This assignment has three sections A, B C and D. Maximum Marks of this assignment is 10

Book : Handbook of Microwave Integrated circuits , By R.K Hoffmann Chapter-3 Chapter-6. Use: MATLAB And software Txline or online calculator

Section-A : Microstrip Line Based on Chapter-3

Write a program to plot characteristic impedance using MATLAB and compare results as shown in Fig.1 and in table below.

Fig. 3.4 Circuit parameters Z_L and $\epsilon_{r,eff}$ of microstrip on various technologically important substrates: PTFE ($\epsilon_r = 2.1$), polyolefin ($\epsilon_r = 2.3$), glass-reinforced PTFE ($\epsilon_r = 2.5$), fused quartz ($\epsilon_r = 3.78$), alumina ceramic ($\epsilon_r = 9.6$, 9.8, or 10), semi-insulating Si ($\epsilon_r = 11.9$), semi-insulating GaAs ($\epsilon_r = 12.9$), and nonmagnetic ferrite ($\epsilon_r = 16$), with t = 0 for $w/h \le 1.8$ by the method of lines.

Fig.1 Plot characteristic impedance and Effective permittivity with W/h ratio

Program 1: To show the variation of characteristics impedance and effective relative permittivity with respect to width to height ratio using Hammerstad and O. Jensen formula.

Characteristic Impedance: $Z_{LO} = Z_L(\epsilon r = 1) = \frac{\eta_o}{\frac{w}{h} + 1.98 + (\frac{w}{h})^{0.172}}$

Effective Permittivity

$$\varepsilon reff = \frac{\varepsilon r + 1}{2} + \frac{\varepsilon r - 1}{2} \left(1 + \frac{10h}{w}\right)^{-a.b}$$

$$a = 1 + \frac{1}{49} ln \left(\frac{\left(\frac{w}{h}\right)^4 + \left(\frac{w}{52h}\right)^2}{\left(\frac{w}{h}\right)^4 + 0.432}\right)$$

$$b = 0.564 \left[\frac{(\varepsilon r - 0.9)}{\varepsilon r + 3}\right]^{0.053}$$

$$Z_L \left(\frac{w}{h}, \varepsilon r\right) = \frac{Z_{LO}}{\sqrt{\varepsilon r, eff}}$$

w/h	Hoffaman Book Results			MATLAB Code Results			Online calculator		
	Er=2.1	Er=3.78	Er=9.8	Er=2.1	Er=3.78	Er=9.8	Er=2.1	Er=3.78	Er=9.8
0.02									
0.05									
0.1									

0.4					
1.0					
2.0					
5.0					
10.0					

Program 2:

To show the variation of characteristics impedance and effective relative permittivity with respect to width to height ratio using schneider's formula.

for $0 < w/h \le 1$

$$Z_{Lo} = Z_L = 60ln\left(\frac{8h}{w} + \frac{w}{4h}\right)$$

for $w/h \ge 1$

$$Z_{LO} = Z_L(\varepsilon r = 1) = \frac{120\pi}{\frac{w}{h} + 2.42 + \left(\frac{0.44h}{w}\right) + \left[1 - \frac{h}{w}\right]^6}$$

Effective Permittivity for $1 \le \varepsilon r < \infty$ and $0 < w/h < \infty$

$$\varepsilon reff = \frac{\varepsilon r + 1}{2} + \frac{\varepsilon r - 1}{2}F$$
$$F = \left(1 + \frac{10h}{w}\right)^{-0.5}$$
$$Z_L\left(\frac{w}{h}, \varepsilon r\right) = \frac{Z_{LO}}{\sqrt{\varepsilon r, eff}}$$

w/h	Hoffaman Book Results			MATLAB Code Results			Online calculator		
	Er=2.1	Er=3.78	Er=9.8	Er=2.1	Er=3.78	Er=9.8	Er=2.1	Er=3.78	Er=9.8
0.02									
0.05									
0.1									
0.4									
1.0									
2.0									
5.0									
10.0									

