
CS3214 Spring 2023 Project 2 - “A Fork-Join Framework”

Due: See website for due date. (Late days may be used.)

What to submit: Upload a tar ball using the p2 identifier that includes the following
files:
- partner.json with the SLO IDs in the format described for Project 1.
- threadpool.c with your code.
- threadpool.pdf with your project description. Use a suitable word processing pro-
gram to produce the PDF file.
We will be using the provided fjdriver.py file to test your code. Please see Section 3.5
for more information.

1 Background

The last 2 decades have seen the widespread use of processors that support multiple cores
that can act as independent CPUs. Today, even processors used in smartphones contain 4
or more cores. Software has been slow to catch up, despite calls for programming models
that make it easy to write scalable programs for multicore systems [1].

As a case study, consider the std::async function that is part of the C++11 standard.1.
The reference documentation on cppreference.com provides the example shown in Fig-
ure 1.

This toy example sums up the elements of a vector, which here are initialized to 1, using
a recursive divide-and-conquer approach. At each level of recursion, the array is subdi-
vided into two equal parts, one of which is passed to std::async to be executed in a
separate thread, whereas the other part is recursively performed by the calling thread.
std::async returns a handle of type std::future, which represents a reference to a
result of a computation that is executed asynchronously. When the computation’s result
is needed, a thread may invoke the future’s get() method. get() will return the result,
arranging for—or waiting for—its computation as necessary.

1You will not need to learn C++ for this project, I am just using it as a motivating example
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#include <iostream>
#include <vector>
#include <algorithm>
#include <numeric>
#include <future>

template <typename RAIter>
int parallel_sum(RAIter beg, RAIter end)
{

auto len = std::distance(beg, end);
if(len < 1000)

return std::accumulate(beg, end, 0);

RAIter mid = beg + len/2;
auto handle = std::async(std::launch::async,

parallel_sum<RAIter>, mid, end);
int sum = parallel_sum(beg, mid);
return sum + handle.get();

}

int main()
{

std::vector<int> v(100000000, 1);
std::cout << "The sum is " << parallel_sum(v.begin(), v.end())

<< ’\n’;
}

Figure 1: A parallel sum implementation in C++11. This is a slightly modified version of
the example published at http://en.cppreference.com/w/cpp/thread/async. Instead of
10,000, this program is summing up a vector with 100,000,000 elements.

Compiling and running this program under g++ 8.5.0 one obtains the following output:

$ g++ -pthread -O2 cppasyncpsum.cc -o cppasyncpsum
$ ./cppasyncpsum
terminate called after throwing an instance of ’std::system_error’

what(): Resource temporarily unavailable
Aborted (core dumped)

The reason for this failure is that C++11’s std::async is implemented by blindly spawn-
ing kernel-level threads (roughly 105 of them), without any regard to the amount of re-
sources used by those threads.2

This example motivates the need for frameworks that do better than spawning one thread
for each parallel task.

In this project, you will create a small fork/join framework that allows the parallel execu-
tion of divide-and-conquer algorithms such as the one shown in the example in Figure 1
in a resource-efficient manner. To that end, you will create a thread pool implementation
for dynamic task parallelism, focusing on the execution of so-called fork/join tasks. Your

2C++23 may include support for executors as P044R14 was adopted in 2019.
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Figure 2: A work stealing thread pool. Worker threads execute tasks by popping them
from the bottom of their deques. If they run out of work, they first attempt to dequeue
tasks from a global submission queue. Failing that, they attempt to steal tasks from the
top of other workers’ deques. New tasks may be submitted externally to the global queue,
but tasks spawned during the execution of a task are pushed onto the bottom of executing
workers’ deques.

implementation should avoid excessive resource use in order to avoid crashes like the
one seen in this example.

2 Thread Pools and Futures

Your fork-join thread pool should implement the following API:

/**
* threadpool.h

*
* A work-stealing, fork-join thread pool.

*/

/*
* Opaque forward declarations. The actual definitions of these

* types will be local to your threadpool.c implementation.

*/
struct thread_pool;
struct future;

/* Create a new thread pool with no more than n threads. */
struct thread_pool * thread_pool_new(int nthreads);
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/*
* Shutdown this thread pool in an orderly fashion.

