Python Program based on Reinforcement Learning(Tictactoe Game)
Code is already given, there will be a human move and computer move.
Task 1:
Declare a variable that decides the board layout (for example 3 implies 3 x 3 board) Make changes to the code such that the opponent (who plays 'O') is automated using a probability transition function.
Details
1. [bookmark: _GoBack]Model the state space and action space for Tictactoe game.
2. Create an arbitrary probability transition function
3. Make use of the above probability transition function to decide the move of the opponent(computer)
In this part, human move will be performed by yourself using the mouse itself. Only the opponent move is automated.
You can use any probability distribution function (uniform or normal distribution)to make choice of computer move.
Task 2 (Computer move is automated using probability transition function in the same way like Task-1)
1. Create an arbitrary policy
2. Make changes to the code to follow that policy (This means the mouse click is no more required. The code will follow the policy to find human move)
Using some random choice human move will be performed.
Task 3:
Find an optimal policy for human move using RL algorithms: (Computer move is automated using probability transition function in the same way like Task-1)
1. Policy iteration algorithm
2. Value iteration algorithm
3. Q learning algorithm
All the modifications has to be done in this code(No new code should be written).
All the tasks has to be implemented as a separate python program.
Code:
	
	#importmodules

	
	import pygame

	
	from pygame.locals import *

	
	

	
	pygame.init()

	
	

	
	screen_height = 300

	
	screen_width = 300

	
	line_width = 6

	
	screen = pygame.display.set_mode((screen_width, screen_height))

	
	pygame.display.set_caption('Tic Tac Toe')

	
	

	
	#define colours

	
	red = (255, 0, 0)

	
	green = (0, 255, 0)

	
	blue = (0, 0, 255)

	
	

	
	#define font

	
	font = pygame.font.SysFont(None, 40)

	
	

	
	#define variables

	
	clicked = False

	
	player = 1

	
	pos = (0,0)

	
	markers = []

	
	game_over = False

	
	winner = 0

	
	

	
	#setup a rectangle for "Play Again" Option

	
	again_rect = Rect(screen_width // 2 - 80, screen_height // 2, 160, 50)

	
	

	
	#create empty 3 x 3 list to represent the grid

	
	for x in range (3):

	
		row = [0] * 3

	
		markers.append(row)

	
	

	
	

	
	

	
	def draw_board():

	
		bg = (255, 255, 210)

	
		grid = (50, 50, 50)

	
		screen.fill(bg)

	
		for x in range(1,3):

	
			pygame.draw.line(screen, grid, (0, 100 * x), (screen_width,100 * x), line_width)

	
			pygame.draw.line(screen, grid, (100 * x, 0), (100 * x, screen_height), line_width)

	
	

	
	def draw_markers():

	
		x_pos = 0

	
		for x in markers:

	
			y_pos = 0

	
			for y in x:

	
				if y == 1:

	
					pygame.draw.line(screen, red, (x_pos * 100 + 15, y_pos * 100 + 15), (x_pos * 100 + 85, y_pos * 100 + 85), line_width)

	
					pygame.draw.line(screen, red, (x_pos * 100 + 85, y_pos * 100 + 15), (x_pos * 100 + 15, y_pos * 100 + 85), line_width)

	
				if y == -1:

	
					pygame.draw.circle(screen, green, (x_pos * 100 + 50, y_pos * 100 + 50), 38, line_width)

	
				y_pos += 1

	
			x_pos += 1	

	
	

	
	

	
	def check_game_over():

	
		global game_over

	
		global winner

	
	

	
		x_pos = 0

	
		for x in markers:

	
			#check columns

	
			if sum(x) == 3:

	
				winner = 1

	
				game_over = True

	
			if sum(x) == -3:

	
				winner = 2

	
				game_over = True

	
			#check rows

	
			if markers[0][x_pos] + markers [1][x_pos] + markers [2][x_pos] == 3:

	
				winner = 1

	
				game_over = True

	
			if markers[0][x_pos] + markers [1][x_pos] + markers [2][x_pos] == -3:

	
				winner = 2

	
				game_over = True

	
			x_pos += 1

	
	

	
		#check cross

	
		if markers[0][0] + markers[1][1] + markers [2][2] == 3 or markers[2][0] + markers[1][1] + markers [0][2] == 3:

	
			winner = 1

	
			game_over = True

	
		if markers[0][0] + markers[1][1] + markers [2][2] == -3 or markers[2][0] + markers[1][1] + markers [0][2] == -3:

	
			winner = 2

	
			game_over = True

	
	

	
		#check for tie

	
		if game_over == False:

	
			tie = True

	
			for row in markers:

	
				for i in row:

	
					if i == 0:

	
						tie = False

	
			#if it is a tie, then call game over and set winner to 0 (no one)

	
			if tie == True:

	
				game_over = True

	
				winner = 0

	
	

	
	

	
	

	
	def draw_game_over(winner):

	
	

	
		if winner != 0:

	
			end_text = "Player " + str(winner) + " wins!"

	
		elif winner == 0:

	
			end_text = "You have tied!"

	
	

	
		end_img = font.render(end_text, True, blue)

	
		pygame.draw.rect(screen, green, (screen_width // 2 - 100, screen_height // 2 - 60, 200, 50))

	
		screen.blit(end_img, (screen_width // 2 - 100, screen_height // 2 - 50))

	
	

	
		again_text = 'Play Again?'

	
		again_img = font.render(again_text, True, blue)

	
		pygame.draw.rect(screen, green, again_rect)

	
		screen.blit(again_img, (screen_width // 2 - 80, screen_height // 2 + 10))

	
	

	
	

	
	#main loop

	
	run = True

	
	while run:

	
	

	
		#draw board and markers first

	
		draw_board()

	
		draw_markers()

	
	

	
		#handle events

	
		for event in pygame.event.get():

	
			#handle game exit

	
			if event.type == pygame.QUIT:

	
				run = False

	
			#run new game

	
			if game_over == False:

	
				#check for mouseclick

	
				if event.type == pygame.MOUSEBUTTONDOWN and clicked == False:

	
					clicked = True

	
				if event.type == pygame.MOUSEBUTTONUP and clicked == True:

	
					clicked = False

	
					pos = pygame.mouse.get_pos()

	
					cell_x = pos[0] // 100

	
					cell_y = pos[1] // 100

	
					if markers[cell_x][cell_y] == 0:

	
						markers[cell_x][cell_y] = player

	
						player *= -1

	
						check_game_over()

	
	

	
		#check if game has been won

	
		if game_over == True:

	
			draw_game_over(winner)

	
			#check for mouseclick to see if we clicked on Play Again

	
			if event.type == pygame.MOUSEBUTTONDOWN and clicked == False:

	
				clicked = True

	
			if event.type == pygame.MOUSEBUTTONUP and clicked == True:

	
				clicked = False

	
				pos = pygame.mouse.get_pos()

	
				if again_rect.collidepoint(pos):

	
					#reset variables

	
					game_over = False

	
					player = 1

	
					pos = (0,0)

	
					markers = []

	
					winner = 0

	
					#create empty 3 x 3 list to represent the grid

	
					for x in range (3):

	
						row = [0] * 3

	
						markers.append(row)

	
	

	
		#update display

	
		pygame.display.update()

	
	

	
	pygame.quit()

