PSUT: 22560 (Network Programming and Applications) Fall 2022

Assignment 3
(Due: Sunday, Nov 27 midnight)

Assignment Setup:

Create a projectin Eclipse called A3. Extract the assignment files into the A3 project,
excluding the PDF instructions. You will notice that there are the following files:

1- A3 template.py: This is your solution file. You need to rename the file to
A3.py. Also, you need to enter your credentials on top of the file.

2- A3 test server.pyand A3 test client.py: These are the two testing
files. You need to run the server file first, then the client.

3- A3 ouptut server.py and A3 output client.py: contain expected
output at the server and client sides

4- There are four text files called: "plaintext0.txt", "plaintextl.txt",
"plaintext2.txt", "plaintext3.txt".

Make sure that all your files are on the same directory level within the project.

Objectives:

e Build UDP server and client using UDP sockets

e Build socket communication using IPv6

e Use Object Oriented approach to building server/clients

e |Implement application-level communication protocol over UDP
e Provide mechanisms for sequencing and fragmentation in UDP

Overview:

Your main objective in this assignment is to design a UDP server/client application
called: UDP File Sharing Protocol (UFSP). This is a simple protocol, in which a client
requests a file from the server. If the file is available, the client downloads the file.

General Configurations:

e The server and client use UDP IPv6 sockets.

e Assume that both the server and client will run on the same local host.

e The server and client use the default encoding of 'utf-8' in their message
exchange. However, assume that only ASCII characters will be used.

© Qutaiba Albluwi

PSUT: 22560 (Network Programming and Applications) Fall 2022

The server and client always use strings in the communication. For example,
to send the number 9, it should be converted to a string then to bytes.
Assume that the server and client buffers are synchronized. The buffer,
which is a property in both classes, refer to the maximum number of bytes
to expect in the datagram.

Assume that there is no multithreading. Therefore, the server can only serve
one client at a time.

Protocol:

1-

The server is launched and listens on a specific port which is known to the
clients. The server maintains a timer for inactivity. If the timer expires, the
server closes
The client requests a file using the command: "get <filename>"
The server either sends: "available" or "unavailable"

a. If the client receives "available " it starts downloading the file

b. If the client receives "unavailable " it can either requests another

file or closes.

If a file is available at the server, and after sending "available", the server
sends to the client the number of lines in the file in the following format:
"lines:<num of lines>"l.
Next, the server sends the file, each line in a separate datagram. The line is
to be formatted as the following: "<1ine num> <text>"2 The line_num,
is the line number, starting from 0, and the <text> is the actual line text.
If a line is too long, the line should be fragmented into multiple datagrams.
Each segment will be formatted as: "<line num> <frag num> <text>"
Once the server sends all lines, it sends 'EOF'>.

a. If the client receives 'EOF'. It triggers the reliability check.

b. If all lines were successfully received, the client either sends another

file request, or closes.

! The client is not going to send an acknowledgement. We are not going to worry about the scenario if this specific
message was lost.

2 Because we are using the underscore character to separate the line number from the actual line, we are going to
assume that the line does not have any underscores.

3 This is the string 'EOF', not the ASCII character EOF.

© Qutaiba Albluwi

PSUT: 22560 (Network Programming and Applications) Fall 2022

Client Configuration:

The UFSP_Client class has the following properties:

- _ socket (socket): a private property that stores a UDP IPv6 socket.

- port (int): a private property, passed as an optional keyword argument
with default value 5000. Despite being a client socket, the socket should be
bound to the given port.

- name (str): a public property, that is set by default to
'"UFSP (Client :<port>)".

- buffer (int): a public property, passed as an optional keyword argument
with default value of 64

- timeout (float): a public property, passed as keyword argument with a
default value of 5. The socket timeout should be configured to use this value.

The class defines the following methods:

str (self) :

This method overloads the built-in __str method and produces a string
representation of the UFSP_Client objects in the following format:
<UFSP _Client name>:

port = <port>

buffer = <buffer>

timeout = <timeout>

get file(self, filename, server):

This method allows the client to request a specific file from the given server. The
method sends the "get <filename>" command to the server.

1- If the file is available, the client waits for the number of lines and starts
downloading the file
2- If the file is unavailable, the client exists the method

__get num of lines(self):

This private methods should be invoked only, if a file is available. The method
blocks awaiting for the number of lines. It discards any datagrams sent by the server
other than the one that has the format: "lines:<num lines>". The function
returns the number of lines as an integer. If the client timeouts, the number of lines
is -1.