* Tasks that have been submitted but not executed may or

* may not be executed.

*
* Deallocate the thread pool object before returning.

*/
void thread_pool_shutdown_and_destroy(struct thread_pool *);

/* A function pointer representing a ’fork/join’ task.

* Tasks are represented as a function pointer to a

* function.

* ’pool’ - the thread pool instance in which this task

* executes

* ’data’ - a pointer to the data provided in thread_pool_submit

*
* Returns the result of its computation.

*/
typedef void * (* fork_join_task_t) (struct thread_pool *pool, void * data);

/*
* Submit a fork join task to the thread pool and return a

* future. The returned future can be used in future_get()

* to obtain the result.

* ’pool’ - the pool to which to submit

* ’task’ - the task to be submitted.

* ’data’ - data to be passed to the task’s function

*
* Returns a future representing this computation.

*/
struct future * thread_pool_submit(

struct thread_pool *pool,
fork_join_task_t task,
void * data);

/* Make sure that the thread pool has completed the execution

* of the fork join task this future represents.

*
* Returns the value returned by this task.

*/
void * future_get(struct future *);

/* Deallocate this future. Must be called after future_get() */
void future_free(struct future *);

2.1 Work Stealing

There are at least two common ways in which multiple threads can share the execution of
dynamically created tasks: work sharing and work stealing. In a work sharing approach,
tasks are submitted to a single, central queue from which all threads remove tasks. The
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drawback of this approach is that this central queue can become a point of contention,
particularly for applications that create many small tasks.

Instead, a work stealing approach is recommended [2] which has been shown to (at least
potentially) lead to better load balancing and lower synchronization requirements. In a
work stealing pool, each worker thread maintains its own local queue of tasks, as shown
in Figure 2. Each queue is a double-ended queue (deque) which allows insertion and
removal from both the top and the bottom. When a task run by a worker spawns a new
task, it is added (pushed) to the bottom of that worker’s queue. Workers execute tasks
by popping them from the bottom, thus following a LIFO order. If a worker runs out
of tasks, it checks a global submission queue for tasks. If a task can be found in it, it is
executed. Otherwise, the worker attempts to steal tasks to work on from the top of other
threads’ queues.

In this assignment, you are asked to implement a work stealing thread pool. Since work
stealing is purely a performance optimization, you may for reduced credit (corresponding
to a B letter grade) implement a work sharing approach.

2.2 Helping

A naive attempt at implementing future get would have the calling thread block if the
task associated with that future has not yet been computed. “Blocking” here means to
wait on a synchronization device such as a semaphore until it is signaled by the thread
computing the future. However, this approach risks thread starvation: if a worker thread
blocks while attempting to call future get it is easily possible for all worker threads to
be blocked on futures, leading to a deadlock because no worker threads are available to
compute the tasks on which the workers are blocked!

Instead, worker threads that attempt to resolve a future that has not yet been computed
must help in its execution. If the future’s task has not yet started executing, the worker
should steal it and execute it itself. If it has started executing, the worker has two choices:
it could wait for it to finish, or it could help by executing tasks spawned by the task being
joined, hoping to speed up its completion.

For the purposes of this assignment, we assume a fully-strict model as defined in [2]. A
fully-strict model requires that tasks join tasks they spawn — in other words, every call to
submit a task has a matching call to future get() within the same function invocation.
In this sense, all tasks spawned by a task can be considered subtasks that need to complete
before the task completes. All our tests will be fully strict computations, which encompass
a wide range of parallel computations.

Restricting ourselves to fully-strict computation for this project simplifies helping because
it is always safe for workers intending to help to steal any task as long as they steal from
the top of any other worker’s queue. Safety here refers to the absence of execution dead-
lock.
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Note that in a fully-strict model, in combination with helping, worker threads will never
be in a situation where they are looking for tasks on their own queue: this is because
any subtask spawned from a task they were working on will be joined before that task
returns. In this situation, the worker will either directly execute that task via helping, or
the task will have been stolen by some other worker. In no case will a worker return from
executing a task and find other, unfinished tasks on its queue. (Recall that all tasks added
to a worker thread’s queue are subtasks of a task the worker was executing at the time.)

