
Version 1.2 1

COMP41670: Software Engineering

2022 / 2023
Group Project

Dr Chris Bleakley

UCD School of Computer Science,
University College Dublin,

Belfield, Dublin 4.

chris.bleakley@ucd.ie

Version 1.2 2

Introduction
There are three Sprints. These Sprints combine to incrementally build into a Java implementation of a board
game.

The following steps should be done before starting to code:

• The project will be done in groups of two. Self-select your group at My Class – My Groups on
Brightspace. See Brightspace for the deadline.

• Setup Git on your computer.

• Setup your GitHub account.

• Setup a GitHub repo for the project. THIS REPO MUST BE PRIVATE.

• Enter your project details via the Group Project Details Quiz on Brightspace. Both group members
must do this. See Brightspace for the deadline.

• Give all team members and the Teaching Assistant (user name jordan2doyle) and the Module
Coordinator (user name ChrisBleakley) access to the repo.

• GitHub must be used for source code control for the duration of the project. (See the Grading Scheme
below “GitHub not used correctly, up to 2 grade deductions”). Part of the final submission is via GitHub.

Version 1.2 3

Sprint 1: Display & Rolls
Play some Backgammon!!!

The reference rules are at: https://www.bkgm.com/rules.html

As a group, implement and verify a Java program with the following features. Use the console for input and
output.

A feature whereby the Backgammon board is displayed with the Checkers in their initial positions.

A feature that prompts the players to enter their names. Their names should be used in later prompts.

A feature that allows the players to take turns rolling the dice. The players should be prompted to enter a
command. Entering the “roll” command should cause the result of a two dice roll to displayed on the board
panel and reported in the log panel. The dice should be generated randomly.

A feature whereby a “quit” command causes termination of the program.

Submit as per the instructions in the Submission section.

The following feature checklist will be used for grading:

Feature Marks
Available

Comments

Display board 4

Enter names 2

Roll command 2

Quit 2

TOTAL 12

Version 1.2 4

Sprint 2: Game
As a group, implement and verify a Java program with the following features.

A feature whereby when the game starts, the program rolls one die for each player to determine which player
goes first. The result is used for the first move.

A feature whereby the current player is indicated on the display.

A feature that displays the pip number of every point on the board. The pip numbers should change depending
on which player’s turn it is.

A feature which lists all legal moves after the dice roll and allows the user to enter a letter code for the desired
move. The board should be updated to reflect the move selected. All hits and bear off should be applied. All
rules of backgammon should be considered.

A “pip” command which reports the pip count for both players.

A “hint” command which lists all allowed commands. The list should exclude the commands for testing.

A feature whereby the syntax of the commands entered are checked. An appropriate error message is
generated if the command is invalid.

A feature that detects when the game is over and announces the winner of a game.

Submit as per the instructions in the Submission section.

The following feature checklist will be used for grading:

Feature Mark
Available

Comments

Roll to start 2

Current player display 2

Pip display 2

All legal moves selection 14

Pip command 2

Hint command 2

Syntax check 2

Game over 2

TOTAL 28

Version 1.2 5

More details on the move selection feature

There are two ways that moves can be selected. We will accept either option as being correct.

Option 1: Two step entry

13--+---+---+---+---18 BAR 19--+---+---+---+---24 OFF
| | | | | | | | | | O O

| | | | | | X | | | | X
12--+---+---+---+---07 BAR 06--+---+---+---+---01 OFF
X to play 2-1. Select from:
A) Play 6-4
B) Play 6-5
C) Play 1-off
>> A
13--+---+---+---+---18 BAR 19--+---+---+---+---24 OFF
| | | | | | | | | | O O

| | | | | | | | X | | X
12--+---+---+---+---07 BAR 06--+---+---+---+---01 OFF
X to play 1. Select from:
A) Play 4-3
B) Play 1-off
>> B
13--+---+---+---+---18 BAR 19--+---+---+---+---24 OFF
| | | | | | | | | | O O

| | | | | | | | X | | |
12--+---+---+---+---07 BAR 06--+---+---+---+---01 OFF

If you implement this option, be careful to deal with the following rules: “A player must use both numbers of a
roll if this is legally possible (or all four numbers of a double). When only one number can be played, the player
must play that number. Or if either number can be played but not both, the player must play the larger one.”
For example, the following is incorrect. The play “C) 5-3” is illegal and should not be listed because, if made,
the second die (5) could not be played.

