MA 2002D Mathematics IV Winter Semester 2022-2023 Tutorial sheet I (Common to All Branches)

- 1. Prove that $f(z) = |z|^2$ is continuous everywhere but differentiable nowhere except at origin.
- 2. If a function $f(z)$ is analytic, show that it is independent of z.
- 3. If the analytic function $f(z) = u + iv$ is expressed in terms of polar co-ordinates, show that $\partial \theta$ $=\frac{1}{2}$ ∂ ∂u 1 ∂v *r r* $\frac{u}{r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$ and $\frac{\partial v}{\partial r} = \frac{-1}{r} \frac{\partial u}{\partial \theta}$ $\frac{\partial v}{\partial r} = \frac{-1}{r} \frac{\partial}{\partial r}$ ∂v —1 ∂u *r r* $v = \frac{-1}{\sqrt{2}}$. Also, show that its real and imaginary parts are solutions of

Laplace equation in polar co-ordinates given by $\frac{\partial^2 \phi}{\partial x^2} + \frac{1}{2} \frac{\partial \phi}{\partial y} + \frac{1}{2} \frac{\partial^2 \phi}{\partial z^2} = 0$ 2 2 2 2 2 $\overline{\partial \theta^2}$ = $\frac{\partial \phi}{\partial r} + \frac{1}{r^2} \frac{\partial}{\partial r}$ $\frac{\partial^2 \phi}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r}$ д θ ϕ 1 $\partial\phi$ 1 $\partial^2\phi$ $\frac{\varphi}{r^2} + \frac{1}{r} \frac{\partial \varphi}{\partial r} + \frac{1}{r^2} \frac{\partial \varphi}{\partial \theta^2} = 0.$

4. If $f(z)$ is analytic prove the following.

(i)
$$
\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)
$$
 In $|f'(z)| = 0$ (ii) $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4|f'(z)|^2$

- 5. Determine whether the following functions are analytic or not. If analytic find its derivative
	- (i) $f(z) = (z^2 2) e^{-x} (\cos y i \sin y)$
	- (ii) $f(z) = log z$
	- (iii) $f(z) = \cos x \cdot \cosh y i \sin x \cdot \sinh y$
	- (iv) $f(z) = \sinh z$
	- (v) $f(z) = e^{3z}$
	- (vi) $f(z) = \cos z$
	- (viii) $f(z) = z \overline{z}$
- 6. Given the following functions, show that C-R equations are not sufficient for differentiability at the point specified.

(a)
$$
f(z) = \sqrt{|xy|}
$$
 at $z = 0$ (b) $f(z) = \begin{cases} \frac{xy}{x^2 + y^2} & z \neq 0 \\ 0 & z = 0 \end{cases}$ at $z = 0$.
\n(c) $f(z) = \begin{cases} \frac{z^5}{|z|^4}, & \text{for } z \neq 0 \\ 0, & \text{for } z = 0 \end{cases}$ at $z = 0$.

7. Check for analyticity of the following functions

- (a) $\frac{1}{z^5}$ *i* (b) $Re(z^3)$ (c) $Im(z)$ $Re(z)$ *z z* (d) $f(z) = \cos x \cdot \cosh y + i \sin x \cdot \sinh y$ (e) $f(z) = z - \overline{z}$ (f) $f(z) = 2x + ixy^2$ (g) $f(z) = |z|^2$
- 8. If $f(z)$ and $f(z)$ are analytic in a region D, show that $f(z)$ is constant in that region.
- 9. Prove that an analytic function whose real part is constant is a constant function
- 10. Determine the constants a and b such that the function,

 $f(z) = (x^2 + ay^2 - 2xy) + i(bx^2 - y^2 + 2xy)$ is analytic. Also, find its derivative.

- 11. If $f(z) = u + iv$ is analytic in a region D and $v = u^2$ in D, then f is a constant.
- 12. If $f(z)$ is analytic in D, then $f(z)$ is a constant if
	- (i) $|f(z)|$ is constant (ii) $f'(z) = 0$
- 13. Show that if a function $f(z) = u + iv$ analytic in a domain R and if u and v have continuous second order partial derivatives, then u and v satisfy the Laplace Equation. i.e. $\nabla^2 u = 0$ and $\nabla^2 v = 0$.
- 14. Find an analytic function whose imaginary part is $3x^2y y^3$ and which vanishes at $z = 0$.
- 15. Check whether the function sinz and cosz satisfies the following properties:
	- (i) $f(z+2\pi) = f(z);$ (ii) $|f(z)| \leq 1.$
- 16. Check whether $f(x + iy) = \frac{1}{2} \log (x^2 + y^2) + i \tan^{-1}(y/x)$; $(x^2 + y^2 \neq 0)$ is analytic. If so, find $f'(z)$.
- 17. Determine whether the following functions are harmonic. If so, find the corresponding analytic function $f(z) = u + iv$
	- (a) $u = \frac{xy}{x^2 + y^2}$ *xy* $\frac{dy}{(b)} = e^{2x} (x \cos 2y)$ (c) $v = (x^2 - y^2)^2$ (d) $v = -e^{-x} \sin y$ (e) $u = \sin x \cosh y + 2\cos x \sinh y + x^2 - y^2 + 4xy$ (f) $v = e^{-x} [2xy \cos y + (y^2 - x^2) \sin y]$ (g) u = sinx. coshy
- 18. Find the analytic function $f(z) = u + iv$ if