2.3 Implementation

Except for constraints imposed by the API and resource availability, you have complete
freedom in how to implement your thread pool. Numerous strategies for stealing, help-
ing, blocking, and signaling are possible, each with different trade-offs.

You will need to design a synchronization strategy to protect the data structures you use,
such as flags representing the execution state of each tasks, the local queues, and the
global submission queue, and possibly others. You will need a signaling strategy so that
worker threads learn about the availability of tasks in the global queue or in other threads’
queues.

2.4 Basic Strategy

A basic strategy would be to use locks, condition variables, and the provided list imple-
mentation (known to you from prior projects), which allows constant-time insertion and
removal of list elements and which can be used to implement a deque.

You will have to define private structures struct future and struct thread pool
in threadpool.c. A future should store a pointer to the function to be called, any data
to be passed to that function, as well as the result (when available). You will have to
define appropriate variables to record the state of a future, such as whether its execution
has started, is in progress, or has completed, as well as which queue the future is in to
keep track of stealing.

A thread pool should keep track of a global submission queue, as well as of the worker
threads it has started. In the work stealing approach, each worker thread requires its own
queue. You will also need a flag to denote when the thread pool is shutting down.

You will need to create a static function that performs the core work of each worker
thread. You will pass this function to pthread create(), along with an argument
(such as a pointer to a preallocated struct) allowing the thread to identify its position
in the worker pool and to obtain a reference to the pool itself.

thread pool submit(). You should allocate a new future in this function and submit it
to the pool. Since the same API is used for external submissions (from threads that are
not part of the pool) and internal submissions (from threads that are part of the pool),
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you will need to use a thread-local variable to distinguish those cases. The thread local
variable could be used to quickly look up the information pertaining to the submitting
worker thread for internal submissions.

future get(). The calling thread may have to help in completing the future being joined,
as described in Section 2.2. Helping is required for both work sharing and work stealing
approaches.

thread pool shutdown and destroy(). This function will shut down the thread pool. Al-
ready executing futures must complete; queued futures may or may not complete.

The calling thread must join all worker threads before returning. Do not use
pthread cancel() because this function does not ensure that currently executing fu-
tures run to completion; instead, use a flag and an appropriate signaling strategy.

Upon destruction, a threadpool should deallocate all memory that was allocated on behalf
of the worker threads.

future free(). Frees the memory for a future instance allocated in
thread pool submit(). This function is called by the client. Do not call it in
your thread pool implementation.

Hints: A key challenge in this project is to ensure that updates to the state of a future are
done atomically with respect to the presence (or absence) of this future in its respective
queue (global or per-worker, depending on approach). You must avoid a situation in
which a worker thread scanning the global queue or a peer worker’s local queue “sees”
a future in said queue, is about to steal it, while the worker executing that task’s parent
task attempts to join it and execute it via the helping path. Only one thread must succeed
in executing the task – if the thread stealing the task executes it, the helping thread must
either wait or engage in helping the executor. If the helping thread executes it, the thread
attempting to steal must act as if the task had not been in the queue. In particular, if
the thread helping wins this race, the future may be completed (and immediately after,
deallocated via the future free()), so any pointers obtained by the worker thread may
no longer be valid if you allowed this situation to occur.

A recommended approach is to maintain the invariant that only tasks that are available
for execution be maintained in any queue/list. Moving a task from the “new” to the
“being executed” state should be atomic with respect to the removal of this task from the
queue in which it is contained. Recall that list remove() modifies a linked list and
need to be protected by the same mechanism as other operations on that list.

2.5 Advanced Strategies/Extra Credit

Real-world fork/join implementations employ a number of optimizations designed to
minimize per-task synchronization overhead. For instance, a crucial optimization is to
speed up the common case of adding an element to or removing it from the bottom of
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a worker’s queue. This optimization is possible because only the current worker may
add tasks to the queue, and only the current worker removes task from the bottom of its
queue. Stealers remove tasks from the top of the queue.

The first optimized implementations used the THE protocol, inspired by Djikstra’s mu-
tual exclusion algorithm [4], which is further described in [5] and [6]. Chase and Lev
presented a version of a work-stealing deque in [3], but their paper contains a number of
errors. A corrected version using C11 atomics is presented by Lê et al. [7], whose code
you may reuse for this project. 3

A second possible extension would be to support computations that are not fully-strict,
but still recursive. We define “recursive” such that it is possible to execute them on a
single worker thread using helping, even though they do not meet the definition of being
fully strict, perhaps because futures are passed among tasks before being joined.

