
CS 3214: Project 2

Fork-Join Threadpool
Help Session: Wednesday March 15, 2021 - 7:00pm EST

Brendan Doney <brendandoney@vt.edu>
Ani Ramadoss <aniramadoss2002@vt.edu>

Topics

● Getting Started and Basics
● Threadpool Design
● Codebase Intro
● Logistics

○ Grading
○ Test Driver
○ Scoreboard

● Debugging
● Advice
● Questions

Getting Started and
Basics

1. One member will fork the base repository:
https://git.cs.vt.edu/cs3214-staff/threadlab

2. Invite partner to collaborate
- Go to Settings > Members to add them
- Check partner role permissions too

3. Both members will clone the forked
repository on their machines:

4. IMPORTANT: Set forked repository to
private

- Go to Settings > General > Visibility, project features, permissions
- Potential Honor Code Violation if not set to private

First Step!

$ git clone <your git repo url>.git

*Your forked repository will have a
navigation menu on the left side.
Click under Settings to add members
and set repo to private

threadlab

https://git.cs.vt.edu/cs3214-staff/threadlab

Some Basics
● Thread

○ A single sequential flow within a program
○ A single process can have multiple threads

● Threadpool - collection of idle threads that to do work for an external
program
○ Doesn’t do anything unless work is given to it
○ Provides an API for external programs or clients to use without

adding locking semantics
○ Less-headache way to add concurrency to programs

Basic Illustration

Source: https://www.classes.cs.uchicago.edu/archive/2016/spring/12300-1/pa3.html

https://www.classes.cs.uchicago.edu/archive/2016/spring/12300-1/pa3.html

Where you come in...
● You will create your own Threadpool API that external programs will call

● What do we write?

1. threadpool.c

2. Implementations for functions and structs from threadpool.h

3. Static helper functions

Functions you will implement
struct thread_pool * thread_pool_new(int nthreads);

void thread_pool_shutdown_and_destroy(struct thread_pool *);

struct future * thread_pool_submit(struct thread_pool *pool, fork_join_task_t task, void * data)

void * future_get(struct future *);

void future_free(struct future *);

● Read over threadpool.h for full documentation: you must implement these functions!

● Not included are static function(s) you’ll add to threadpool.c

Threadpool Design

Threadpool Design
● Methodologies

○ Split up tasks among n workers

○ Work Sharing / Work Stealing

○ Internal and External Submissions

○ Work Helping

● No global variables! (exception of thread-local variables - we will talk
about these later)

Work Sharing
● Single, central queue from which all threads remove tasks

● Drawback: queue can become a point of contention especially with
handling small tasks

Work Stealing
● Global list of tasks

● Local lists of tasks for each worker

● Worker main loop:

○ Do I have tasks? Pop from front (LIFO)

○ Are there global tasks? Pop from back (FIFO)

○ Does anyone else have tasks? Pop from back (FIFO)

● Stealing spreads work evenly to idle threads

● Each queue/deque needs to be protected

● Workers still wait for other threads to steal and finish futures they
depend on (we’ll get back to this)

Internal vs External Task Submissions
● External Submission - client submits a new task to threadpool

○ Task gets added to the global queue

● Internal Submission - thread submits a subtask

○ “Subtask” gets added to worker’s local deque

- Worker executes it later

- Or a co-worker steals the task to execute itself

● For submissions to the threadpool, you’ll need to distinguish these
cases

○ But how?

