Pharmacokinetics, Drug Metabolism and Toxicology, Semester 1, 2022/2023 [CHY8822]

NEWCASTLE UNIVERSITY

SEMESTER 1 2022/23

MSc Drug Chemistry –Pharmacokinetics, Metabolism and Toxicology

Time allowed -2 hours

Instructions to Candidates:

- (a) Answer BOTH QUESTIONS. Each QUESTION carries equal weight.
- (b) Answer each section in a separate answer book, and make sure that any separate answer sheets, including graphs, are secured to the appropriate answer book.
- (c) Where questions are subdivided, percentages are given as a guide to the weighting of marks for each section. For questions where this percentage is not given, equal apportioning of marks may be assumed.
- (d) In answers to problems and calculations, intermediate steps should be given and, wherever possible, chemical formulae and equations should also be given.
- (e) Chemistry Data cards and graph paper are provided. Approved calculators and foreign language dictionaries may be used.
- (f) Please do not use red or green pens.

Pharmacokinetics, Drug Metabolism and Toxicology, Semester 1, 2022/2023 [CHY8822] ...continued]

SECTION A

Pharmacokinetics and Metabolism

Answer this section in a separate book

A1. Answer *BOTH* parts (a) and (b).

(a) Draw idealised plots of plasma concentration versus time for a drug dosed intravenously and orally.

(b) Define the parameters of clearance, volume of distribution and bioavailability and describe how they are defined from the plots you have drawn.

[30%]

A2. Answer BOTH parts (a) and (b).

- (a) Suggest likely products arising from cytochrome P450 (CYP) mediated oxidation of the compounds containing benzene rings such as 1, benzylic methyl groups as in 2 and alkenes such as in 3.
- (b) Give mechanisms for each of these transformations.

[30%]

- A3. After being dosed orally to a rat, no blood levels of compound 4 were detected.
 - (a) Describe the reasons why this might be the case.
 - (b) Identify which of these reasons are most likely (you can choose more than one)?
 - (c) For each reason you gave, suggest a further experiment or test that could be done to help decide whether that was the cause of the problem.
 - (d) Can you suggest two structural modifications of compound **4** that would address the problems you have highlighted giving reasons for your decisions.

Pharmacokinetics, Drug Metabolism and Toxicology, Semester 1, 2022/2023 [CHY8822] *continued...]*

[40%]

[continued...

Pharmacokinetics, Drug Metabolism and Toxicology, Semester 1, 2022/2023 [CHY8822] ...continued]

Section B

Toxicology

Answer this section in a separate book

B5. Answer *ALL* parts (a), (b) and (c).

- (a) Define the terms acute and chronic toxicity and explain the differences between the two.
- (b) Define the terms LD₅₀ and ED₅₀. Explain how these terms are used to define the therapeutic index and what it means.
- (c) Draw a dose / response curve for a compound with an LD50 of 50 mg/kg and a therapeutic index of 5.

[30%]

- B6. Describe the structural and physicochemical features of drug molecules that give rise to hERG binding. With reference to your answer, describe why loperamide 8 is a hERG channel blocker.
- Suggest two changes to the structure that might reduce its hERG activity, giving reasons for your choices.

[30%]

B7 Suggest two reasons why compound **9** might be toxic. For each one, suggest a modification to the structure that might reduce the toxicity.

9

[40%

Semester 1, 2022/23

[END OF PAPER]

NEWCASTLE UNIVERSITY School of Chemistry Data Card

SI UNITS

BASIC			DERIVED			
mass	kilogram	kg	energy	joule	J	$kg m^2 s^{-2} = Nm = CV$
length	metre	m	force	newton	Ν	kg m s⁻² = J m⁻¹
time	second	S	pressure	pascal	Ра	$N m^{-2} = J m^{-3}$
temperature	kelvin	К	power	watt	W	J s⁻¹ = A V
electric current	ampere	Α	frequency	hertz	Hz	S ⁻¹
amount of substance	mole	mol	magnetic flux density	tesla	Т	kg s ⁻² A ⁻¹ = N m ⁻¹ A ⁻¹
luminous intensity	candela	cd	electric charge	coulomb	С	As
-			electric potential	volt	V	$J C^{-1} = J A^{-1} s^{-1}$
			electric capacitance	farad	F	$A V^{-1} s = C^2 J^{-1}$
			electric resistance	ohm	Ω	V A ⁻¹
			electric conductance	siemens	S	$\Omega^{-1} = A V^{-1}$

