
Cardiff School of Computer Science and Informatics
Coursework Assessment Pro-forma

Module Code: CMT304
Module Title: Programming Paradigms
Lecturer: Frank C. Langbein
Assessment Title: Functional Programming
Assessment Number: 2 of 4
Date Set: 28th November 2022
Submission date and Time: by 5th May 2023 at 9:30am
Feedback Return Date: 2nd June 2023

If you have been granted an extension for extenuating circumstances, then the sub-
mission deadline and return date will be 1 week later than that stated above (same
time).

This is assignment two of a portfolio that will be composed of four assignments. This
assignment is worth 25% of the total marks available for this module.

If coursework is submitted late (and where there are no extenuating circumstances):

1. If the assessment is submitted no later than 24 hours after the deadline, the mark for
the assessment will be capped at the minimum pass mark;

2. If the assessment is submitted more than 24 hours after the deadline, a mark of 0 will
be given for the assessment.

Extenuating circumstances (extension or deferral) can only be requested using the extenu-
ating circumstances procedure: https://intranet.cardiff.ac.uk/students/study/exams-and-
assessment/extenuating-circumstances. Only students with approved extensions may use
the extenuating circumstances submission deadline – you will receive an approval e-mail;
this is not the e-mail confirming the extenuating circumstances submission. Any coursework
submitted after the initial submission deadline without approved extenuating circumstances
will be treated as late. Note, if you apply for deferral, instead of an extension, you will be
given the opportunity of a reassessment at the next opportunity. You can apply for deferral
after an extension request if this is before the (extended) deadline.

By submitting this assignment you are accepting the terms of the following declaration:

I hereby declare that my submission is all my own work, that it has not previously
been submitted for assessment and that I have not knowingly allowed it to be copied
by another student. I understand that deceiving or attempting to deceive examin-
ers by passing off the work of another writer as one’s own is plagiarism. I also un-
derstand that plagiarising another’s work or knowingly allowing another student to
plagiarise from my work is against the University regulations and that doing so will
result in loss of marks and possible disciplinary proceedings1.

1https://intranet.cardiff.ac.uk/students/study/exams-and-assessment/academic-integrity/cheating-and-
academic-misconduct

1

https://intranet.cardiff.ac.uk/students/study/exams-and-assessment/extenuating-circumstances
https://intranet.cardiff.ac.uk/students/study/exams-and-assessment/extenuating-circumstances


Assignment

Consider a small binary image (or 2D array or matrix) that is represented as a list of lists
which contains only the numbers 0 or 1, e.g.,

[[0,0,0,0,1,1],

[1,1,1,1,1,0],

[1,1,0,0,1,0],

[1,1,0,0,1,1],

[1,0,1,1,1,1]]

We wish to find the number of pixels in the largest connected component of such images
(there can of course be more than one component with the same largest number). A con-
nected component is a cluster of pixels that contain the same value and there is a path from
each pixel to each other pixel inside that cluster. A path is formed from a start pixel by mov-
ing either horizontally (one element left or right in the same inner list) or vertically (one list up
or down in the outer list without changing the position in the inner list) to the next pixel until
the end pixel is reached (this is 4-pixel connected, i.e. no diagonal movement). The number
of elements in the largest connected component for the value 0 in the above example is 4
(among the 4 components). It is 19 for the value 1 (there is only one component).

Task 1: Write an efficient Haskell function
nlcc l v

that finds the number of elements in the largest connected component of the binary image
(list of lists) l for the value v. Note, there are multiple, more or less efficient algorithms to
solve this problem – make sure you clearly document your approach. Also note, you must
write a function, not a full program (so no main, etc.) and it must have the above name with
two arguments (failing to do so may result in 0 marks for this task). Make sure your Haskell
code can be compiled/interpreted without errors (otherwise 0 marks may be assigned for
this task).

Note that you must write your own code to solve this problem and not just call a library
function, or copy code from some other source (independent of plagiarism issues, even if
you reference; you only get marks for your own work). You may use the standard libraries
listed in the Haskell 2010 language report, but not any other libraries (otherwise the code
will be treated as not compilable/interpretable, which may result in 0 marks for this task).

Task 2: Write a short report on functional programming related to the problem:

1. Provide, in up to 300 words, two arguments for and two arguments against using
functional programming to solve this problem.

2. Discuss, in up to 300 words, whether the functional programming paradigm is suitable
for this problem or whether another paradigm of your choice is more appropriate,
based on your previous arguments.