Mergesort

sort(A[0..64])

sort(A[0..32])

sort(A[0..16]) sort(A[16..32]) sort(A[32..48]) sort(A[48..64])

sort(A[32..64])

Example
mergesort_parallel(int *array, int N) {

 int * tmp = malloc(sizeof(int) * (N));

 struct msort_task root = {

 .left = 0, .right = N-1, .array = array, .tmp = tmp

 };

 struct thread_pool * threadpool = thread_pool_new(nthreads);

 //EXTERNAL submission from client

 struct future * top = thread_pool_submit(threadpool, //internal function

 (fork_join_task_t) mergesort_internal_parallel,

 &root);

 //demands answer once it’s ready

 future_get(top);

 future_free(top);

 thread_pool_shutdown_and_destroy(threadpool);

 free (tmp);

}

* Check out mergesort.c to see full functions

Example (part 2)
static void

mergesort_internal_parallel(struct thread_pool * threadpool, struct msort_task * s)

{ //If array small, no more submitting just internal sort (BASE CASE)

 if (right - left <= min_task_size) { mergesort_internal(array, tmp+left, left, right); }

 ... not all code shown

 //INTERNAL Submission from the worker thread

 struct future * lhalf = thread_pool_submit(threadpool, (fork_join_task_t) mergesort_internal_parallel,

 &mleft);

 //Worker thread works on other half

 mergesort_internal_parallel(threadpool, &mright);

 future_get(lhalf);

 future_free(lhalf);

 merge(array, tmp, left, left, m, right);

 }

}

Work Helping
● In future_get, you can only return the result once the future is done

executing
● The task might not be completed when future_get is called (or even

running)
● Consider cases for getting the result from future_get:

○ If future already executed -> Hurray!

○ But what happens if the future isn’t ready?
■ What should the thread do while waiting?

Task

Task

Work Helping (cont.)
● Threads should make best use of their time by…

○ Minimizing sleeping

○ Maximizing time spent executing tasks

● If no threads are executing a task you depend on, do it yourself

○ Workers can then recursively handle their own dequeue (FIFO)

● If a thread is executing the task you depend on? May be beneficial to
execute other tasks instead of waiting

Design Advice
● You are asked to implement the work stealing with work helping thread

pool design
○ Better load balancing
○ Lower synchronization requirements

● However, you can implement work sharing for only 80% credit (not
recommended)

Thread Local Variables
● Want to be able to access your workers deque (and probably locks)

during thread_pool_submit()

● How can we distinguish external/internal submissions?

Thread Local Variables
● Naive approach would be to loop through workers and check

pthread_self(),...
● Instead, use some variable which would be different for each thread

○ AKA thread-local variables/storage

https://en.wikipedia.org/wiki/Thread-local_storage#C_and_C.2B.2B

Codebase Intro

struct thread_pool
● Should contain any state you need for a threadpool
● Ideas:

○ Locks (pthread_mutex_t)
○ Queues/Deques (provided list struct from previous project)
○ Semaphores (sem_t)
○ Conditional Variables (pthread_cond_t)
○ Etc.

● Protects global queue
● Shutdown flag

Futures
● How do we represent a task we need to do?

○ future

○ Threadpool: an instance of a task that you must execute

○ Client: a promise we will give them a reply when they ask for it

struct future

{

 fork_join_task_t task; // typedef of a function pointer type that you will execute

 void* args; // the data from thread_pool_submit

 void* result; // will store task result once it completes execution

 …

 // may also need synchronization primitives (mutexes, semaphores, etc)

};

Futures (cont.)
● You will invoke “task” as a method, it represents the method passed

through by thread_pool_submit, the return value gets stored into
the result

Future Illustration

Task

Task

Task

KEY:

1. Client submits task
to threadpool’s
global queue

2. Client immediately
receives a future

3. A worker thread
snags the submitted
task to their local
deque for work

4. Client demands to
get the completed
task affiliated with
future

5. The completed task
is returned, client
frees the future

1.

2.

3.

4.

5.

Functions you will implement
struct thread_pool * thread_pool_new(int nthreads);

void thread_pool_shutdown_and_destroy(struct thread_pool *);

struct future * thread_pool_submit(struct thread_pool *pool, fork_join_task_t task, void * data)

void * future_get(struct future *);

void future_free(struct future *);

● Read over threadpool.h for full documentation: you must implement these functions!