CONVERSION FACTORS

1 calorie 1 erg 1 eV 1 dyne

1 Å (Ångström) = 10^{-10} m = 100 pm 1 μ (micron) = 1 μ m = 10^{-6} m 1 litre = 1 dm³ = 10^{-3} m³

= 4.184 J= 10⁻⁷ J = 9.6485 x 10⁴ J mol⁻¹ = 10⁻⁵ N

I ugine= 10^{-1} N1 atm= 101325 Pa = 101.325 kN m⁻² = 760 mmHg1 bar= 10^{5} Pa = 10^{5} N m⁻²1 torr= 1 mmHg = 133.322 Pa1 debye (D)= 3.336×10^{-30} C m1 centipoise (cP)= 10^{-3} Pa s

FRACTIONS and MULTIPLES

10 ¹⁸	exa	Е
10 ¹⁵	peta	Ρ
10 ¹²	tera	Т
10 ⁹	giga	G
10 ⁶	mega	М
10 ³	kilo	Κ
10 ⁻¹	deci	d
10 ⁻²	centi	С
10 ⁻³	milli	m
10 ⁻⁶	micro	μ
10 ⁻⁹	nano	'n
10 ⁻¹²	pico	р
10 ⁻¹⁵	femto	f
10 ⁻¹⁸	atto	а

PHYSICAL CONSTANTS

charge of proton	е	1.6022 x 10 ⁻¹⁹ C
rest mass of electron	m _e	9.1094 x 10 ⁻³¹ kg
rest mass of proton	m _p	1.6726 x 10 ⁻²⁷ kg
unified atomic mass constant	<i>m</i> u	1.6605 x 10 ⁻²⁷ kg
speed of light in vacuum	С	$2.9979 \times 10^8 \text{ m s}^{-1}$
Planck constant	h	6.6261 x 10 ⁻³⁴ J s
ħ	$h/2\pi$	1.0546 x 10 ⁻³⁴ J s
Boltzmann constant	k	1.3807 x 10 ⁻²³ J K ⁻¹
Avogadro constant	$L \text{ or } N_A$	6.0221 x 10 ²³ mol ⁻¹
gas constant	R	8.3145 J K ⁻¹ mol ⁻¹
ice-point temperature	Tice	273.15 K
Faraday constant	F	9.6485 x 10 ⁴ C mol ⁻¹
standard gravitational acceleration	g	$9.80665 \mathrm{m s}^{-2}$
permeability of vacuum	μ_0	$4\pi \text{ x } 10^{-7} \text{ kg m s}^{-2} \text{ A}^{-2} \text{ (or N A}^{-2}\text{)}$
permittivity of vacuum	E ₀	$\mu_0^{-1}c^{-2} = 8.8542 \text{ x } 10^{-12} \text{ F m}^{-1}$
Bohr radius	a_0	$\varepsilon_0 h^2 / \pi m_e e^2 = 52.9 \text{ pm}$
Bohr magneton	$\mu_{\rm B}$	$eh/4\pi m_e = 9.2740 \times 10^{-24} \text{ A m}^{-2} \text{ (or J T}^{-1})$
Rydberg constant	R∞	$\mu_0^2 m_e e^4 c^3 / 8h^3 = 1.097373 \times 10^5 \text{ cm}^{-1}$
Hartree energy	E _H	$2R_{\infty}hc = 4.3598 \times 10^{-18} \text{ J}$