Program 3:

To show the variation of characteristics impedance and effective relative permittivity with respect to width to height ratio using wheeler's formula.

for w/h<1

$$Z_L = \frac{60}{\sqrt{\epsilon eff}} ln\left(\frac{8h}{w} + \frac{w}{4h}\right)$$

$$\varepsilon eff = \frac{\varepsilon r + 1}{2} + \frac{\varepsilon r - 1}{2} \left[\frac{1}{\sqrt{1 + \frac{12h}{w}}} + 0.04\left(1 - \frac{w}{h}\right)^2\right]$$

for w/h>1

$$Z_{L} = \frac{120\pi}{\sqrt{\varepsilon eff}} \left(\frac{1}{\frac{w}{h} + 1.393 + 0.677 \left(ln\left(\frac{w}{h}\right) + 1.444 \right)} \right)$$
$$\varepsilon eff = \frac{\varepsilon r + 1}{2} + \frac{\varepsilon r - 1}{2} \left[\frac{1}{\sqrt{1 + \frac{12h}{w}}} \right]$$

w/h	Hoffaman Book Results			MATLAB Code Results			Online calculator		
	Er=2.1	Er=3.78	Er=9.8	Er=2.1	Er=3.78	Er=9.8	Er=2.1	Er=3.78	Er=9.8
0.02									
0.05									
0.1									
0.4									
1.0									
2.0									
5.0									
10.0									

SECTION-B

Write a program in MATLAB and plot the dispersion curve as in Hoffman book (or Eeff Vs Frequency)

Program 1:

W.E Getsinger Dispersion Model of Microstrip (Eeff Vs Freq.)

Equation involved

Program 2:

M.V Schneider Model of Dispersion in Microstrip (Eeff Vs Freq.)

Equation involved

$$\varepsilon eff(f) = \varepsilon r, eff, stat \left[1 + \left(\frac{f}{f_{p4}}\right)^2 \frac{1 - \sqrt{\frac{\varepsilon r, eff, stat}{\varepsilon r}}}{1 + \left(\frac{f}{f_p}\right)^2 \sqrt{\frac{\varepsilon r, eff, stat}{\varepsilon r}}} \right]$$
$$f_{p4} = \frac{c_o}{4h\sqrt{\varepsilon r - 1}}$$

Program 3:

Hammerstad-Jenson Model of Dispersion in Microstrip line (Eeff Vs Freq.) Equation involved

$$\varepsilon reff(f) = \varepsilon r - \frac{\varepsilon r, eff, stat}{1 + G1 \left(\frac{f}{f_p}\right)^2}$$
$$f_p = \frac{c_o Z_{L,stat}}{2h\eta_o}$$
$$G1 = \frac{\pi^2 (\varepsilon r - 1)}{12\varepsilon r, eff, stat} \sqrt{\frac{2\pi Z_{L,stat}}{\eta_o}}$$

SECTION-C

Write a program to compute the conductor and dielectric loss as mentioned in Hoffman book.

Chapter-6

For conductor loss use equation-6.1

6.1.2 Attenuation Equations According to the Incremental

From the general rule of inductive increments, Section 2.4.3, rela *ivitis* (2.64) to (2.67), and the special microstrip equation (2.69), we can generate an equation for α_p , assuming that the equations for the characteriptic impedance Z_{L1} and the effective permittivity $\epsilon_{i,eff}$ are known for finite conductor thickness t > 0. This also assumes the skin effect condition t - 35 ($\delta = skin$ depth, from (2.53)) to be fulfilled. Wheeler's equations (:4.4) to (3.11) for Z_L (*w*/*h*, t = 0, ϵ_i), $\epsilon_{r,eff}$ (*w*/*h*, t = 0, ϵ_r), and the conductor (3.48), (3.50), (3.51), for t > 0, were used by Pucel, Massé, attribute function (3.48) to derive equations for α_p , following which

