
National Institute of Technology Calicut
Department of Computer Science and Engineering
Fourth Semester B. Tech.(CSE)-Winter 2022-23

CS2094D Data Structures Laboratory
Assignment #2

Submission deadline (on or before): 17.02.2023, 2:00 PM

Policies for Submission and Evaluation:

• You must submit your assignment in the Eduserver course page, on or before the submission
deadline.

• Ensure that your programs will compile and execute without errors using gcc compiler.

• During the evaluation, failure to execute programs without compilation errors may lead to zero
marks for that evaluation.

• Your submission will also be tested for plagiarism, by automated tools. In case your code fails to
pass the test, you will be straightaway awarded zero marks for this assignment and considered by
the examiner for awarding F grade in the course. Detection of ANY malpractice related to the lab
course can lead to awarding an F grade in the course.

Naming Conventions for Submission

• Submit a single ZIP (.zip) file (do not submit in any other archived formats like .rar, .tar, .gz).
The name of this file must be

ASSG<NUMBER> <ROLLNO> <BATCHNO> <FIRST-NAME>.zip

(Example: ASSG2 BxxyyyyCS CS01 LAXMAN.zip). DO NOT add any other files (like tem-
porary files, input files, etc.) except your source code, into the zip archive.

• The source codes must be named as

ASSG<NUMBER> <ROLLNO> <BATCHNO> <FIRST-NAME> <PROGRAM-NUMBER>.c

(For example: ASSG2 BxxyyyyCS CS01 LAXMAN 1.c). If you do not conform to the above
naming conventions, your submission might not be recognized by our automated tools, and hence
will lead to a score of 0 marks for the submission. So, make sure that you follow the naming
conventions.

Standard of Conduct

• Violation of academic integrity will be severely penalized. Each student is expected to adhere
to high standards of ethical conduct, especially those related to cheating and plagiarism. Any
submitted work MUST BE an individual effort. Any academic dishonesty will result in zero marks
in the corresponding exam or evaluation and will be reported to the department council for record
keeping and for permission to assign F grade in the course. The department policy on academic
integrity can be found at: https://minerva.nitc.ac.in/?q=node/650.

1

https://minerva.nitc.ac.in/?q=node/650

QUESTIONS

1. Our institute decided to split the students into four groups to conduct an event. The procedure
for splitting is as follows:

h(A) = (Sum of ASCII value of the characters in the first name of ‘A’ + age of ‘A’) % 4, where
‘A’ represents a student.

Eg:- h(Veena) = (86+101+101+110+97+19) % 4 = 2; where, 86 - ASCII(V), 101 - ASCII(e),
110 - ASCII(n), 97 - ASCII(a), 19 - age(Veena).

If h(A) =0, the student is placed in group 0; if h(A) = 1, the student is placed in group 1; if h(A)
= 2, the student is placed in group 2, and if h(A) = 3, the student is placed in group 3.

Write a program to perform the operations count the number of students in each group, the student
list in a group as per the order of insertion, and the student list who belongs to the same branch in
a group.

Note: Assume all the students are from CS, EC, EE, or CE branches.

Input format:

• First line of the input contains an integer ‘n’ ∈ [1, 103], the total number of students who are
participating in the event.

• Next ‘n’ consecutive line contains: first name, roll number, and age; separated by single space.

• The input contains a character ’c’ followed by an integer ’k ’ ∈ [0, 3] to display the count and
student list of the group ’k ’.

• The input contains an integer ’m’ ∈ [0, 3], representing the group number, followed by two
characters representing the branch name (both uppercase and lowercase are considered the
same branch).

• The input contains a character ’e’ to represent the end of the input.

Output format:

• The output (if any) of each command should be printed on a separate line.

• For input lines starting with the character ’c’ followed by an integer ’k ’ ∈ [0, 3], prints an
integer ’x ’ followed by x number of strings separated by a space.

• For input lines starting with an integer ’m’ ∈ [0, 3] followed by two characters, prints the
strings (first name) separated by a space, if any student exit in the group ’m’. Otherwise,
print -1.