If the computation is not fully-strict but still recursive, a deadlock situation could arise
where one worker steals a task that, in order to complete, requires the results of a task
whose execution has been started by the stealing thread, but not yet finished. Systems
such as CILK [5] avoid this by using a technique known as continuation stealing [8] in
which it is possible for other worker threads to continue (and complete) a spawning task.
However, continuation stealing requires compiler support since another thread would
need access to the task’s local variables. 4 Systems that exploit child stealing, such as the
thread pool you are building in this assignment, have to impose constraints on stealing
for non-strict computations. A technique such as leap frogging [9] could be used, which
keeps track of the depth of each task in the computation graph and provides a rule that
allows or disallow stealing.

A third possible extension would be to support fully general acyclic computational
graphs. (The assumption of being acyclic is necessary because graphs with cyclic depen-
dencies are impossible to schedule.) Note that the given API is not suited for arbitrary
dependency DAGs in the presence of child stealing. To support arbitrary DAGs in the
absence of continuation stealing, an inverted control flow model must be used, perhaps
similar to that used in Java’s CountedCompleter classes. In other words, such tasks are
not joined, but rather a callback will be executed once they complete, allowing dependent
tasks to be scheduled.

If you implement any of these strategies, be sure to discuss it in your project description
so that TAs may award extra credit if warranted.

3Warning: these implementations are designed for more general frameworks, they do not represent
something you can simply drop in. Your implementation still must support global submissions, and it
must reclaim all memory it uses. This is not shown in the paper. Another key difference is that this imple-
mentation does not support removal of a future from the middle of a queue; you will need to think about
how this would affect the case where future get would attempt to execute a task still on a queue.

Lastly, keep in mind that if you start adding C11 atomics, you’ll lose the ability to check for race condi-
tions with Helgrind/DRD because those tools do not understand the semantics implied by C11 atomics.

4Read Robison’s Primer [URL] to learn more about child vs continuation stealing.
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3 Additional Notes

3.1 Semaphores vs Condition Variables

We do not recommend that you use semaphores to signal your worker threads regarding
the availability of new tasks, because semaphores do not perform well in the presence of
large numbers of signals. Recall that signaling a semaphore entails incrementing its inter-
nal count, which requires an atomic write operation on its internal state. In the context of
cache-coherent multiprocessors, this causes a transition into the “modified” state in the
accessing core’s cache, which causes a frequently updated semaphore to ping pong be-
tween caches. By contrast, condition variables are implemented in a way that handles the
common case of signaling with no waiter present using the “shared” state - the condition
variable records if any waiters are present and does not require updating state when a
call to pthread cond signal does not actually signal (unblock) any threads. In addi-
tion, we recommend that you intentionally break the rule of signaling with the lock held
(which Helgrind otherwise warns you about) for this case, while still making sure that
your threadpool makes progress eventually.

You may still find semaphores useful, potentially, to implement waiting on individual
tasks.

3.2 Avoiding False Sharing

As you tune the performance of your implementation, be on the outlook for false sharing.
False sharing occurs when per-thread data structures are allocated within the same cache
line, which may happen, for instance, for neighboring array elements. A potential mistake
is to have a contiguous array of per-thread (per-worker) structures which are not meant
to be shared but allocated closely together. To avoid this, add padding to ensure they are
allocated in different cache lines. A cache line is 64 bytes long on our machines.

3.3 Grading

Grading will be based on a combination of factors, including

• Complexity. As noted above, you may either pursue a work stealing approach or,
for a simpler implementation, a work sharing approach.

• Correctness. We expect your code to produce the correct result. Since you are writ-
ing a concurrent program, the results may vary between runs if your implementa-
tion is incorrect; we will run your code multiple times and expect it to complete
correctly each time we run it. You should perform similar stress testing.

