j  (  t  = 0) = 1  needs to be fulfilled. 

 1.  Sketch  the  reference  and  the  current  configuration  of  the  continuum  body,  i.e.  at  t  =  0 
 and  t  =  t  1  ,  respectively.  Therefore,  project  the  3  -dimensional  body  to  the  x  1  –  x  2  plane. 
 Use  the  values  λ  1  (  t  1  )  =  1  .  6  ,  λ  2  (  t  1  )  =  1  .  1  ,  λ  3  (  t  1  )  =  1  ,  γ  1  (  t  1  )  =  0  .  4  ,  γ  2  (  t  1  )  =  0  .  2  ,  α  1  (  t  1  )  =  3 
 and  α  2  (  t  1  )  =  4  only  for  this  task.  For  all  subsequent  tasks,  use  the  variables  λ  j  (  t  )  ,  γ  i  (  t  ) 
 and  α  i  (  t  )  . 

 2.  Which  of  the  variables  λ  j  ,  γ  i  and  α  i  are  responsible  for  translation  ,  shearing  and  stretch- 
 ing  of  the  deformable  body,  respectively?  Try  to  assign  the  terms  by  looking  at  χ  (  X  ,  t  ) 
 for all variables separately. 

 3.  Compute  the  displacement  vector  u  from  reference  to  current  configuration  and  add  the 
 vector  to  your  sketch  from  subtask  1  (use  again  the  parameter  values  from  subtask  1  to 
 get numerical results). 

 4.  Derive  the  deformation  gradient  F  .  Does  F  still  include  rigid  body  translation? 

 5.Calculate  the  volume  ratio  J  and  describe  the  meaning  of  it  with  respect  to  the  current 

 and 

 reference volume. Which assumptions can be made for an  incompressible solid material 
 with respect to  J  ? 

 6.  Express the right Cauchy-Green tensor  C  in terms  of the right (pure) stretch tensor  U  = 
 U  T  by using the multiplicative split (polar decomposition)  of the deformation gradient  F  , 
 i.e.  F  =  RU  ,  where  R  is  a  proper  orthogonal  (pure)  rotation  tensor  (  R  −  1  =  R  T  ).  Why  is 
 C  preferably  used  for  constitutive  models  compared  to  the  deformation  gradient  F  ? 
 Compute  C  for the given motion  χ  (  X  , t  )  . 



 7.  Derive the left Cauchy-Green tensor  b  . 

 8.  Compute  E  and  C  for  F  =  I  . What is the difference  between  E  and  C  ? 

 9.Given  λ  1  (  t  )  =  e  8  t  ,  λ  2  (  t  )  =  e  −  13  t  ,  λ  3  (  t  )  =  e  t  ,  γ  1  (  t  )  =  t  4  ,  γ  2  (  t  )  =  t  2  and  α  1  (  t  )  =  α  2  (  t  )  =  5  t  . 
 Show  that  the  material  velocity  gradient  Grad  V  (  X  ,  t  )  is  equal  to  the  material  time 
 derivative of the deformation gradient  F  ̇  .  Use this  specific time dependency of the 
 variables  λ  j  ,  γ  i  and  α  i  only for this task. 

 Task  3:  We  would  like  to  model  the  mechanical  behavior  of  a  thin  incompressible 
 rubber-like  membrane  under  biaxial  deformation.  Assuming  this  material  as  incompressible  , 
 homogeneous  ,  isotropic  and  hyperelastic  .  Therefore  we  are  using  the  so-called  neo-Hookean 
 model, defined in terms of the first principal invariant  I  1  , i.e. 

 (1) 
 where  the  parameter  µ  denotes  the  shear  modulus  and  p  is  the  Lagrange  multiplier  enforcing 
 incompressibility.  Consider  the  motion  χ  (  X  ,  t  )  ,  as  given  in  Problem  1  ,  and  set  α  1  =  α  2  =  0 
 and  γ  1  =  γ  2  =  0  for  t  0  ,  which  corresponds  to  pure  biaxial  extension  without  a  shear 
 deformation. 

 In  general,  the  Cauchy  stress  tensor  σ  for  isotropic  materials  (defined  in  terms  of  the  prin- 
 cipal invariants) can be calculated as 

 (2) 

 For all subsequent tasks, generate the requested plots using software packages like Matlab, 
 Python, etc. 

 1.  Figure 1 depicts an infinitesimally small cube (cut from the membrane) with arrows 
 rep- resenting the nine Cauchy stress tensor components. Assign the individual 
 components  σ  ij  to the arrows. Note that the first  index  i  refers to the normal direction  n  i 
 of the surface and the second index  j  to the effective  direction of the stress. Which of 
 these components are referred to as  normal stresses  and which as  shear stresses  ? 

 2.  Calculate  the  matrix  representation  of  the  Cauchy  stress  tensor  σ  .  In  order  to  eliminate 
 the  unknown  Lagrange  multiplier  p  ,  use  the  thin  membrane  theory  (i.e.  σ  13  =  σ  23  =  σ  33 
 = 0  ). Express  λ  3  in terms of  λ  1  and  λ  2  using the incompressibility  condition. 

 3.  Now  consider  an  equi-biaxial  loading  case,  i.e.  λ  1  =  λ  2  [1  ,  3]  .  For  µ  =  1  MPa  plot  the 
 principal  Cauchy  stress  σ  1  over  the  principal  stretch  λ  1  .  Furthermore,  plot  the  functions 
 f  1  (  λ  1  )  =  µλ  2  ,  and  f  2  (  λ  1  ,  λ  2  )  =  µ  (  λ  1  λ  2  )  −  2  into  the  same  figure  and  discuss  how  they 
 contribute  to  σ  1  ,  e.g.,  which  function  is  dominant  at  low  and  high  stretch  levels, 
 respectively. Do not forget to label the axes and use legends to identify the curves. 

 4.  Next,  we  would  like  to  study  the  effect  of  the  material  parameter  µ  onto  the 
 stress-stretch  behavior.  For  µ  =  0  .  5  ,  1  .  0  ,  2  .  0  MPa  plot  the  principal  Cauchy  stresses  σ  1 

 and  σ  2  over  the  principal  stretches  λ  1  and  λ  2  ,  respectively.  Describe  the  influence  of  the 



 changes  of  µ  onto  the  stress-stretch  behavior  and  by  means  of  your  plots  discuss  why 
 the  neo-Hookean  model  can  be  used  to  describe  isotropic  materials  (what  does  isotropic 
 material behavior mean?) 



 Figure 1: Components of  σ  that completely define the state of stress at a point inside a material. 

 5.  Compute  the  matrix  representation  of  the  first  Piola-Kirchhoff  stress  tensor  P  from  σ 
 via the Piola transformation. 

 6.  Discuss  the  general  difference  between  the  Cauchy  stress  σ  and  the  first 
 Piola-Kirchhoff  stress  P  .  In  which  configurations  do  the  first  Piola-Kirchhoff  and  the 
 Cauchy  stress  ten-  sors  live?  Furthermore,  explain  why  for  materials  like  steel  the 
 consideration  of  the  first  Piola-Kirchhoff  stress  (also  known  as  engineering  stress)  is 
 sufficient  in  typical  mechanical  engineering  applications  but  for  soft  biological  tissues 
 the  Cauchy  stress  needs  to  be  considered.  For  better  argumentation  plot  σ  1  and  P  1  over 
 the principal stretch  λ  1  [1  ,  2]  into the same figure. 


