2 Task

Please ensure you read all of the assessment carefully before you start working.

Your task is to write a MIPS program that implements a basic game, details
of which are provided below. There are restrictions on which syscall functions
you can use in your code. You are also required to write a short report detailing
your approach to solving the problem.

I will test your game using the MARS simulator, specifically the one that
is available through the ‘SCC Lab’ VM. Ensure you have tested your game on
this platform before submitting.

Permitted syscalls

You are only permitted to use the following seven syscalls in your MIPS code.
All other I/O and device interaction needs to be coded by hand. Note that
the ‘print string’ syscall is only permitted for debugging purposes (see rule 1
below).


https://v3.camscanner.com/user/download

2.1

Memory allocation (sbrk) (v0 = 9)
Print string (vO = 4) — debugging only
Print integer (vO = 1)

Exit (vO = 10)

Set PRNG seed (v0 = 40)

Generate random integer (vO = 41)

Generate random integer in range (v0 = 42)

The Game

The game consists of a simple walled environment (see fig. [1| for one such ex-
ample). The player (shown as ‘P’ in the below example) can move around the
environment using the keyboard to collect different rewards (shown as ‘R’ in the
example).

Score: 25
H#HHRERRHY
# R #
= #
# P #
= a
= #
HE#uREH#H

Figure 1: Example of a one possible game display, showing a 7-by-7 environment
with one reward (R), one player (P), and the current score (25). Walls are
represented by ‘#'.

The rules of the game are as follows:

1. The game must be presented to the user via the ‘Display’ device in MARSH

. The user should be able to interact with the game via the ‘Keyboard’

device in the lower part of the same window.

. The user should be able to use the ‘WASD’ keys to move the player around

the environment.

. Each collected reward should contribute 5 points to the player’s score.

. When a reward is collected, a new reward should appear in a different

randomly-allocated location in the environment.

. The score should be presented to the user at the top of the display in the

form ‘Score: 25.

. If the player collides with a wall (i.e. tries to move into the wall), or if the

player reaches 100 points, the game should end.

. When the game ends, the display should be cleared and a message dis-

played saying ‘GAME OVER’, along with the final score.

2this is available in MARS under the Tools > Keyboard and Display MMIO Simulator
menu option

(%8 CamScanner


https://v3.camscanner.com/user/download

2.2 Game Extension

The second part of your task is to build an extension to the game. Be sure
to make a copy of your implementation to part 1 (the basic game) and submit
them separately so that I can test each part in isolation. The extension should
be one of the following options:

1. Make the game two-player; Use the WASD keys for player 1 and the IJKL
keys for player 2.

2. Give the player a speed; once the player starts moving, they should not
be able to stop, only change direction.

3. Add an enemy; the enemy should move every time the player does, and
should aim to prevent the player reaching the reward (colliding with the
enemy is the same as with a wall).

2.3 Documentation

You need to write a short report on your game. This should describe the prob-
lems you encountered, your high-level approach to the problems, and provide
detail about how you solved them. Be sure to include references to any third-

party material you have used.
This document should be written in 12pt font, and the maximum length of

the document is 2 sides of A4 (excluding references).

3 Submission

You should submit three (3) files for coursework 2. This will be a pdf file

containing your report, and two tar.gz or zip files containing your code for
the basic game and your extended version of the game in separate archives.

(%83 CamScanner


https://v3.camscanner.com/user/download

Component
(weight)

Fail [0, 40)

3 [40, 50)

2.ii [50, 60)

2.i [60, 70)

1 [70, 100]

Basic Game

(40%)

MIPS code fails to
provide the requested
functionality. Code may
be poorly presented, to
the extent that
interpreting the code is
not possible. Might be no
comments in the code or
syscalls may have been
used that are not
permitted.

Basic game structure is
present. Some
functionality may be
missing, or the code is
too difficult to follow
precluding further
evaluation.

The game appears to
work well, and all the
basic functionality is
present, but upon further
testing bugs start to
appear.

The game works well,
with well-presented code
that adheres to all the
expected register and
code conventions. The
approach taken to some
functionality could be
improved, but this does
not detract from the
gameplay.

A professionally-
presented piece of MIPS
code, adhering to all the
expected register and
code conventions.
Functionality is
implemented in an
extensible, vet efficient
manner.

Game
Extension

(30%)

(Game extension not
attempted, or code too
poorly presented to be
interpretable. Some
syscalls may have been
used that were not
permitted.

Game extension
attempted but
functionality either not
completed or not
integrated into the main
game. Code may not
follow register/code
conventions
appropriately.

Game extension
attempted and appears to
work without any major
bugs. Integration with
main game appears
reasonable, but there may
be some edge cases where
the game breaks. Code
follows register /code
conventions and has
reasonable comments
throughout.

Game extension has been
well-designed and
integrated fully into the
main game. Testing has
been completed to ensure
no bugs remain. Code
follows all appropriate
conventions, but some
small improvements could
be made to improve
efficiency and
extensibility.

A professionally-
presented game
extension, designed and
implemented in a creative
and engaging way.
Functionality is
implemented in an
extensible, efficient
manner.

Report (30%)

No documentation
provided, or so poorly
presented as to preclude
reading.

Documentation is
provided, but might not
follow a coherent
structure, has many
spelling and grammar
issues that make
understanding difficult, or
may not follow
appropriate academic
referencing standards.

Documentation follows a
logical, coherent
structure. There might be
a few spelling /grammar
mistakes but these do not
impede the reader too
much. High-level
approach is presented but
may not be clear how it
relates to the game
and/or the code;
rationale for each choice
may not be presented or
is unclear.

Documentation follows a
logical, coherent
structure. The thought
process and decisions are
clear to the reader, with
appropriate rationale
presented when needed.
A few minor

spelling /grammar issues
may persist, but this does
not distract from the
overall message.

Documentation follows a
logical, coherent structure
that helps to guide the
reader through the
development of the game
and extension. Rationale
for decisions are
presented in a clear and
consistent manner,
backed up by evidence
from the literature or
preliminary testing where
required. Minimal, if any,
spelling/ grammar issues.



https://v3.camscanner.com/user/download