Sample Input:
4
Veena B220016EC 19
Abu B210051CS 21
Ishan B190016CE 22
Aleena B200036EE 21
c 0
1 CS
c 1
c 2
c 3
3 EC
2 ec
e

Sample Output:
0

2

Abu
2 Abu Ishan
1 Veena
1 Aleena
-1
Veena

2. As part of MNTIP scholarship programme, first name, last name, gender, date of bith, department
and CGPA of fourth semester students of NITC are gathered. The scholarship is for four semesters
from fifth semester onwards. The record information is organized using a hash table with the help
of a separate chaining technique. In separate chaining, the size of the hash table is 26, such that
to insert a record into the hash table, ASCII value of the first character of first name starts with
A points to index 0, ASCII value of the first character of first name starts with B points to index
1 and so on. The resulting location contains a pointer to a Binary Search Tree(BST), in this case
the root of a binary search tree (BST), where all elements with the same index are stored. Since
a BST requires that its nodes be comparable to each other, we need to define an order among the
records being stored in the BST lexiographically. The key value of each node in BST is student’s
(firstname, lastname) pair, assuming it is unique to a student. The update function updates the
CGPA of the corresponding key. The insert/update/delete function should return the number of
nodes touched in the BST (except the current node) while performing the given operation. The
location function returns index-bstsequence, where index represents the index of the key in the
hash table, and bstsequence represents the sequence of L/R steps taken on the binary search tree
of all records whose index is the same.

Input Format:

• For insertion

– The first line of the input should be the character ‘i’ where ’i’ denotes insertion.

– The second line of the input is a string representing the first name followed by a string
representing the last name followed by a single character either ’M’ or ’F’ representing
the gender followed by a string in the format DD-MM-YYYY representing the date of
birth followed by a string of length four representing the department and a floating point
number representing the CGPA separated by single space in between them.

• For updation

– The first line of the input should be the character ‘u’ where ’u’ denotes updation.

– The second line of the input is a string representing the first name, a string representing
the last name and a floating point number representing the updated CGPA separated by
single space in between them.

• For location and deletion

– The first line of the input should be the character either ‘l’, or ‘d’ where ’l’ denotes location
and ’d’ denotes deletion.

– The second line of the input is a string representing the first name and a string representing
the last name separated by single space in between them.

Input Output Format:

• The output (if any) of each command should be printed on a separate line.

• The insert/update/delete function should return the number of nodes touched in the BST
(except the current node) while performing the given operation.

• The update/delete function returns –1, if key is not present.

• The location function returns index-bstsequence, index represents the index of the key in the
hash table, and bstsequence represents the sequence of L/R steps taken on the binary search
tree of all records whose index is the same. The location function returns –1, if key is not
present.

3

Sample Input:
i
Ram Kumar F 18-05-2022 CSED 6.3
i
Ram Charan F 19-07-2022 CSED 6.3
u
Ram Charan 6.9
u
Ram Kiran 7.3
l
Ram Charan
d
Ram Charan

Sample Output:
0
1
1
-1
17-L
1

3. Given two Arrays check whether they are similar or not using Hashing (Do not use sorting). The
arrays are of same size(i.e n).
Note: Similar means both arrays contain same elements, with similar frequency(number of times
the element is repeated) in it but the sequence of elements may be different.
Input Format:

• First line contain the size of the array i.e. value of n.

• Second and third line contains the elements of the first and second array respectively.

Output Format:

• Output will be binary value i.e. 1 - if arrays are similar, 0 - if arrays are different.

Sample Input 1:
6
1 2 1 3 2 1
2 2 3 1 1 1

Sample Output 1:
1

4. Open addressing is a method for handling collisions in hashing. The three different methods for
open addressing are linear probing, quadratic probing, and double hashing. A brief description of
the three methods is given below:
In linear probing, the function used to calculate the next location during collision is: h′(k) =
(h(k) + i) mod m, i = 1, 2
In quadratic probing, the function used to calculate the next location during collision is: h′(k) =
(h(k) + i2) mod m, i = 1, 2 . . .
In double hashing scheme, the primary hash function is, h1(k) = k mod N , where N is the table
size. The secondary hash function is, h2(k) = R − (key mod R) where R is the maximum prime
number less than the table size. Double hashing can be done using: (h1(key) + i ∗ h2(key))
mod N, i = 0, 1, 2

4

Given a set of keys and the table size, write a program to print the locations at which the keys are
stored using the above-mentioned three methods and also print the total number of collisions that
occur during mapping for each of the three methods.

