
 Blog Lite V2
Problem definition

Modern Application Development - II

Last Updated: 22-12-12

Frameworks to be used

● Flask for API
● VueJS for UI
● VueJS Advanced with CLI (only if required, not necessary)
● Jinja2 templates if required

○ Not to be used for UI
● Bootstrap, if required
● SQLite for database
● Redis for caching
● Redis and Celery for batch jobs
● It should be possible to run all the demos on the student's computer, which should either be a Linux

based system or should be able to simulate the same. You can use WSL for Windows OS.

Blog Lite

● It is a multi-user app
● Used for uploading blogs with images
● User can post multiple times
● Each post will have

○ ID
○ Title
○ Caption/Description
○ ImageURL
○ Timestamp

● A user can follow other users using the app
● Each user will have

○ username
○ Password
○ No of followers
○ No of posts

● Every user will have its own feed
● System will automatically show the blogs from

the users you follow in a particular sequence
● The recommended order of blogs in a user’s

feed is based on the timestamp of blogs

Terminology

● Social Platform
● Profile - Basic stats, List of blogs
● Feed - Lists of blogs uploaded by other

users you follow
● Archive (optional) - Blogs can also be

made private / hidden from others

Similar Products in the Market:

1. Instagram

○ Web, IOS and Android

2. Facebook

○ Open Source

○ Web, IOS and Android

3. Twitter

○ Open Source

○ Web, IOS and Android

● These are meant for exploring the idea and
inspiration

● Don’t copy, get inspired

https://www.instagram.com/
https://www.facebook.com/
https://twitter.com/

Example Wireframe

- Click this link to check the wireframes
- It is just given to gain a basic understanding, and not meant to be

followed exactly

https://drive.google.com/file/d/1Hqm6WaQ65iMLbVukL3qB75UQZiga1cZ7/view?usp=share_link

Core Functionality

● This will be graded
● Base requirements:

○ User signup and login
○ User profile view with basic stats
○ Blog Post Management
○ Search and Follow / Unfollow Others
○ User’s Feed

● Backend Jobs
○ Export Jobs
○ Reporting Jobs
○ Alert Jobs

● Backend Performance

Core - User Signup and Login

● Form for username and password (both login and signup)
● Use Flask Security and Token Based Authentication
● Suitable model for user

Core - User’s Profile

● Basic profile view for a user
● Ability to view the number of blogs created
● Ability to view the number of followers and people you follow
● Ability to view the list of posts created

Core - Blog management

● Create a new blog
○ Storage should handle multiple languages - usually UTF-8 encoding is sufficient for this
○ Content should handle the safe HTML tags

● Edit a blog
○ Change title/caption or image

● Remove a blog
○ With a confirmation from the user

● Export option is required

Core - Search and Follow / Unfollow Others

● Ability to search other users
● Ability to follow others
● Ability to unfollow others

User’s Feed

● Show the blogs/posts created by other users
● Navigate to the user’s profile on clicking the username on the blog or post

Core - Daily Reminder Jobs

● Scheduled Job - Daily reminders on Google Chat using webhook or SMS or
Email

○ In the evening, every day (you can choose time of your choice)
○ Check if the user has not visited/posted anything
○ If yes, then send the alert asking them to visit/post

Core - Scheduled Job - Monthly Engagement Report

● Scheduled Job - Monthly Engagement Report
○ Come Up with a monthly progress report in HTML (email)
○ On the first day of the month

■ Start a job
■ Create a report
■ Send it as email

Core - User Triggered Async Job - Export as CSV

● User Triggered Async Job - Export as CSV
○ Come up with an export CSV format for blogs
○ Have a dashboard where the user can export
○ Trigger a batch job, send an alert once done

Core - Performance and Caching

● Add caching where required to increase the performance
● Add cache expiry
● API Performance

Recommended (graded)

● Backend Jobs
○ Import Jobs

● Well designed PDF reports (User can choose between HTML and PDF
reports)

● Single Responsive UI for both Mobile and Desktop
○ Unified UI that works across devices
○ Add to desktop feature

Optional

● Styling and Aesthetics

Evaluation

● Report (not more than 2 pages) describing models and overall system design
○ Include as PDF inside submission folder

● All code to be submitted on portal
● A brief (2-3 minute) video explaining how you approached the problem, what

you have implemented, and any extra features
○ This will be viewed during or before the viva, so should be a clear explanation of your work

● Viva: after the video explanation, you are required to give a demo of your
work, and answer any questions

○ This includes making changes as requested and running the code for a live demo
○ Other questions that may be unrelated to the project itself but are relevant for the course

Instructions

● This is a live document and will be updated with more details and FAQs
(possibly including suggested wireframes, but not specific implementation
details) as we proceed.

● We will freeze the problem statement on or before 22nd December, beyond
which any modifications to the statement will be communicated via proper
announcements.

● The project has to be submitted as a single zip file.

