Blog Lite V2

Problem definition

Modern Application Development - |

Last Updated: 22-12-12

Frameworks to be used

Flask for API
VuedsS for Ul
VuedS Advanced with CLI (only if required, not necessary)
Jinja2 templates if required
o Not to be used for Ul
Bootstrap, if required
SQLite for database
Redis for caching
Redis and Celery for batch jobs
It should be possible to run all the demos on the student's computer, which should either be a Linux
based system or should be able to simulate the same. You can use WSL for Windows OS.

Blog Lite

It is a multi-user app

Used for uploading blogs with images
User can post multiple times

Each post will have

o ID

o Title

o Caption/Description
o ImageURL

o Timestamp
A user can follow other users using the app

Each user will have
o username
o Password
o No of followers
o No of posts

Every user will have its own feed

System will automatically show the blogs from
the users you follow in a particular sequence
The recommended order of blogs in a user’s
feed is based on the timestamp of blogs

Terminology

Social Platform
Profile - Basic stats, List of blogs
Feed - Lists of blogs uploaded by other
users you follow

e Archive (optional) - Blogs can also be
made private / hidden from others

Similar Products in the Market:;

1. Instagram
o Web, IOS and Android

2. Facebook

o Open Source

o Web, IOS and Android
3. Twitter

o Open Source

o Web, I0OS and Android

e These are meant for exploring the idea and
inspiration
e Don'’t copy, get inspired

https://www.instagram.com/
https://www.facebook.com/
https://twitter.com/

Example Wireframe

- Click this link to check the wireframes
- Itis just given to gain a basic understanding, and not meant to be
followed exactly

https://drive.google.com/file/d/1Hqm6WaQ65iMLbVukL3qB75UQZiga1cZ7/view?usp=share_link

Core Functionality

e This will be graded

e Base requirements:
o User signup and login
o User profile view with basic stats
o Blog Post Management
o Search and Follow / Unfollow Others
o User’s Feed
e Backend Jobs
o Export Jobs
o Reporting Jobs
o Alert Jobs
e Backend Performance

Core - User Signup and Login

e Form for username and password (both login and signup)
e Use Flask Security and Token Based Authentication
e Suitable model for user

Core - User’s Profile

Basic profile view for a user

Ability to view the number of blogs created

Ability to view the number of followers and people you follow
Ability to view the list of posts created

Core - Blog management

e Create a new blog

o Storage should handle multiple languages - usually UTF-8 encoding is sufficient for this
o Content should handle the safe HTML tags

e Edit a blog

o Change title/caption or image

e Remove a blog
o With a confirmation from the user

e Export option is required

Core - Search and Follow / Unfollow Others

e Ability to search other users
e Ability to follow others
e Ability to unfollow others

User’s Feed

e Show the blogs/posts created by other users
e Navigate to the user’s profile on clicking the username on the blog or post

Core - Daily Reminder Jobs

e Scheduled Job - Daily reminders on Google Chat using webhook or SMS or

Email
o Inthe evening, every day (you can choose time of your choice)
o Check if the user has not visited/posted anything
o If yes, then send the alert asking them to visit/post

Core - Scheduled Job - Monthly Engagement Report

e Scheduled Job - Monthly Engagement Report
o Come Up with a monthly progress report in HTML (email)
o On the first day of the month
m Startajob
m Create areport
m Send it as email

Core - User Triggered Async Job - Export as CSV

e User Triggered Async Job - Export as CSV
o Come up with an export CSV format for blogs
o Have a dashboard where the user can export
o Trigger a batch job, send an alert once done

Core - Performance and Caching

e Add caching where required to increase the performance
e Add cache expiry
e API Performance

Recommended (graded)

e Backend Jobs
o Import Jobs

e \Well designed PDF reports (User can choose between HTML and PDF
reports)
e Single Responsive Ul for both Mobile and Desktop

o Unified Ul that works across devices
o Add to desktop feature

Optional

e Styling and Aesthetics

Evaluation

e Report (not more than 2 pages) describing models and overall system design
o Include as PDF inside submission folder

e All code to be submitted on portal
e A brief (2-3 minute) video explaining how you approached the problem, what

you have implemented, and any extra features
o This will be viewed during or before the viva, so should be a clear explanation of your work

e \iva: after the video explanation, you are required to give a demo of your
work, and answer any questions

o This includes making changes as requested and running the code for a live demo
o Other questions that may be unrelated to the project itself but are relevant for the course

Instructions

e This is a live document and will be updated with more details and FAQs
(possibly including suggested wireframes, but not specific implementation
details) as we proceed.

e We will freeze the problem statement on or before 22nd December, beyond
which any modifications to the statement will be communicated via proper
announcements.

e The project has to be submitted as a single zip file.