ENERGY CONVERSION FACTORS

	energy E J	energy E eV	molar energy E _m kJ mol⁻¹	frequency v Hz	wave number cm ⁻¹
J	1	6.2415 x 10 ¹⁸	6.0221 x 10 ²⁰	1.5092 x 10 ³³	5.0341 x 10 ²²
eV	1.6022 x 10 ⁻¹⁹	1	96.485	2.4180 x 10 ¹⁴	8.0655 x 10 ³
kJ mol⁻¹	1.6605 x 10 ⁻²¹	1.0364 x 10 ⁻²	1	2.5061 x 10 ¹²	83.594
Hz	6.6261 x 10 ⁻³⁴	4.1357 x 10 ⁻¹⁵	3.9903 x 10 ⁻¹³	1	3.3356 x 10 ⁻¹¹
cm⁻¹	1.9864 x 10 ⁻²³	1.2398 x 10 ⁻⁴	1.1963 x 10 ⁻²	2.9979 x 10 ¹⁰	1

Periodic Table (incorporating 1991 atomic-weights) scaled to the Relative Atomic Mass ${}^{12}C = 12$.

He 4.003 b,c В 10.81 *с,d,ө* C 12.01 b,d 0 16.00 b,c,d Ne 20.18 c,e N 14.01 b,c F 19.00 a 13 Si 28.09 P 30.97 S 32.07 AI 26.98 CI 35.45 Ar 39.95 d a . đ c b,c,d,g Cu 63 55 c,d Br 79.90 Cr 52.00 Mn 54.94 Co 58.93 Ni 58.69 **Zn** 65.39 Ga 69.72 Ge 72.61 Se 78.96 Kr 63.60 Fe 55.85 As 74.92 c Rh 102.9 a Tc 98.91 Ru 101.1 Mo Pd Ag 107.9 Cd In 114.8 Sn 118.7 Sb Te 127.6 | 126.9 4 Xe Pb 207.2 d,g Bi 209.0 W 183.8 Re 186.2 Os 190.2 g Au 197.0 Rn 222.0 **Ir** 192.2 Pt 195 1 **Po** 210.0 At 210.0 Hg 200.6 TI 204 4

Dy 162.5

Cf 252.1

Tb 158.9

Bk 247.1

Er 167.3

Fm 257.1

Ho 164.9

Es 252.1

Tm 168.9

8

Md 256.1

Yb 173.0

No 259.1

Lu 175.0

Lr 260.1

103

Footnot	es.
roomor	U3 .

H 1.008 b,d

Li 6.941 c,d,e,g

Na

22.99 a

K 39.10

Rb 85.47 c

Cs 132.9

Fr 223.0

Be 9.012

a

Mg 24.31 c,g

Ca 40.08

9

Sr 87.62

9

Ba 137.3

Ra 226.0 a,f,g

Sc 44.96

Y 88.91 a

La 138.9

AC 227.0

Ti 47.88

Zr 91.22

Hf 178.5

a Mononuclidic element.

b Element with one predominant isotope (about 99-100 per cent abundance).

58

Ce 140.1

Th 232.0 a,1,g

Pr 140.9

Pa 231.0 a,1

Pm

Np 237.0 *b,1*

Nd

U 238 0

bca

Sm 150.4

Pu 239.1

Eu 152.0

Am 243.1

Gd 157.3

247.1

c Element for which the atomic weight is based on calibrated measurements.

d Element for which variation in isotopic abundance in terrestrial samples limits the precision of the atomic weight given.

V 50.94 b,c

Nb 92.91

a Ta 180.9

e Element for which users are cautioned against the possibility of large variations in atomic weight due to inadvertent or undisclosed artificial isotopic separation in commercially available materials.

f Most commonly available long-lived isotope.

g In some geological specimens this element has a highly anomolous isotopic composition

corresponding to an atomic weight significantly different from that given.

TABLE OF NATURAL ABUNDANCES AND NUCLEAR SPIN QUANTUM NUMBERS FOR SELECTED ISOTOPES.

