
Page 1 of 12

Note:
OnTrack will ask you to upload the required file in order, so please pay attention to
the OnTrack upload instructions during submission.

SIT102 Introduction to Programming

Pass Task 1.1: Hello SIT102 & Hello World

Overview
This task firstly includes a section called “Hello SIT102”. It provides guided questions for you to
explore the unit site materials and gain understanding of the unit arrangement. It enables you to
be familiar with the unit and your learning opportunity, and leads you to success in this unit.

Then, create a classic “Hello World” program as an installation tester in Part B of this task is your
first step in software creation to ensure your device is programming/coding-ready. As this is your
first task in the unit, the guidance in this tasksheet is very detailed covering almost all steps
of activities in your week 1 class. It includes information that you can use to understand how to
work with the Terminal. It would be good to read over these details as they help extend your
understanding of building and executing programs, and give you tools to succeed with later tasks,
as listed in Part B – Your Task section which aim to let you familiar with OnTrack submission and
completeness processes. Future tasks will have relevant instructions and requirements, but
they won’t have this level of details.

Submission Details and Your Intended Learning Achievements

For completing this task, you need to showcase the following achievements in your submission:

Section of this task Your Intended Learning Achievements
• Hello SIT102: your understanding of the unit and assessment information
• Hello World: your proper implementation of the classic Hello World program, your executable,

and your understanding of the software creation processes

Submit the following files to OnTrack as your task deliverables showcasing the above achievements:

• PDF of your Answers to the questions available in the task resource (Download it from your
OnTrack panel - Resources.zip)

• A screenshot of your program running in the Terminal
• Hello World source code (the program.cpp file)

Submission Due
The due for each task has been stated via its OnTrack task information dashboard.

Page 2 of 12

Instructions for Part A: Hello SIT102 section

1. Make sure you would have gone through SIT102 Unit Site >> Announcement: Welcome to
SIT102 Introduction to Programming and its indicated contents, including the Unit Guide, Week 0 -
Introduction (and Installation) for the essential details of unit information and assessment criteria.

2. Navigate to SIT102 Unit Site >> Assessment >> Quizzes >> Hello SIT102 (OnTrack 1.1P - Part A
requirements) (See below figures) where

o you are getting the questions of Hello SIT102,

o you are submitting your answers to it for system’s auto-marking in the unit site quiz tool,

o you are getting the screenshot of a full mark to showcase your understanding of the unit and
assessment information.

o Note: this Hello SIT102 (OnTrack 1.1P - Part A requirements) quiz has set up unlimited
attempt for you to obtain a full mark. If you have gone through the unit information, you
would be able to complete this part (all are Matching and MC questions) with a full mark in
15-20 minutes.

 Figures: Parts of layout of SIT102 Unit Site >> Assessment >> Quizzes

3. Screenshot your full mark result. The screenshot should also include your name showing on it
o The score for auto-mark sections will be available in unit site >> Assessment >> Quizzes in 1

– 2 minutes after your submission. Click the downward arrow next to the corresponding quiz
item and select Submissions.

o Then, you can reach this in the following page with your quiz’s auto-marked score

4. Paste your screenshot to the given answer sheet WORD doc

o Download answer sheet WORD doc from your OnTrack panel - Resources.zip).

o You may also want to jump to the section “Your Task” in this tasksheet to know more
about OnTrack panel and resources.zip.

https://d2l.deakin.edu.au/d2l/le/news/1316006/569624/view
https://d2l.deakin.edu.au/d2l/le/news/1316006/569624/view

Page 3 of 12

Note: You can skip these steps on Deakin lab computers (if applicable) as the software is installed.

Remember on Windows that you have to use MSYS2’s minGW.exe to access your terminal.

Instructions for Part B: Hello World (Start Programming!)

The first task includes the steps needed for you to install the tools you will need in this unit. You will
then use these tools to create the classic “Hello World” program.

Setting up a folder

1. Install the tools you need to get started and check the install instructions for your operating system:

Install build tools, VS Code for Linux
Install Xcode tools, VS Code for MacOS

Install MSYS2, VS Code for Windows

2. Apart from your Week 1 Class activities, for week 1, here are walk-through videos in the

unit site on how to start creating, compiling, and executing a Hello World classic program
as the installation tester.

o (You may have gone through this during Part A of this task) Unit Site > Unit Information
> Week 0 - Introduction and Installation

o (This is a video recap of the following texts in this tasksheet) Unit Site > Online Class >
Weekly Pre-Class Learning Resources > Week 1 - Programs and Procedures > Building
Programs > Video 1.6 - Installation Tester - Hello World

3. If you don’t already have one, make a directory (i.e., a folder) to store your code (e.g.,

Documents/Code). On a Deakin computer you may wish to use a directory on your student drive
or a USB storage device.

