
CS 548—Spring 2023
Enterprise Software Architecture and Design

Assignment One—Cloud Computing

In this assignment, you will set up a software platform in the cloud. You will set this
up in the Amazon Elastic Compute Cloud (EC2), which provides an infrastructure-
as-a-service (IaaS) for configuring a custom software stack. You will use Docker to
ensure you will have the same environment for local development and for
deployment1, and to isolate application components that you deploy.

Step 1: Launch an EC2 instance

Launch an EBS-backed EC2 instance. Launch the instance from a bare Amazon
Linux 2 64-bit AMI, without any additional software installed. Elastic Block Store
(EBS) is essentially a virtual disk that Amazon provides for backing storage.

1 If your development machine is Windows or Intel Mac, you should install Docker Desktop. This will
install a Linux VM, and the docker command line tool will manage containers running on this VM.
This will allow you to develop on your local machine, and then deploy your working application on
EC2. Unfortunately, the Payara image we will be using is not currently available for Apple ARM, so
you will have to develop on EC2. Alternatively, you can for now develop natively on your Mac
(installing Payara locally) and demonstrate deployment on EC2.

Since you will be installing both Postgresql and Payara on your instance, a micro-
sized instance will not have enough memory. Pick a small-sized instance. Provided
you do not leave an instance running, your charges should be minimal:

If this is your first time creating an EC2 instance, you will want to create a (RSA) key
pair and save this on your laptop. You will need the key pair in order to access the
EC2 instance. Be sure to protect this key pair and never share it with anyone.

For network settings, the EC2 wizard will automatically create a virtual private
cloud (VPC) and public subnet with that cloud for your instance. You must set up a
firewall policy to protect your instance. You should only access from your laptop.
By default, the EC2 wizard will create a rule allowing you to ssh to your instance to
administer it:

You should add other rules to the firewall policy, to allow access to ports 4848 (for
administering the application server), 8080 and 8181 (accessing applications on the
application server) and 5432 (for accessing the database server). The latter is in
case you want to connect to the database using Eclipse, which you would not be
doing in a production environment. Make sure that your instance can only be
accessed from your IP address.

For storage, EC2 will allocate an 8G virtual disk for the instance, to hold the OS and
application. However, if you terminate the instance, this disk is deleted. Allocate an
additional EBS volume to hold the persistent state of the database:

Once you have launched your instance, you can see it running in your EC2
dashboard. Note the public DNS address and IP address for your running instance,
you will use one of these, with the key pair, to ssh to the instance to set it up:

You can also view the volumes that have been allocated, one for the software you
will install, the other for the persistent database content:

Step 2: Mount the disk for the database

Use ssh to access your instance:

Install any software updates. It is very important that you keep the software on
your machine up-to-date, particularly with security updates. Then edit the mount
table /etc/fstab to automatically mount the external volume as a Linux file system
whenever the machine boots. In what follows, [ec2-user] denotes the default user
prompt, while [root] denotes the superuser prompt, while ****** denotes the UUID
you obtain from file -s:

[ec2-user] sudo su -
[root] fdisk -l
[root] mkfs -t ext3 /dev/xvdb
[root] file -s /dev/xvdb
[root] echo "UUID=***** /data ext3 noatime 0 0" >> /etc/fstab
[root] mkdir /data
[root] mount /data
[root] fdisk -l
[root] exit

Step 3: Install Docker on your instance

Install Docker, which is available as a package, and start the Docker service. You
will be using the command-line Docker client to manage Docker containers and
images:

[ec2-user] sudo yum install -y docker

[ec2-user] sudo service docker start

[ec2-user] sudo usermod -a -G docker ec2-user

The last command makes it unnecessary to use sudo to execute the Docker client.
You will need to log out and log back in again, and you may need to reboot the
instance (do not terminate it). If you reboot, you will have to restart the docker
service.

