MA 2002D Mathematics IV Winter Semester 2022-2023 Tutorial sheet I (Common to All Branches)

- 1. Prove that $f(z) = |z|^2$ is continuous everywhere but differentiable nowhere except at origin.
- 2. If a function f(z) is analytic, show that it is independent of \overline{z} .
- 3. If the analytic function f(z) = u + iv is expressed in terms of polar co-ordinates, show that $\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$ and $\frac{\partial v}{\partial r} = \frac{-1}{r} \frac{\partial u}{\partial \theta}$. Also, show that its real and imaginary parts are solutions of

Laplace equation in polar co-ordinates given by $\frac{\partial^2 \phi}{\partial r^2} + \frac{1}{r} \frac{\partial \phi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \phi}{\partial \theta^2} = 0.$

4. If f(z) is analytic prove the following.

(i)
$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)$$
 In $|f'(z)| = 0$ (ii) $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4|f'(z)|^2$

- 5. Determine whether the following functions are analytic or not. If analytic find its derivative
 - (i) $f(z) = (z^2 2) e^{-x} (\cos y i \sin y)$
 - (ii) $f(z) = \log z$
 - (iii) $f(z) = \cos x \cdot \cosh y i \sin x \cdot \sinh y$
 - (iv) $f(z) = \sinh z$
 - (v) $f(z) = e^{3z}$
 - (vi) $f(z) = \cos z$
 - (viii) $f(z) = z \overline{z}$
- 6. Given the following functions, show that C-R equations are not sufficient for differentiability at the point specified.

(a)
$$f(z) = \sqrt{|xy|}$$
 at $z = 0$ (b) $f(z) = \begin{cases} \frac{xy}{x^2 + y^2} & z \neq 0\\ 0 & z = 0 \end{cases}$ at $z = 0$.
(c) $f(z) = \begin{cases} \frac{z^5}{|z|^4}, & \text{for } z \neq 0\\ 0, & \text{for } z = 0 \end{cases}$ at $z = 0$.

7. Check for analyticity of the following functions

- (a) $\frac{i}{z^5}$ (b) $\text{Re}(z^3)$ (c) $\frac{\text{Re}(z)}{\text{Im}(z)}$ (d) $f(z) = \cos x \cdot \cosh y + i \sin x \cdot \sinh y$ (e) $f(z) = z - \overline{z}$ (f) $f(z) = 2x + ixy^2$ (g) $f(z) = |z|^2$
- 8. If f(z) and $\overline{f(z)}$ are analytic in a region D, show that f(z) is constant in that region.
- 9. Prove that an analytic function whose real part is constant is a constant function
- 10. Determine the constants a and b such that the function,

 $f(z) = (x^2 + ay^2 - 2xy) + i(bx^2 - y^2 + 2xy)$ is analytic. Also, find its derivative.

- 11. If f(z) = u + iv is analytic in a region D and $v = u^2$ in D, then f is a constant.
- 12. If f(z) is analytic in D, then f(z) is a constant if
 - (i) |f(z)| is constant (ii) f'(z) = 0
- 13. Show that if a function f(z) = u + iv analytic in a domain R and if u and v have continuous second order partial derivatives, then u and v satisfy the Laplace Equation. i.e. $\nabla^2 u = 0$ and $\nabla^2 v = 0$.

- 14. Find an analytic function whose imaginary part is $3x^2y y^3$ and which vanishes at z = 0.
- 15. Check whether the function sinz and cosz satisfies the following properties:
 - (i) $f(z+2\pi) = f(z);$ (ii) $|f(z)| \le 1.$
- 16. Check whether $f(x + iy) = \frac{1}{2} \log (x^2 + y^2) + i \tan^{-1}(y/x)$; $(x^2 + y^2 \neq 0)$ is analytic. If so, find f'(z).
- 17. Determine whether the following functions are harmonic. If so, find the corresponding analytic function f(z) = u + iv
 - (a) $u = \frac{xy}{x^2 + y^2}$ (b) $u = e^{2x}(x\cos 2y)$ (c) $v = (x^2 y^2)^2$ (d) $v = -e^{-x} \sin y$ (e) $u = \sin x \cosh y + 2\cos x \sinh y + x^2 - y^2 + 4xy$ (f) $v = e^{-x} [2xy \cos y + (y^2 - x^2) \sin y]$ (g) $u = \sin x \cdot \cosh y$
- 18. Find the analytic function f(z) = u + iv if

(a)
$$u - v = (x - y)(x^2 + 2xy + y^2)$$

(b) $u + v = \frac{x}{x^2 + y^2}$, $f(1) = 1$
(c) $u - v = \frac{e^y - \cos x + \sin x}{\cosh y - \cos 2x}$ and $f(\frac{\pi}{2}) = \frac{3 - i}{2}$
(d) $u + v = \frac{\sin 2x}{\cosh 2y - \cos 2x}$