	%	I		%	I		%	I		% .	I		%	I
1H	99.985	1/2	30Si	3.10	0	⁷³ Ge	7.8	9/2	121Sb	57.3	5/2	171Yb	14.3	1/2
² H	0.015	1	31P	100.	1/2	75As	100.	3/2	123Sb	42.7	7/2	¹⁷³ Yb	16.12	5/2
⁴ He	100.	0	32S	95.0	0	77Se	7.6	1/2	123Te	0.91	1/2	175Lu	97.41	7/2
6Li	7.50	1	33S	0.75	3/2	⁷⁹ Br	50.69	3/2	125Te	7.14	1/2	176Lu	2.59	7
⁷ Li	92.50	3/2	34S	4.21	0	⁸¹ Br	49.31	3/2	127I	100.	5/2	177Hf	18.61	7/2
⁹ Be	100.	3/2	35C1	75.77	3/2	⁸³ Kr	11.55	9/2	129Xe	26.4	1/2	179Hf	13.63	9/2
10B	19.9	3	37Cl	24.23	3/2	⁸⁵ Rb	72.17	5/2	131Xe	21.2	3/2	181Ta	99.988	7/2
11B	80.1	3/2	³⁶ Ar	0.337	0	⁸⁷ Rb	27.84	3/2	133Cs	100.	7/2	¹⁸³ W	14.3	1/2
12C	98.90	0	40Ar	99.60	0	⁸⁷ Sr	7.00	9/2	135Ba	6.59	3/2	185Rc	37.40	5/2
13C	1.10	1/2	39K	93.3	3/2	⁸⁹ Y	100.	1/2	137Ba	11.23	3/2	187Re	62.60	5/2
14N	99.63	1	⁴¹ K	6.73	3/2	⁹¹ Zr	11.22	5/2	139La	99.91	7/2	187Os	1.6	1/2
15N	0.37	1/2	⁴³ Ca	0.135	7/2	⁹³ Nb	100.	9/2	141Pr	100.	5/2	189Os	16.1	3/2
160	99.762	0	45Sc	100.	7/2	⁹⁵ Mo	15.92	5/2	143Nd	12.18	7/2	¹⁹¹ Ir	37.3	3/2
170	0.038	5/2	47Ti	7.3	5/2	⁹⁷ Mo	9.55	5/2	145Nd	8.30	7/2	¹⁹³ Ir	62.7	3/2
18O	0.200	0	⁴⁹ Ti	5.5	7/2	99Ru	12.7	5/2	147Sm	15.0	7/2	195Pt	33.8	1/2
19F	100.	1/2	51V	99.75	7/2	¹⁰¹ Ru	17.0	5/2	149Sm	13.8	7/2	¹⁹⁷ Au	100.	3/2
²⁰ Ne	90.48	0	53Cr	9.50	3/2	¹⁰³ Rh	100.	1/2	¹⁵¹ Eu	47.8	5/2	199Hg	16.84	1/2
²¹ Ne	0.27	3/2	55Mn	100.	5/2	105Pd	22.33	5/2	153Eu	52.2	5/2	²⁰¹ Hg	13.22	3/2
²² Ne	9.25	0	57Fe	2.2	1/2	¹⁰⁷ Ag	51.84	1/2	155Gd	14.8	3/2	²⁰³ Tl	29.52	1/2
23Na	100.	3/2	59Co	100.	7/2	¹⁰⁹ Ag	48.16	1/2	157Gd	15.65	3/2	205TI	70.48	1/2
²⁴ Mg	78.99	0	61Ni	1.13	3/2	111Cd	12.80	1/2	159Tb	100.	3/2	²⁰⁷ Pb	22.1	1/2
25Mg	10.00	5/2	63Cu	69.17	3/2	113Cd	12.22	1/2	¹⁶¹ Dy	18.9	5/2	²⁰⁹ Bi	100.	9/2
²⁶ Mg	11.01	0	65Cu	30.83	3/2	¹¹³ In	4.3	9/2	163Dy	24.9	5/2			
27A1	100.	5/2	⁶⁷ Zn	4.1	5/2	115In	95.7	9/2	165Ho	100.	7/2			
28Si	92.23	0	69Ga	60.1	3/2	117Sn	7.68	1/2	¹⁶⁷ Er	22.95	7/2			
29Si	4.67	1/2	71Ga	39.9	3/2	119Sn	8.58	1/2	169Tm	100.	1/2			