Step 4: Create the database container

Rather than install Postgresql natively using yum, you will instead install a docker
image that includes a Postgresql installation, and run this as a container. First,
create a virtual network and then the container that runs on that network. For local
development only, it will be useful to add “-p 5432:5432” as an option when running
the database container, to expose the port so Eclipse can connect to the database
server:

[ec2-user] docker network create --driver bridge cs548-network

[ec2-user] docker pull postgres

[ec2-user] docker run -d --name cs548db --network cs548-network -p
5432:5432 -v /data:/var/lib/postgresql/data -e POSTGRES_PASSWORD=XXXXXX
-e PGDATA=/var/lib/postgresql/data/pgdata postgres

[ec2-user] docker ps

The docker run command will create and start the database container in the
background (due to the –d flag). The container will run in the virtual network
cs548-network, with virtual host name cs548db. You have mounted the external
disk at /data, and this is now mounted at /var/lib/postgresql/data in the
container. The PGDATA environment variable sets the container directory where the
database will be stored. The POSTGRES_PASSWORD environment variable defines the
password for the database superuser (default superuser is postgres).

Note: If you do not see the running container, you can see all docker containers
including those that have stopped, and view the logs for a particular docker
container by specifying its container id:

docker ps -a

docker logs <container-id>

You can stop a container using docker stop, remove a container using docker rm,
and remove all stopped docker containers using docker container prune.

With the database container still running, run a bash shell container from the same
image in the same virtual network, and use a Postgresql command line tool in the
shell to create a user for the database you will be creating. This command will
connect to the running database. In this case, the -it flag runs the command
interactively, while the --rm flag removes the shell container when you are done2:

[ec2-user] docker run -it --rm --network cs548-network postgres
/bin/bash

createuser cs548user -P --createdb -h cs548db -U postgres

Enter password for new role: YYYYYY

Enter it again: YYYYYY

Password: XXXXXX (see above)
exit

Note that the createuser command connects to the virtual host cs548db, as
superuser postgres. Run a psql shell to create the database for this user3:

[ec2-user] docker run -it --rm --network cs548-network postgres psql -h
cs548db -U postgres

postgres=# create database cs548 with owner cs548user;
postgres=# \q

Step 5: Create the server container

We will be using the Payara Server docker image for now4. Create a custom app server
image that includes the latest JDBC driver. First download the driver (go to
http://jdbc.postgresql.org to find the link for the latest version):

[ec2-user] mkdir cs548-payara
[ec2-user] cd cs548-payara
[ec2-user] wget <link to the driver>

Create a file called Dockerfile that sets some environment variables and copies the
JDBC driver into the server libraries5:

FROM payara/server-full:6.2023.1-jdk17
COPY <JDBC driver file name>
 ${PAYARA_DIR}/glassfish/domains/${DOMAIN_NAME}/lib/

2 Alternatively, you might use docker exec to attach to a running container and execute a command,
such as starting a shell.
3 If you later find you need to drop the database because you’ve changed the schema, you can do so
(as user postgres) with this psql command: drop database cs548 with (force);
4 https://docs.payara.fish/community/docs/documentation/ecosystem/docker-images/server-
image-overview.html.
5 There are two lines, the second line is broken to fit in this document.

https://docs.payara.fish/community/docs/documentation/ecosystem/docker-images/server-image-overview.html
https://docs.payara.fish/community/docs/documentation/ecosystem/docker-images/server-image-overview.html

Save this file, and create a custom app server image with the JDBC driver:

[ec2-user] docker build -t cs548/server .
[ec2-user] docker images
[ec2-user] cd ..

Create and start the server container, on the same virtual network as the database.
Note that you specify the same image name as above when you executed docker
build; this image will have been cached locally. You will need to expose several ports
to allow access from your Web browser, through your EC2 firewall:

[ec2-user] docker run -d --name payara --network cs548-network -p
4848:4848 -p 8080:8080 -p 8181:8181 cs548/server

Use a Web browser to verify that the application server is running by going to the admin
console at port 4848. The default user name and password are “admin”, you should
change the password in the admin console.

You need to create a JDBC connection pool so applications deployed in the application
server can connect to the database. In the admin console, navigate to Resources |
JDBC | Connection Pools. Create a connection pool with name cs548Pool, with
type javax.sql.ConnectionPoolDataSource, and with vendor PostgreSQL. Set
these data source properties6:

- DatabaseName=cs548

- Password=YYYYYY (see above)
- ServerName=cs548db
- PortNumber=5432
- User=cs548user
- URL=jdbc:postgresql://cs548db:5432/cs548

When you have saved these changes, select the new connection pool and click Ping.
This will make sure that the application server is able to connect to the database server.