© Qutaiba Albluwi

PSUT: 22560 (Network Programming and Applications) Fall 2022

download file(self, filename,num of lines):

This method downloads a file from the server. It receives the number of lines, so it
has a previous knowledge of how many lines to expect to receive.

The received file will be saved into another local file called: "filename copy". For
instance, if the fileis: "test.txt", it will be saved as: "text copy.txt".

The file lines are sent using the format: "<linenum> <linetext>". The client
should write to the output file the received lines in their respective order. If a
datagram carrying a specific line ended up missing, an empty string should be
stored.

Since the client is using UDP, the datagram may arrive out of order. Therefore, the
client should maintain a mechanism to sequence the coming lines. Since the
datagrams already have the line number, this should be trivial.

Note that a line could be fragmented. A fragmented line will have the following
format: "<linenum> <fragnum> <linetext>.Assume that anyfragments of the
same line will arrive in order.

Since the client's buffer is synchronized with the server, the client is assured that
any received datagram is not going to exceed its buffer value.

When the client receives the string 'EOF', it marks the end of download. The
buffered lines will be written to the output file. As noted above, any missing
datagrams will be replaced by an empty string.

close(self) :

Since the socket is a private property, a mechanism is needed to close the client,
which is provided by this method. Note that using the given implementation, once
a client socket is closed, it cannot be started again. If we want to restart the socket,
then another client object needs to be created.

Server Configuration:

The UFSP_Server class has the following properties:

- port (int): a public property, passed as a keyword argument with default
value 4000

- buffer (int): a public property, passed as keyword argument with default
value 64

© Qutaiba Albluwi

PSUT: 22560 (Network Programming and Applications) Fall 2022

- timeout (float): a public property, passed as keyword argument with a
default value of 5

- name (str): a public property, that is set to 'UFSP (Server:<port>) .

- socket (socket): a private property

- files (list): a private property that maintains the list of files available at the
server. This is initialized to an empty list.

create socket (self):

This private method creates and configures the server socket. Since the socket is
private and this method is private, this method should be invoked by the
constructor. The socket should be a UDP IPv6. The socket should be bound to the
given port. Make sure to configure the timeout parameter and the SO REUSEADD
socket option.

add file(self,filename) :
This public method adds a given filename to the list of files available to the server.

available file(self,filename) :

This public method returns True if the given filename is available at the server
and returns False otherwise.

start (self) :

This public method allows the server to listen for incoming UDP datagrams, more
specifically, the "get <filename>" requests. If the file is available, the server
notifies the client and then invokes the send file method. If it is unavailable, the
server notifies the client that it is unavailable and then waits for other requests.
The server maintains a timeout. If it expires, it closes the socket and exits.

send file(self,client, filename) :

This public method sends a given filename to the given server. It starts by sending
the number of lines using the message: "lines:<num>", followed by the file content.

The file content is broken into lines. Each line is sent in the following format:
"<line num> <line text>".The line numbers reflect their order in the original
file, starting from 0.

© Qutaiba Albluwi

PSUT: 22560 (Network Programming and Applications) Fall 2022

If aline is too long, then it needs to be fragmented. The fragmented line will appear
as: "<line num> <frag num> <partial line text>". Again, the fragments
will be numbered starting from 0.

Watch for the fact that the buffer size reflects the datagram's length including the
prefixes, such as the line number and the fragment number and the in-between
underscores. Therefore, the method has to pay special attention to when to initiate
fragmentation. This should be handled by the next method.

When all lines have been sent, the server sends the string 'EOF' and exits the
method.

fragment (self,line, counter) :

This public method receives a line (extracted from a file), and a counter
(representing the line number).

The method examines both parameters and decides if fragmentation is needed.

The method returns a list of fragments. If no fragmentation is needed, then the list
will contain a single item, which is the given line, with the prefix <1ine num> .

If fragmentation is needed, then the list will contain all fragments with proper
prefixes.

close(self) :

Since the socket is a private property, a mechanism is needed to close the client,
which is provided by this method. Note that using the given implementation, once
a client socket is closed, it cannot be started again. If we want to allow such
operation, then we need to make the create socket method public, which is
something we do not want to do at this assignment.

© Qutaiba Albluwi