19. Prove that $u(x, y) = x^2 - y^2$ and $v(x, y) = \frac{-y}{x^2 + y^2}$ are both harmonic but u + iv is not analytic.

20. If f(z) is analytic show that
$$\left\{\frac{\partial}{\partial x}|f(z)|\right\}^2 + \left\{\frac{\partial}{\partial y}|f(z)|\right\}^2 = \left|f'(z)\right|^2$$

- 21. Find all solutions of the following equations i) $e^z = 2i$ ii) sin z = i.
- 22. Prove that there cannot exist an analytic function on a region with real part $x 2y^2$.
- 23. If f(z) is an analytic function in a region, then show that f'(z) is also analytic in that region.
- 24. Find the image of the square region with vectors (0,0), (1,0), (1,1) and (0,1) under the transformation w = 2z i.
- 25. Find the image of the rectangular region bounded by x = 0, y = 0, x = 2, y = 1 under the (i) translation w = z + (1-2i) (ii) rotation w = iz (iii) transformation w = (1 + i)z + (2 i).
- 26. Find the image of the region y > 1 under the transformation w = iz + 1.
- 27. Find the image of the semi infinite strip x > 0; 0 < y < 2 under the transformation w = iz + 1.
- 28. Show that by means of the inversion $w = \frac{1}{z}$, the circle given by |z 2| = 7 is mapped into

the circle $| w + \frac{2}{45} | = \frac{7}{45}$.

29. Find the image of the triangle with vertices i, 1+i, 1-i in the z – plane under the transformation w = 3z + 4 - 2i.

30. Find the image of the following regions under
$$w = \frac{1}{z}$$
 (i) the strip $0 < y < \frac{1}{2}$, (ii) the circle,

$$z - 3i = 3.$$

31. Show that $w = \frac{z-1}{z+1}$ maps the half plane $x \ge 0$ on to the unit circle $|w| \le 1$. Show also that this transformation maps the half plane $y \ge 0$ on to the half plane $y \ge 0$.

- 32. Find the region in the w plane in to which the region $\frac{1}{2} \le y \le 1$ is mapped by the transformation w = z².
- 33. Under w = $\frac{1}{z}$, find the image of (i) |z-2i| = 2 (ii) $\frac{1}{4} \le y \le \frac{1}{2}$. Also show the regions graphically.
- 34. Show that $w = \frac{2z+3}{z-4}$ maps $x^2 + y^2 4x = 0$ on to 4u + 3 = 0.
- 35. Find regions where the following mappings are conformal and also find their critical points. (i) $w = z^3$ (ii) $w = \cos z$ (iii) $w = \sinh z$.
- 36. Show that $w = z^2$ maps the circle |z-1| = 1 in to the cardioids $\rho = 2 (1 + \cos \phi)$ where $w = \rho e^{i\phi}$ in the w plane.
- 37. Determine the region of w plane in to which the first quadrant of z plane is mapped under the transformation $w = z^2$.
- 38. Discuss $w = e^z$ and show that it transforms the region between y = 0 and $y = \pi$ in to the upper half of w plane.
- 39. Show that $w = \frac{z-i}{z+i}$ maps real axis in z plane in to |w| = 1. What portion of the z plane

corresponds to the interior of the circle in the w – plane.

- 40. Find the images of x = 0, x = 1, y = 0 and y = 1 under $w = z^2$.
- 41. Discuss the transformation $w = \cos hz$ and find the image of the semi-infinite strip $x \ge 0$, $0 \le y \le \pi$ of z plane.
- 42. Find the image of the region $0 < x < 2\pi$, 1 < y < 2 under $w = \sin z$.
- 43. Find the fixed points of the transformations $w = \frac{3z+2}{z-1}$.
- 44. Prove that $w = \frac{iz+1}{z+i}$ maps the part of the real axis between z = 1 and z = -1 as a semi-circle in the w-plane.
- 45. Find the bilinear transformation which maps

i.
$$z = 1, -i, -1$$
 in to $w = 2, 0, -2$
ii. $z = 1, i, -1$ in to $w = 0, 1, \alpha$
iii. $z = -1, 1, \alpha$ in to $w = -i, -1, i$
iv. $z = 0, 1, i$ in to $w = \frac{-1}{2}, 0, -1 + i$
v. $z = 0, -1, \alpha$ in to $w = -1, -2 - i, i$
vi. $z = 1 + i, -i, 2 - i$ in to $w = 0, 1, i$
vii. $z = \infty, 1, -1$ in to $w = 1, \frac{3+2i}{5}, 3-2i$
viii. $z = 2, i, -2$ in to $w = 1, i, -1$
ix. $z = \alpha, 0, -1$ in to $w = 1, 0, \frac{1+i}{2}$

>