(https://swayam.gov.in)

(https://swayam.gov.in/nc_details/NPTEL)

gaurav78878@gmail.com ~

NPTEL (https://swayam.gov.in/explorer?ncCode=NPTEL) » Matlab Programming for Numerical

Computation (course)

Equations ()

- Basics of Linear Algebra (unit? unit=43&lesson=44)
- Gauss
 Elimination
 and Back Substitution
 (unit?
 unit=43&lesson=45)
- LU
 Decomposition
 and Partial
 Pivoting (unit?
 unit=43&lesson=46)
- Gauss Siedel Method (unit? unit=43&lesson=47)
- Tutorial (unit? unit=43&lesson=48)
- Tri-Diagonal Matrix Algorithm (unit? unit=43&lesson=49)
- Week 4
 Feedback
 Form : Matlab
 Programming
 for Numerical
 Computation
 (unit?
 unit=43&lesson=51)

 Quiz: Week 4: Assignment (assessment? name=161)

> Text Transcripts ()

Download videos ()

Books ()

Live Session ()

2) Please report the maximum error obtained **at the end of 4th iteration**. For example, if the solution in two iterations are stored as x and xold, then the error is given as: err=max(abs(x-xold)).

0.2 points

3) Please report the maximum error obtained **at the end of 12th iteration**. For example, if the solution in two iterations are stored as x and xold, then the error is given as: err=max(abs(x-xold)).

0.4 points

Problem-2: Gauss Elimination

For the system in Problem-1, perform Gauss Elimination to obtain the following matrix in the upper-triangular form

	\hat{a}_{11}	\hat{a}_{12}	\hat{a}_{13}	\hat{a}_{14}	\hat{b}_1
$[A \mid b] =$	0	\hat{a}_{22}	\hat{a}_{23}	\hat{a}_{24}	\hat{b}_2
	0	0	\hat{a}_{33}	\hat{a}_{34}	\hat{b}_3
	0	0	0	\hat{a}_{44}	\hat{b}_4 _

Please answer the following questions:

4) Please complete all the steps of Gauss Elimination and report the **first row** of the matrix so obtained.

5) Please report the value of \hat{a}_{22}

6) Please report the value of \hat{a}_{33}

0.2 points

0.2 points

0.2 points

0.2 points

0.4 points

8) Please report the value of \hat{a}_{44}

Problem Solving Session ()

0.2 points

0.2 points

0.2 points

0.1 points

0.1 points

0.1 points

Problem-3: LU-Decomposition

The linear equations in Problem 1 were written in the form Ax=b. Perform the LU Decomposition (using Gauss elimination procedure of the previous problem). The L matrix has the following form:

	1	0	0	0]	
L =	$lpha_{21}$	1	0	0	
	$lpha_{31}$	$lpha_{32}$	1	0	
	$lpha_{41}$	$lpha_{42}$	$lpha_{43}$	1	
				-	

Please report the specific values of L matrix below.

9) Please report the value of α_{21}

10) Please report the value of $lpha_{31}$

11) Please report the value of $lpha_{41}$

12) Please report the value of $lpha_{32}$

13) Please report the value of α_{42}

14) Please report the value of α_{43}

0.1 points

15) Please solve the linear equation and report the value of x

Γ		

0.2 points

Problem-4: Tri-Diagonal Matrix Algorithm

Please download and use the function myTDMA.m

(https://drive.google.com/file/d/1TLFARSZr8yWsMQu6ZA5ndDdcsCfrSpXI/view?usp=sharing) for this problem.

We will formulate and solve a *transient* heat conduction problem in Week-9 of this course. Thereafter, in Week-10, we will learn to setup this problem. For now, let us say that the problem is already written as a tri-diagonal matrix. So, let's use TDMA method to solve the resulting linear equation. For the purpose of this assignment, you are expected to solve the following linear equation using TDMA:

1	0	0	0	0	0	x_1		$\left\lceil 120 \right\rceil$
α	eta	lpha	0	0	0	x_2	=	b
0	α	eta	lpha	0	0	x_3		b
0	0	lpha	eta	lpha	0	x_4		b
0	0	0	lpha	eta	α	x_5		b
0	0	0	0	0	1	x_6		25

where, lpha = 5, eta = -10.5, b = -12.5.

Our implementation of the tri-diagonal matrix algorithm to solve the above system of equations is provided in the uploaded file, myTDMA.m

(https://drive.google.com/file/d/1TLFARSZr8yWsMQu6ZA5ndDdcsCfrSpXI/view?usp=sharing). Please use this to solve the above problem and report the results below.

16) Please report the value of vector x obtained from solving the TDMA.

1 point

You may submit any number of times before the due date. The final submission will be considered for grading.

Submit Answers