You still need to set up a JDBC resource for the connection pool, which your deployed
applications can inject. In the admin console, navigate to Resources | JDBC | JDBC
Resources. Create a new JDBC resource with these properties:

- JNDI Name: jdbc/cs548
- Connection pool: cs548Pool

Step 7: Deploy an application

6 Later we will see how to define in the application how to create this database connection when the
application is deployed, and with the database password passed to the application as part of
deployment.

In the admin console, select the Applications tab and deploy the WAR file provided for
this assignment:

Once you have successfully deployed the app, you can access it via the URL:

https://ec2-instance-public-dns-name:8181/chat

If you have any problems, you can view the raw logs using the docker logs command.
For example, save the logs into a file and then view the last 100 lines of the file:

[ec2-user] docker logs container-id >& LOG
[ec2-user] tail -100 LOG

It is well worth your while learning at least some rudimentary bash commands, and how
to view a file using the vim editor7.

Step 8: Enable autostart of the database and application server on boot

As root, create the file /etc/systemd/system/cs548db.service:

[Unit]

Wants=docker.service

After=docker.service

7 Bash and vim are available in MacOS. On Windows, install Cygwin.

[Service]

RemainAfterExit=yes

ExecStart=/usr/bin/docker start cs548db

ExecStop=/usr/bin/docker stop cs548db

[Install]

WantedBy=multi-user.target

Now you can start the database as a service:

$ sudo systemctl start cs548db

Enable the service to be executed during boot:

$ sudo systemctl enable cs548db

Similarly set up the Payara server to run as a boot service (call it cs548, for example).

Submission

Do the following to save your personal information in the instance:

cd
echo “YOUR-NAME” > info.txt
echo “YOUR-CWID” >> info.txt
echo “YOUR-EMAIL” >> info.txt

For your submission, provide videos and a report in PDF format that describes what
you did, including each of the following:
a. Screenshot of your AWS Console showing the volumes you have allocated on

EBS.
b. Output of Linux command “fdisk -l” in the instance.
c. Information on how to access your EC console using IAM permissions (see the

additional specification for this).
d. The administrator password you chose for Payara. This password should be

secure (“abc123” or “admin” or “c548” are not acceptable), but not ones that you
use for any other business outside of this class.

e. Video of a demonstration of your deployment working. In this video,
demonstrate the starting of the database server and the starting of the
application server from the command line, using docker start and docker ps,
then your logging in to the application server administration console,
deployment of the chat-webapp application, and finally your running this
application (adding some messages to test the database connection). Include
your name in at least one message.

f. Provide a completed rubric with your submission (see the provided rubric).

You should not leave the EC2 instance running, since you may incur bills of
hundreds of dollars from Amazon if you do this. Instead, leave your instance
stopped, and use IAM to provide graders with access to your EC2 console, so they
can start the instance. Both the database and application servers must
automatically start when the instance boots. See the separate document detailing
how to grant graders access to the instance.

You are also strongly encouraged to back up your instance as an Amazon machine
image (AMI). This way, if the instance ever becomes corrupted in some way, you
can instantiate a new version from the AMI that you have created. However you do
not need to share the AMI with the graders, they will just be accessing the instance
that you have stopped. Be sure to include, in the report for this and later
assignment submissions, complete instructions on how to start the instance from
your EC2 console. Payara and postgresql should start automatically when the
instance starts, if you have set it up right.

Make sure that your name appears at the beginning of the video. For example,
display the contents of a file that provides your name. Do not provide private
information such as your email or cwid in the video. Be careful of any “free” apps that
you download to do the recording, there are known cases of such apps containing
Trojan horses, including key loggers. Your video must be MP4 format!

Your submission should be uploaded via the Canvas classroom, as a zip file. This zip
file should have the same name as your Stevens username. It should unzip to a
folder with this same name, which should contain the files and subfolders with your
submission.

It is important that you provide a document that documents your submission,
included as a PDF document in your submission root folder. Name this
document README.pdf. This should document the video(s) that you provide
demonstrating that you have correctly set up your cloud environment. You
should also provide a completed rubric.