Navigate to your Documents directory in Finder or File Explorer
Right click in the Documents directory and select New Folder, name it Code

Figure: Windows explorer showing code folder in Documents

http://www.splashkit.io/articles/installation/ubuntu/
http://www.splashkit.io/articles/installation/mac/
http://www.splashkit.io/articles/installation/windows/
https://d2l.deakin.edu.au/d2l/le/content/1316006/Home?itemIdentifier=D2L.LE.Content.ContentObject.ModuleCO-6660967
https://video.deakin.edu.au/media/t/0_7j3puwka
https://d2l.deakin.edu.au/d2l/le/content/1316006/viewContent/6661307/View

Page 4 of 12

Feel free to place this somewhere else on your computer if you want, but please avoid using
spaces in the names of any of the folders. Spaces in names will make it hard to interact with
from the Terminal as the terminal uses spaces to separate different parts of its commands.

4. Open your Terminal

 For windows users, use your installed MSYS2 minGW x-bit app (in the above step 1),
 64 or 32 bits depends on your OS version.

 Figure: Illustration of a search for MSYS2 minGW x-bit app via Start Menu

 For Mac users, use your installed Terminal app (obtained by the above step 1 Xcode
 installation), drilling down into the Utilities folder within Applications)

Figure: Illustration of a Utilities folder within Applications in MacOS

Now we have a folder in place, we need to switch to the Terminal to proceed. The Terminal is a
program that gives you a command line interface to the computer. You type commands in, press
enter, and the Terminal’s shell interprets the text you type and performs the actions you
requested. Using the terminal and writing programs have many similarities, which makes the
Terminal very useful for software developers. As a result there are many advanced programming
tools that you can use from the Terminal. For the moment we will stick to the basics, but once you
get started there is so much more you can do with this tool.

Figure: Example MSYS2 minGW 64-bit terminal window for windows users

Page 5 of 12

cd /c/Users/glory/Documents/Code

cd /c/Users/andrew/Documents/Code

~

cd ~/Documents/Code

On some systems file and folder names are case sensitive, so make sure you
type this in carefully: Code and code are two different names!

Figure: Example Xcode Terminal window for Mac users

5. Navigate to your new folder using the cd command.

Within the terminal, your actions are centred upon a working directory. This then gives you easy
and ready access to the files and other folders/directories that are located within the working
directory. So, typically the first task you need to do is change the working directory. In this case we
need to change into the Code directory you created in your Documents folder.

For example, on Windows this would be something like this, to cd into a folder on my C: drive in

.

 Figure: Example of inputting a cd command in the Terminal

Give you one more example: If Andrew wants to cd into his folder based on the folder path,
 , he would make use of the following cd command:

For Mac and Linux, it is a little easier as it includes a shortcut to get to your home directory:

Users/glory/Documents

Users/andrew/Documents

Page 6 of 12

pwd

mkdir HelloWorld

Code

cd He

mkdir

~

/

cd ..

cd HelloWorld

skm new c++

ls -lha

Your terminal is now using this as your working directory. You can check this using the
command which asks for the present working directory.

Once you are in the right directory we can create a folder for the project and then initialise this to
give us a C++ SplashKit project.

6. Create a directory (folder) and initialise your Hello World project folder using mkdir command.

To create a HelloWorld directory within the Code folder you can just run command line,
as the terminal is currently in the folder.

7. Now, navigate to that directory. You can use a shortcut by typing then hit the tab key to
auto-complete the folder name. Making use of this awesome feature will help save typing and
make you more productive. The command will be . Hit enter to run the command.

Like with the command above, this is relative to the current working directory. So this will
move into the HelloWorld folder in the Code folder, etc. File and folder names are relative to the
current directory if they do not start with a tilde (~) or a forward slash (/). In these contexts,
represents your home directory and represents the root (start) of the file system.

Both and are also special identifiers, represents the current directory and
represents the parent of the current directory. So if you ran
directory, it would take you back to the Documents directory.

when you are in the Code

Run the following command to move into the HelloWorld folder, if you haven’t done so already.

8. To setup the project run the following command line in the terminal.

This gets SplashKit to initialise your project with the necessary dependencies. You should see an
include folder, a program.cpp and some associated project files under your project folder.

You could also run the following command to list files that the above skm command line has created:

The tells the (list) command to print the names in a list (-l) in human readable

format (-h) and to show all files (-a)

).

pwd

mkdir HelloWorld

cd HelloWorld

.