Input format:

• First line of the input contains an integer, the table size.

• Second line contains space-separated(single space) integer numbers, the keys to be inserted.

Output format:

• First line of the output contains space-separated (single space) integers, the locations obtained
using linear probing.

• Second line contains an integer, the total number of collisions that occurred during linear
probing.

• Third line of the output contains space-separated (single space) integers, the locations obtained
using quadratic probing.

• Fourth line contains an integer, the total number of collisions that occurred during quadratic
probing.

• Fifth line of the output contains space-separated (single space) integers, the locations obtained
using double hashing.

• Sixth line contains an integer, the total number of collisions that occurred during double
hashing.

Sample Input:
7
76 93 40 47 10 55

Sample Output:
6 2 5 0 3 1
4
6 2 5 0 3 1
6
6 2 5 1 3 4
2

5. Write a program to create an AVL Tree A and perform the operations insertion, deletion, search
and traversal. Assume that the AVL Tree A does not contain duplicate values. Your program
should contain the following functions.

• Insert(A, k) – Inserts a new node with key ‘k’ into the tree A.

• Search(A, k) - Searches for a node with key ‘k’ in A, and returns a pointer to the node with
key k if one exists; otherwise, it returns NIL.

• DeleteNode(A, k) – Deletes a node with the key ‘k’ from the tree A.

• GetBalance(A, k) – Prints the balance factor of the node with ‘k’ as key in the tree A.

Note:- Balance factor is an integer which is calculated for each node as:

B factor = height(left subtree)− height(right subtree)

.• LeftRotate(A, k) – Perform left rotation in the tree A, with respect to the node with key
‘k’.

• RightRotate(A, k) – Perform right rotation in the tree A, with respect to node with key
‘k’.

5

• PrintTree(A) – Prints the tree given by A in the parenthesis format as: (t (left-subtree
)(right-subtree)),t represents root node of tree A. Empty parenthesis () represents a null
tree.

Note: After each insertion on an AVL Tree, it may result in increasing the height of the
tree. Similarly, after each deletion on an AVL Tree, it may result in decreasing the height
of the tree. To maintain height balanced property of AVL tree, we may need to call rotation
functions.
Tree A should be an AVL Tree after INSERT AND DELETE NODE operations.

Input Format:

• Each line contains a character from ‘i’, ‘d’, ‘s’, ‘b’, ‘p’ and ‘e’ followed by at most one integer.
The integers, if given, are in the range [−106, 106].

• Character ‘i’ is followed by an integer separated by space; a node with this integer as key is
created and inserted into A.

• Character ‘d’ is followed by an integer separated by space; the node with this integer as key
is deleted from A and the deleted node’s key is printed.

• Character ‘s’ is followed by an integer separated by space; find the node with this integer as
key in A.

• Character ‘b’ is followed by an integer separated by space; find the balance factor of the node
with this integer as key in A and the print the balance-factor.

• Character ‘p’ is to print the Parenthesis Representation of the tree A.

• Character ‘e’ is to ‘exit’ from the program.

Output Format:

• The output (if any) of each command should be printed on a separate line.

• For option ‘d’, print the deleted node’s key. If a node with the input key is not present in A,
then print FALSE.

• For option ‘s’, if the key is present in A, then print TRUE. If key is not present in A, then
print FALSE.

• For option ‘b’, if the key k is present in A, then print the balance factor of the node with k as
key. If key is not present in A, then print FALSE.

• For option ‘p’, print the Parenthesis Representation of the tree A.

Sample Input:
i 4
i 6
i 3
i 2
i 1
s 2
p
b 4
d 3
p
e

Sample Output:
TRUE
(4 (2 (1 () ()) (3 () ())) (6 () ()))
1
3
(4 (2 (1 () ()) ()) (6 () ()))

6

6. Write a program to compute the median element of the set of elements stored in the AVL tree.
The median of a set of n numbers is the element that appears in the n/2 th position, when the set
is written in sorted order. When n is even, n/2 and when n is odd, (n + 1)/2 is the position for
the median element. For example, if the set is 3, 2, 1, 4, 6 then the set in sorted order is 1, 2, 3,
4, 6, and the median is 3.