● You can also add static function(s) to threadpool.c

thread_pool_new
● Create thread pool
● Initialize worker threads
● Call pthread_create: starts a new thread in the calling process. The new

thread starts execution by invoking start_routine(); arg is passed as the
argument of start_routine()

Logistics

Grading
● Submit code that compiles
● Test using the driver before submitting
● When grading, tests will be run 3-5 times, if you crash a single time it’s

considered failing
● Benchmarked times will be the average of the 3-5 runs, assuming you

pass all of them

Grading (cont.)
● Breakdown

○ Git Usage
○ Functionality Tests (Basic/Advanced ~ 25% each)
○ Performance ~ 40%

● GTAs will determine the exact breakdown of points
● Performance will breakdown into rough categories based on real time

scores
● You must pass the basic tests before getting anything for performance

Performance
● Relative to peers and sample implementations
● Points only for the tests on the scoreboard

○ N Queens, Mergesort, Quicksort (8, 16, and 32 threads), possibly
Fibonacci

● A rough cutoff for real time benchmarks will be posted later on by Dr.
Back (last semester’s scoreboard)

https://courses.cs.vt.edu/cs3214/fall2022/projects/project2scoreboard

Performance

ONLY for reference - numbers will likely change

Performance

Visual Studio Code Terminal Issues

● Use a separate terminal (like git bash) to run the tests
● VS Code spins up some extra processes on rlogin to manage files, they

interfere with the somewhat strict thread limits we enforce on the tests
to guarantee your thread pool isn't creating additional workers to juice
performance numbers

Test Driver

● Can take a long time to run all tests
● Reports if you passed each test, and times for the benchmarked ones

$ ~cs3214/bin/fjdriver.py [options]

Test Driver

● Make sure to run tests multiple times, race conditions can cause you to
crash only 20% of the time

● Will run multiple times to ensure consistency when grading (and get a
good average for times)

● All of the tests are C programs, compiled against your threadpool

Test Driver

● Runs the tests 5 times and averages the results
● Helpful to simulate grading environment

$ ~cs3214/bin/fjdriver.py -g -B 5

Scoreboard

● https://courses.cs.vt.edu/cs3214/spring2023/projects/project2scoreboard
● You can post your results to the scoreboard by using the fjpostresults.py

script

https://courses.cs.vt.edu/cs3214/spring2023/projects/project2scoreboard

Debugging Tools

Debugging

● Debugging multi-threaded programs can be difficult
○ Don’t just use printf()

● This project will challenge you in your debugging skills (GDB, Helgrind..)
● Helgrind**

○ Valgrind tool
○ Enable using --tool=helgrind in Valgrind command line
○ Your best friend for tracing deadlocks and synchronization errors
○ https://www.valgrind.org/docs/manual/hg-manual.html/

https://www.valgrind.org/docs/manual/hg-manual.html/

GDB Demo

● info thread - see how many threads there are

● thread <thread_num> - switch current thread

● thread apply all bt - see what each thread is doing

● Checking who owns a lock

Improving Performance

● Make sure you aren’t on a busy rlogin node!

○ ssh <username>@portal.cs.vt.edu

● Minimize sleeping, maximize execution of tasks

● “... We recommend that you intentionally break the rule of signaling with
the lock held”

● Advanced Optimizations - CPU Pinning, Fixing False Sharing, Lockless
Queues

● CPU profiling

● Ask on Discourse! There’s a lot of other optimizations to try

General Advice

● Start Early (...now)
● How many lines of code?

○ ~250-350 lines (not a good benchmark for difficulty)
● Most of time is spent debugging

○ GDB, Helgrind, and Valgrind are your friends
○ Debugging multi-threaded programs is difficult and time consuming

● Try different strategies
○ Most of the learning is trying out different approaches - telling you

exactly what would give the best results would reduce the
educational experience

Any Questions?

Good Luck!