-lha ls

Page 7 of 12

HelloWorld

You should just be able to run code . from the Terminal to open VS Code
with the current folder (which is . in the terminal).

Writing the Code

1. Open Visual Studio Code and within it open your folder. The menu
should allow you to on Windows, or just on Mac and Linux. You can
then use a standard dialog to navigate to and select your folder.

You should see something like the following when this works. You can open the program.cpp file
by double clicking it in the list on the left.

Figure: VS Code showing initial project details

HelloWorld File

Open Folder... Open

Page 8 of 12

Main

#include "splashkit.h"

int main()

{

write_line("Hello World");

return 0;

}

Beware

Watch out! Copying code from a PDF and pasting it into your own program
may result in invalid characters that won’t be processed when you upload
to OnTrack. Please type these by yourself.

Typing the code in yourself will help you learn. You want to know how to do
this yourself.

2. Update the code to include the statements that will write hello world to the terminal. The code is
shown below (and shown in the previous screenshot).

C++ is case sensitive, so take care when typing this in. For example, if you call instead of

it won’t work! This can be a bit of a pain when you get stared, but with care you will be
fine.

3. Save the program.cpp file, by selecting Save from the File menu or using the shortcut (ctrl+s or

cmd+s for macOS).

That’s it. If you have typed this in correctly you have the code for your first program!

Notice the color highlighting in the editor, this is known as syntax highlighting. Code editors use
knowledge of the rules of the programming language (their syntax) to color different words based
on their meaning in the language. These highlights help you visualise the structure of your
program, and make sure that you don’t have small typos in key words.

main

Page 9 of 12

cd

a.out

a.exe

-o HelloWorld

HelloWorld

ls -lha

pwd

skm clang++ program.cpp -o HelloWorld

If this doesn’t work then check your installation steps, and ask for help on the
Discussion Board (since week 0), join a Class session (since week 1), or
drop into a HelpHub session (since week 1) check the Unit Information
page in the unit site for details. You need to get things working as quickly as
possible, so get on to this ASAP.

Compiling the Program

Now that you have the code, you need to get it into a format that the computer can use. There are
many different tools that can be used to achieve this, but they can be generally categorised as either
interpreters or compilers. An interpreter will read the program’s code and then give the computer the
instructions it needs to carry out the requested action as it goes. A compiler will read all of the
program’s code and then save the instructions for the computer into a separate executable file. When
comparing compilers and interpreters, each has their own advantages and disadvantages. In general
interpreters offer greater flexibility and can simplify the programming process, but are slower as they
need to interpret the code as the program runs. In contrast, compilers are able to generate efficient
code but are generally less dynamic.

The C++ programming language uses a compiler. The C++ compiler reads your code and produces an
executable that you can run.

1. Switch back to your Terminal, or open it again and back into your project’s folder.

2. Check you are in the right current directory. You can use the following commands:

List the files in this directory using the ls command. This will print out the list of files and
folders in the directory.

Print the working directory using the pwd command

3. Build your program code using the (or) command line tool:

This compiles your program.cpp code and generates a program called by default
(on Windows). You can change the name of the program it produces by passing an
additional flag to the compiler. By adding you are telling the compiler to
output a program called :

skm clang++ program.cpp

clang++ g++

Page 10 of 12

./a.out

If this all works you should feel confident that things are setup correctly.

If you have any issues use the discussion board to get help, as it is important
to get these sorted quickly.

./HelloWorld

4. Run the program by using its name so either a.out (a.exe on Windows) or HelloWorld (the name
you have assigned to your program in the compilation process):

Your program should run, and you will see the message Hello World written to the Terminal.

Congratulations! You have written your first program. We will look at what all this code soon, but for
the moment let’s take a look at how you can submit your work as required by this task for feedback.

Your Task

Besides the above program, submit the other required work for this 1.1P (as stated in page 1 of
this tasksheet) to OnTrack

To finish off this task you now need to download the Task Resources from OnTrack. You will find the
button to download these in the Task Details page, as shown below.

Figure: Download task resources

1. Unzip the file, which in this case will contain a word document template for your answers.

Page 11 of 12

The purpose of this step is to reflect on what you have learnt, and how this will help
you demonstrate the unit learning outcomes. You can reflectively comment on
what you got out of finishing/completing this task, and anticipating its overall
relevance in your final portfolio based on the unit learning outcomes. So use a rating
of 4 or 5 for the work you think will be your best work evidencing in your portfolio to
demonstrate your achievements of the corresponding learning outcome(s).

2. Open the word document, and answer the questions within. You want to use these as a chance to

demonstrate you have fully understood the actions you performed in the task. So in this case that
relates to the use of the tools needed to compile and run a program.