(a)
$$
u - v = (x - y)(x^2 + 2xy + y^2)
$$

\n(b) $u + v = \frac{x}{x^2 + y^2}$, $f(1) = 1$
\n(c) $u - v = \frac{e^y - \cos x + \sin x}{\cosh y - \cos 2x}$ and $f(\frac{\pi}{2}) = \frac{3 - i}{2}$
\n(d) $u + v = \frac{\sin 2x}{\cosh 2y - \cos 2x}$

19. Prove that $u(x, y) = x^2 - y^2$ and $v(x, y) = \frac{y}{x^2 + y^2}$ *y* $^+$ $\frac{y}{x}$ are both harmonic but u + iv is not analytic.

20. If f(z) is analytic show that
$$
\left\{\frac{\partial}{\partial x}|f(z)|\right\}^2 + \left\{\frac{\partial}{\partial y}|f(z)|\right\}^2 = |f'(z)|^2
$$

- 21. Find all solutions of the following equations i) $e^z = 2i$ ii) $\sin z = i$.
- 22. Prove that there cannot exist an analytic function on a region with real part $x 2y^2$.
- 23. If $f(z)$ is an analytic function in a region, then show that $f'(z)$ is also analytic in that region.
- 24. Find the image of the square region with vectors $(0,0)$, $(1,0)$, $(1,1)$ and $(0,1)$ under the transformation $w = 2z - i$.
- 25. Find the image of the rectangular region bounded by $x = 0$, $y = 0$, $x = 2$, $y = 1$ under the (i) translation $w = z + (1-2i)$ (ii) rotation $w = iz$ (iii) transformation $w = (1 + i)z + (2 - i)$.
- 26. Find the image of the region $y > 1$ under the transformation $w = iz + 1$.
- 27. Find the image of the semi infinite strip $x > 0$; $0 < y < 2$ under the transformation $w = iz + 1$.
- 28. Show that by means of the inversion $w = \frac{1}{z}$ $\frac{1}{x}$, the circle given by $|z - 2| = 7$ is mapped into

the circle $|w + \frac{2}{45}| = \frac{7}{45}$.

29. Find the image of the triangle with vertices i, $1+i$, $1-i$ in the z – plane under the transformation $w = 3z + 4 - 2i$.

30. Find the image of the following regions under
$$
w = \frac{1}{z}
$$
 (i) the strip $0 < y < \frac{1}{2}$, (ii) the circle,

$$
|z-3i|=3.
$$

31. Show that $w = \frac{z-1}{z+1}$ $z - 1$ $\, + \,$ $\frac{-1}{x}$ maps the half plane $x \ge 0$ on to the unit circle $|w| \le 1$. Show also that this transformation maps the half plane $y \ge 0$ on to the half plane $v \ge 0$.

- 32. Find the region in the w plane in to which the region $\frac{1}{2} \le y \le 1$ $\frac{1}{x-1} \leq y \leq 1$ is mapped by the transformation $w = z^2$.
- 33. Under $w = \frac{1}{z}$, $\frac{1}{z}$, find the image of (i) $|z-2i| = 2$ (ii) $\frac{1}{4} \le y \le \frac{1}{2}$ 1 $\frac{-}{4} \leq y$ $\frac{1}{x} \le y \le \frac{1}{x}$. Also show the regions graphically.
- 34. Show that $w = \frac{2z+1}{z-4}$ $2z + 3$ $\frac{+3}{-}$ maps $x^2 + y^2 - 4x = 0$ on to $4u + 3 = 0$.
- 35. Find regions where the following mappings are conformal and also find their critical points. (i) $w = z^3$ (ii) $w = \cos z$ (iii) $w = \sinh z$.
- 36. Show that w = z² maps the circle $|z-1|=1$ in to the cardioids $\rho = 2(1+\cos \phi)$ where w = ρ $e^{i\phi}$ in the w – plane.
- 37. Determine the region of w plane in to which the first quadrant of z plane is mapped under the transformation $w = z^2$.
- 38. Discuss $w = e^z$ and show that it transforms the region between $y = 0$ and $y = \pi$ in to the upper half of w – plane.
- 39. Show that $w = \frac{z-1}{z+i}$ $z - i$ $\, + \,$ $\frac{-1}{x}$ maps real axis in z – plane in to $|w| = 1$. What portion of the z – plane

corresponds to the interior of the circle in the w – plane.

- 40. Find the images of $x = 0$, $x = 1$, $y = 0$ and $y = 1$ under $w = z^2$.
- 41. Discuss the transformation $w = \cos hz$ and find the image of the semi-infinite strip $x \ge 0$, $0 \le$ $y \leq \pi$ of z – plane.
- 42. Find the image of the region $0 < x < 2\pi$, $1 < y < 2$ under w = sin z.

43. Find the fixed points of the transformations $w = \frac{3z+2}{z-1}$ $\frac{3z+2}{2}$.

44. Prove that $w = \frac{w+1}{z+i}$ iz $\rm +1$ $^+$ $\frac{+1}{-}$ maps the part of the real axis between z = 1 and z = -1 as a semi-circle in the w –plane.

45. Find the bilinear transformation which maps