Consider a modified AVL tree in which each parent node stores both a key and the total no of nodes
in the right and left subtree + 1 .

struct node {
int key ;
int no of elements ;
struct node left;
struct node right ;
}

Here’s an example of how the modified AVL tree would look (the number after a semicolon indic-
ates the total no of elements in the right and left subtree + 1).

As the number of nodes below a given node does not remain the same, the no of elements value
at needs to be computed after each iteration. For example, after inserting 21 , the no of elements
values at the root node increased and updated as 8, similarly at node ’18’ it’s get decreased and
updated as 1.

Do not alter the structure of the tree (should use only one tree). Your program should include the
following functions.
•getMedian(struct node* root): returns median element of the AVL tree.

Input Format:
• Each line contains a character ‘i’ followed by an integer separated by a space; a node with this
integer as key is created and inserted into the AVL.
• Character ‘g’, is to get the median of the AVL tree.
• Character ‘t’ is to ‘terminate’ the program.

Output Format:
• Print median of the AVL tree.

Constraints:
1 <= n <= 1000

7

Sample Input 1:
i 17
i 11
i 29
i 8
i 18
i 31
i 25
g
t

Sample Output 1:
18

Sample Input 2:
i 37
i 21
i 80
i 81
g
t

Sample Output 2:
37

7. Find the number of nodes with value greater than a given positive integer K in a given AVL
tree without using any extra space. Create a function countNodesGreaterThanK(currentNode, K)
which will count the number of nodes with values greater than K in the tree rooted at the current
node.
NOTE: A node with value K may or may not be present in the given tree.
Input Format:

• Each line contains a character ‘i’ followed by an integer separated by a space; a node with
this integer as key is created and inserted into the AVL tree.

• Character ‘c’ followed by an integer ‘K’ separated by a space, is to count the nodes with value
greater than K in the AVL tree.

• Character ‘e’ is to ‘exit’ the program.

Output Format:

• First line contains the number of nodes with value greater than the given element, K.

• Second line contains all the values greater than K, in sorted order, separated by space.

Constraints: 1 ≤ node.value ≤ 1000
1 ≤ K < max(node.value), where max(node.value) is the maximum value present in the AVL tree.

Sample Input:
i 30
i 20
i 40
i 10
i 25
c 20
i 50
c 20

8

e

Sample Output:
3
25 30 40
4
25 30 40 50

8. A Red-Black tree is a self-balancing binary search tree where every node obeys the following rules.

(a) Every node is either red or black

(b) The root is always black

(c) There are no two adjacent red nodes (A red node cannot have a red parent or red child)

(d) All paths from a node to descendant nodes contain the same number of black nodes

Write a program to create a Red Black Tree from the given input. Your program should include
the following function

• InsertRedBlack(struct node* root, key) : Inserts a new node with the ‘key’ into the tree
and prints parenthesized representation (with corresponding colors) of the created red-black
tree.

Input Format:

• Each line of the input contains a positive integer ‘key’ or a character ‘t’. If the input is
a positive integer then Call function InsertRedBlack(root, key). If ‘t’ is encountered,
terminate the program.

Output Format:

• For each line of the input, the corresponding line of the output should contain the Paren-
thesis Representation (key value followed by color) of the current tree.

Sample Input:
25
18
50
80
12
100
34
t

Sample Output:
(25 B () ())
(25 B (18 R () ()) ())
(25 B (18 R () ()) (50 R () ()))
(25 B (18 B () ()) (50 B () (80 R () ())))
(25 B (18 B (12 R () ()) ()) (50 B () (80 R () ())))
(25 B (18 B (12 R () ()) ()) (80 B (50 R () ()) (100 R () ())))
(25 B (18 B (12 R () ()) ()) (80 R (50 B (34 R () ()) ()) (100 B () ())))

Note: For further queries contact
BINUJOSE A binujose p200050cs@nitc.ac.in

9