3. When finished, save your work and keep a copy of this. You may need to fix and resubmit your
answers if they are not adequate.

4. Next export a copy of the document to PDF. You can use Save As to save to PDF. You will need

the PDF document to submit to OnTrack.

Submitting your work

Check that you are happy with your code and answers, and that you are ready to submit it to OnTrack
for feedback.

1. Login OnTrack, and go back into Task 1.1P.

2. Change the status of the task from Not yet Started / Working on It to Ready for Feedback

3. Check what files you will need to upload. In this case it includes the program’s code, answers

PDF, as well as a screen shot of the running program.

4. Once ready, run your program and use the appropriate tools to get a screenshot.

In Windows you can use Windows logo key + Shift + S to open Snipping Tool.
In macOS you can use cmd+shift+4 to select an area for a screenshot.

In Ubuntu Linux, you can use the Unity Dash button and type the word screenshot in the
search bar, or tools like Flameshot

5. Switch back to OnTrack and upload the required code, answers, and screenshot.

6. On the next screen you will need to align what you have done in the task to achieve unit
learning outcome(s). This process helps you to reflect each of your programming work/task of
the unit. Add a short reflective comment (around 50 words) to describe this, then move on to
the next step.

In the last step you can add a comment to your OnTrack reviewer (tutor), let them know if there
are any things you want them to focus on. Remember professional communications could help
you exchange ideas of the core knowledge covered in the unit.

https://ontrack.deakin.edu.au/
https://support.microsoft.com/en-us/windows/use-snipping-tool-to-capture-screenshots-00246869-1843-655f-f220-97299b865f6b
https://support.apple.com/en-au/guide/mac-help/mh26782/mac#:%7E:text=Press%20Shift%2DCommand%2D4%2C,the%20mouse%20or%20trackpad%20button.
https://flameshot.org/docs/installation/installation-linux/

Page 12 of 12

Note 1: These interactions/discussions/demonstrations must occur in order for you to be
eligible to pass the unit. Please ensure that you are regularly engaging with your OnTrack
reviewer to get your Pass tasks signed off by the end of a milestone. See unit guide for
tasks and milestones details.

Note 2: While your reviewer will help you monitor your progress, in many cases they may
need to refer you to other resources such as asking you to join a class/HelpHub session, read
posts in discussion board, or revisit class resources for further assistance. Submissions in
OnTrack are generally for work that you consider to be complete (or very close to it)
with all requirements have been fulfilled. Otherwise, your reviewer will directly ask you to
Redo the task with a resubmission. If you need help with a task, engage with the support
services to help you make progress.

Note 3: If your task is given a Resubmit status, the task due date will be revised with a 5-day
extension UP TO the task due date by OnTrack system giving you time to improve your task.
Please check the updated due in the task Information panel.

Note 4: You are highly recommended to submit you work as early as possible as back and forth
communications on your tasks will be needed after your submission and before the due
(Please be noted: OnTrack turn-around time is about 5 business days).

In the last iteration approaching the due (if your task has not yet been signed off due to some of
the task requirements have not yet been fulfilled), your reviewer will do the review and give
feedback to your latest on-time submission in 5 business days following the due date. The on-
time submission will be signed-off at that time if it is up to the standard. Otherwise you have to
make sure your work is then well fixed and get the task signed off by the corresponding
milestone as one of the passing requirements for this unit.

7. Finally, upload…

The files will be uploaded to the server, which will convert them into a single PDF file that can
be included in your portfolio. This file will be shown to your reviewer who will review it and get
back to you shortly (in 5 business days) with some feedback.

Well done! You have submitted this first task! The last step is to complete your task…

Task Completeness

An essential part of this unit will be the interactions between you and your OnTrack reviewer (tutor) on
your progress with the tasks and the development of your understanding of the associated concepts
and skills. Once your reviewer has checked your task they will indicate you need to Discuss or
Demonstrate this with them. This means your work looks good, but we want to discuss this with you
to see how you are progressing with the ideas behind the code. Sometimes, you may also need to fix
some minor issues in your task based on the feedback given by your reviewer, indicated by an OnTrack
status, Resubmit. This is your opportunity to highlight what you have learnt, or to get feedback on
aspects you would like some support with. When your resubmission and answers to the discussion/
demonstration are up to standard, in the next review cycle, your reviewer will sign off your task as
Complete, as a process of building up your portfolio contents.

	Overview
	Submission Details and Your Intended Learning Achievements
	Submission Due
	Instructions for Part A: Hello SIT102 section
	Instructions for Part B: Hello World (Start Programming!)
	Setting up a folder
	Writing the Code
	Compiling the Program

	Your Task
	Submitting your work
	Task Completeness