We also expect your code to be correct when we restrict the number of threads in
the pool to be 1, which requires a correct implementation of helping.
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• Thread Safety. Your code must not contain race conditions. You should run the
code using the Helgrind race condition checker. If Helgrind flags any warnings,
you should address them. If you believe Helgrind’s warnings are spurious because
you are making use of advanced synchronization facilities or atomic variables that
trigger false positives, provide a rigorous proof.

• Speedup. For some of the benchmarks we provide, we will measure the speedup ob-
tained using your thread pool. The fjdriver.py script will compile your thread
pool, link it with our tests, and benchmark it. It will then prepare a file you may up-
load to the scoreboard (via fjpostresults.py) to compare your results to those
of others. For development, we recommend that you keep your threadpool.c
file inside the tests/ subfolder of your git repository – this way, you can build and
test with make until you are ready to use the test driver.

• Memory Reclamation. Multi-threaded programs are particularly prone to use-after-
free errors when one thread still holds a reference to an allocated block another
thread concurrently frees. For this reason, we will test that your threadpool deallo-
cates all memory when it is destroyed.

The scoreboards are unofficial in that your final grade will be determined when the TAs
check and benchmark your code. However, we will use the scoreboard as a yardstick to
determine high-performing and low-performing implementations. In particular, if you
see that for a particular test some implementations provide speedup that is a multiple of
what your implementation provides, you may conclude that your implementation may
impose unnecessary serialization or have other bottleneck factors you should try to ad-
dress.

For grading, we will award credit for

• Meeting Minimum Requirements, which for this project include a working thread
pool implementation that can execute a specific set of parallel programs correctly.
fjdriver.py will flag whether you have met minimum requirements, but keep in
mind that during grading, we will run the required tests multiple times and expect
them to pass every time.

• Robustness, as measured by the ability to successfully and reliably complete a num-
ber of more complex applications within a test-specific timeout.

• Performance, as measured by the speedup obtained for more complex application-
s/tests. Note: to obtain a performance score, you must have met minimum func-
tionality requirements since there is little point in investigating the performance of
non-functional or buggy code. Before the project deadline, we will publish the spe-
cific performance requirements, which depend on the current semester’s hardware
and software environment; see scoreboard above.
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3.4 Honor Code

As usual, all work submitted must be yours and be created from scratch by all group
members this semester. You may not reuse code from any implementations you may find
online without the instructor’s permission (and the permission of the author, if appli-
cable). If in doubt, you must ask. Otherwise, the collaboration policy described in the
syllabus applies.

3.5 Running Experiments

We will use the machines of the rlogin cluster for testing, so make sure your code runs
there when invoking fjdriver.py. Starting with the Summer 2020 semester, these are
dual-socket Intel Xeon CPUs with 16 cores each, providing 32 cores total, which are pre-
sented to the OS as 64 CPUs (2 hyperthreads per core). Since hyperthreads typically do
not add significant speedup, if any, for CPU-bound tasks, we will not run with more than
32 threads.

Perform these experiments on an unloaded machine on the rlogin cluster. Unloaded
means that ’uptime’ should report a load average close to 0, so that all processors are
available for your experiment. Coordinate with other students by avoiding running your
benchmarks if you notice that other students are running theirs; use the forum or email
if necessary. fjdriver.py will output a message and wait if run on a machine with a
non-zero load average.

3.6 Additional Requirements.

• The use of git.cs.vt.edu is required as in project 1.

• The upstream repository is https://git.cs.vt.edu/cs3214-staff/
threadlab

• After forking the repository, be sure to set access to private. Not doing so is a po-
tential honor code violation.

• All code for this project must be contained in threadpool.c, mainly to simplify
testing. We also believe that the complexity of this assignment, at least in its basic
form, should not necessitate the use of multiple source files.

• Do not change any of the other files! (If you do, such changes will not be taken into
account when grading and you may you fail the grading process.)

• Your code must compile without warnings. The Makefile enforces this via
-Werror.
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• You should not define any global variables that become global symbols, and
you should not need to define any static variables with the exception of C11
Thread local thread-local variables.

• You should not define any extern global functions other than the ones asked for -
use static functions as necessary.

• The submission check script may impose additional requirements to simplify auto-
matic grading. Please work with teaching staff on any questions you encounter.

• Updates to these requirements may be posted on the website or the forum (in a
’pinned’ post at the top of the Forum board).

Good Luck!
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