The word limits are an upper limit, not a target length. Text longer than the word limit for
each point may be ignored. Clearly mark each argument in your answer of the first point and
indicate whether it is for or against. Only provide two arguments for and against; additional
arguments will be ignored (this includes multiple arguments passed as one).

2



Learning Outcomes Assessed

• Explain the conceptual foundations, evaluate and apply various programming paradigms,
such as logic, functional, scripting, filter-based programming, pattern matching and
quantum computing, to solve practical problems.

• Discuss and contrast the issues, features, design and concepts of a range of program-
ming paradigms and languages to be able to select a suitable programming paradigm
to solve a problem.

Criteria for assessment

Task 1: maximum 50 marks, assessed according to the following scale:

Fail 0 No code has been submitted.
1− 14 Code does not run or does not produce valid output for any valid input; little

to no relevant documentation.
15− 24 Code is valid without syntax errors and creates a valid output for every

valid input (or produces a suitable error message for valid cases it cannot
process). The output is not a solution, but a suitable attempt to solve the
problem is visible. An attempt to document the code has been made.

Pass 25− 29 Code is valid without syntax errors and creates a valid output for every
valid input (or produces a suitable error message for valid cases it cannot
process). A suitable attempt to solve the problem has been made, that
will often produce the correct output. The attempt has been reasonably
documented, but no consideration has been given to optimise the function’s
performance.

Merit 30− 34 Code is valid without syntax errors and creates a valid output for every
valid input (or produces a suitable error message for valid cases it cannot
process). A suitable attempt to solve the problem has been made, that will
find the correct output. The attempt has been well documented, stating the
idea to solve the problem and how it has been implemented.

Distinction 35− 50 Code is valid without syntax errors and creates a valid output for every valid
input. A suitable attempt to solve the problem has been made, that will
find the correct output for all problems, with excellent performance. The
attempt has been well documented clearly stating the idea to solve the
problem and how it has been implemented. It clearly shows an effort to
optimise the program’s performance, e.g. by using efficient algorithms, data
representations or heuristics.

Task 2: maximum 50 marks, assessed according to the following scale:

Fail 0 No document has been submitted.
1− 14 An insufficient number of arguments has been submitted and/or they hardly

apply to the functional programming paradigm. At most an incomplete at-
tempt to discuss the suitability of the functional paradigm has been made.

15− 24 An insufficient number of arguments has been submitted, but they show
some understanding of the functional programming paradigm. An attempt
has been made to discuss the suitability of the functional paradigm, but it
hardly relates to the paradigm.

3



Pass 25− 29 The required number of valid arguments has been submitted. They are
generally valid for the functional programming paradigm, but they repeat
similar issues, do not consider the specific problem or contain mistakes
in the details. A attempt has been made to discuss the suitability of the
functional paradigm and some understanding of this paradigm is present.

Merit 30− 34 The required number of valid arguments has been submitted. They show a
clear understanding of the functional programming paradigm and it relates
to the problem. The discussion of the suitability of the functional paradigm
is well-developed, showing a clear understanding of the issues involved,
and indicates the differences to the other chosen paradigm.

Distinction 35− 50 The required number of valid arguments has been submitted. They show a
clear understanding of the functional programming paradigm and the under-
lying theoretical concepts and/or realisations on programmable machines
and how these relate to the problem. The discussion of the suitability of
the functional paradigm is well-developed, showing a deep understanding
of practical and theoretical issues involved, and clearly discusses concrete
differences to the other chosen paradigm.

Feedback and suggestion for future learning

Feedback on your coursework will address the above criteria. Feedback and marks will be
returned on 2nd June 2023 via Learning Central. This will be supplemented with individual
feedback on request via e-mail.

Submission Instructions

All submissions must be via Learning Central. Upload the following files in a single zip file,
[student number].zip:

Description Type Name

Task 1 Compulsory One Haskell source file task1.hs

Task 2 Compulsory One PDF (.pdf) file task2.pdf

Any code submitted will be run on a system equivalent to the Linux laboratory machines
and must be submitted as stipulated in the instructions above.

Any deviation from the submission instructions above (including the number and types of
files submitted) may result in a mark of zero for the assessment or question part.

All submissions will be compared to each other and checked against other work available
on the Internet and elsewhere to identify cases of potential unfair practice.

Staff reserve the right to invite students to a meeting to discuss coursework
submissions.

Support for Assessment

Questions about the assessment can be asked on https://stackoverflow.com/c/comsc/ and
should be tagged CMT304fp; or you can ask your question in or after any synchronous
session with the assessment setter.

4

https://stackoverflow.com/c/comsc/