$$\alpha_{\rho} = \{R_F/(Z_L h)\} \cdot A_{\rho} \tag{6.1}$$

The geometry factor $A_{\rho}(w/h, t/h)$ for $0 < w/h < 1/(2\pi)$ is (in dB)

$$A_{p} = \frac{8.68}{2\pi} \left\{ 1 - \left(\frac{w_{eq,0}}{4h}\right)^{2} \right\}$$
$$\cdot \left[1 + \frac{h}{w_{eq,0}} + \frac{h}{\pi w_{eq,0}} \left\{ \frac{t}{w} + \ln\left(\frac{4\pi w}{t}\right) \right\} \right]$$
(6.2)

for $0.16 \le w/h \le 2$:

$$A_{\mu} = \frac{8.68}{2\pi} \left\{ 1 - \left(\frac{w_{eq,0}}{4h}\right)^2 \right\}$$
$$\cdot \left[1 + \frac{h}{w_{eq,0}} + \frac{h}{\pi \cdot w_{eq,0}} \left\{ \ln \left(\frac{2h}{t}\right) - \frac{t}{h} \right\} \right]$$
(6.3)

and for $2 < w/h < \infty$:

$$A\rho = \frac{8.68 \cdot \left[\frac{w_{eq,0}}{h} + \frac{w_{eq,0}/(\pi h)}{\{w_{eq,0}/(2h)\} + 0.94\}}\right]}{\left[\frac{w_{eq,0}}{h} + \frac{2}{\pi} \cdot \ln\left\{5.44\pi \cdot \left(\frac{w_{eq,0}}{2h} + 0.94\right)\right\}\right]^{2}}{\cdot \left[1 + \frac{h}{w_{eq,0}} + \frac{h}{\pi w_{eq,0}} \cdot \left\{\ln\left(\frac{2h}{t}\right) - \frac{t}{h}\right\}\right]}$$
(6.4)

Fig. 6.1 Normalized conductor loss α_{ρ} for microstrip with f = 1 GHz, $\epsilon_r = 1, h = 1$ mm, and $\rho = 1.72 \times 10^{-6} \Omega$ cm (copper). *Note:* For any value of f in GHz, h in mm, $\epsilon_{r,eff}$ (w/h, ϵ_r), and ρ in Ω cm, the conductor loss in dB/cm is

For dielectric loss use equation-6.11

$$\alpha_{\epsilon} = \alpha_{\epsilon}^* \cdot f \cdot \tan \delta_{\epsilon} \cdot 1000$$

 $\tan \delta_{\epsilon} \cdot f \cdot f(w/h, \epsilon_r)$. For $\epsilon_r > 9$, $\alpha_{\epsilon} \approx 0.91 \tan \delta_{\epsilon} \cdot f \sqrt{\epsilon_{r,eff}}$ (α_{ϵ} in dB/cm and f = GHz) because $q_{\tan \delta, \epsilon} \approx 1$. With $\epsilon_{r,eff}$ derived from (3.22), the dielectric loss from (2.72) for $0 < w/h < \infty$, $1 \le \epsilon_r \infty$ and $\tan \delta_{\epsilon} < 0.1$ is

$$\alpha_{\epsilon} = 0.91 \cdot \tan \delta_{\epsilon} \cdot f \sqrt{\frac{\epsilon_r (1+F)}{2} \cdot \left\{1 + \frac{1-F}{\epsilon_r (1+F)}\right\}^{-1}}$$
(6.11)

Fig. 6.4 Normalized dielectric loss α_{ϵ}^* for microstrip with f = 1 GHz, $\tan \delta_{\epsilon} = 0.001$.

Section-D

1. Explain with diagram the Strip line and also draw its Electric field and magnetic field distribution.

- 2. Explain with diagram the Microstrip line and also draw its Electric field and magnetic field distribution.
- 3. Explain with diagram the Coplanar waveguide line (CPW) and also draw its Electric field and magnetic field distribution.
- 4. Explain with diagram the Slot line and also draw its Electric field and magnetic field distribution.