13--+---+---+---+---18 BAR 19--+---+---+---+---24 OFF
| | | | | | | | | | O O

| | | | | | X X | | | O
12--+---+---+---+---07 BAR 06--+---+---+---+---01 OFF
X to play 2-5. Select from:
A) 6-4
B) 5-off

Version 1.2 6

Option 2: One step entry

13--+---+---+---+---18 BAR 19--+---+---+---+---24 OFF
| | | | | | | | | | O O

| | | | | | X | | | | X
12--+---+---+---+---07 BAR 06--+---+---+---+---01 OFF
X to play 2-1. Select from:
A) Play 6-4 1-off
B) Play 6-5 5-3
>> A
13--+---+---+---+---18 BAR 19--+---+---+---+---24 OFF
| | | | | | | | | | O O

| | | | | | | | X | | |
12--+---+---+---+---07 BAR 06--+---+---+---+---01 OFF

13--+---+---+---+---18 BAR 19--+---+---+---+---24 OFF
| | | | | | | | | | O O

| | | | | | X X | | | O
12--+---+---+---+---07 BAR 06--+---+---+---+---01 OFF
X to play 2-5. Forced move:
6-4 5-off

Version 1.2 7

Sprint 3: Match
As a group, implement and verify the following.

A “dice <int> <int>” command which cause the subsequent dice roll to equal the given numbers.

A “test <filename>” command which performs the commands in the given text file.

A feature that at the start of new match, allows players to enter their names and select the length of the match.

A feature that displays the match score and the match length on the board.

A feature the displays the double with the position showing ownership.

A command “double” that offers a double to the other player. The other player must respond with either “accept”
in which case the game continues for twice the stake OR “refuse” in which case the game ends with the
doubling player gaining the current stake. Checks must be performed to ensure that the inputs are legal
according to the rules of the same.

A feature that announces whether a game ends in a Single, a Gammon or a Backgammon and updates the
match score according to the end position and the score.

A feature that detects the end of a match and announces the winner.

A feature that allows the players to start a new match.

The functionality of the “hint” command should be updated.

Submit as per the instructions in the Final Submission section.

The following feature checklist will be used for grading:

Feature Marks
Available

Comments

Dice command 2

Test command 6

Names & match length 2

Display match score 2

Display cube 2

Double command 2

Gave over 2

Match over 2

New match 1

Hint command 1

TOTAL 22

Version 1.2 8

Assessment
The following assessments will take place.

Assessment Due Date
Sprint 1 Design Review Week 8
Sprint 2 Design Review Week 10
Final Submission Week 12

Sprint 1 and 2 are not submitted to Brightspace. They are assessed by Design Review. The Final Submission
is submitted to Brightspace.

The Design Reviews will be conducted during the lab sessions. A Demonstrator will meet with your team to
review your code. The group will demo the code, show the source code and answer some questions. Progress
will be assessed against the features listed, testing, code quality and version control.

The Design Review is graded. Your team must attend the lab session on the given date to participate in the
Design Review. If your team does not attend the lab session, the Design Review grading will be excluded from
your assessment (i.e. the other grading components become 100% of your grade, rather than 95%).

Version 1.2 9

Final Submission
For the FINAL CODE, submit a zip file named with your group name containing following items:

• A report in PDF format (1 page) including:

o Group name, group member names and GitHub IDs.

o A link to your GitHub release (see Brightspace – Learning Materials - About the Tools for more
information on creating the GitHub release). Test that the link works after it is added to the report.

o State the relative amount of work done by each group member for EACH SPRINT (e.g. 50-50). If
the workload is not 50-50, please explain why.

o Your self-assessment checklist that lists for the FINAL CODE whether the features from ALL three
Sprints are fully working, partially working, or not working (see example below). Explain partially
working features in more detail in the comments.

• A video (max. 5 minutes) in .mp4 format of a screen recording with voice over. The video should:

o Show the working features

o Explain how you tested the code

o Explain the structure of your code

• A directory containing the source code.

• A directory containing an executable JAR file for the program (see Brightspace – Learning Materials -
About the Tools for more information on creating the JAR).

Notes

Be careful not to delete the release or repo on GitHub until the end of the semester plus 12 months.

Make sure that the team name, student names and GitHub IDs are included in comments at the top of all
source code files.

Use of open-source code will be treated as plagiarism.

Version 1.2 10

Grading Scheme
The marks for the Group Project are allocated as follows:

Assessment Marks
Sprint 1 Design Review 5%
Sprint 2 Design Review 5%
Final Submission: Functionality 70%
Final Submission: Testing 10%
Final Submission: Code Quality 10%
Group Project TOTAL 100%

Marking is done according to the scoresheets above and below. The numerical value is converted to a grade
using the Alternative Linear Conversion Grade Scale 40% Pass.

https://www.ucd.ie/students/exams/gradingandremediation/understandinggrades/

Functionality

Functionality is marked as the percentage of features working correctly. Each feature is scored by its number
of points, which indicates the difficulty of implementing the feature.

For example, a project with the following feature checklist would likely be graded as:

Feature Marks
Available

Marks Comments

Display panels 2 2 Working

Display board 2 2 Working

Enter names 2 2 Working

Roll dice 2 1 Partially working – only 1 dice works of 2

Quit 2 0 Not working

TOTAL 10 7 7/10 = 70% = B-

Programs are marked against the functionality described in this document. It is OK to include extra functionality
to your game in addition to the items listed above. However, any extra functionality should be in addition to the
functionality listed above, not instead of. For example, you might choose to add a feature whereby the player
can click icons using the mouse. That's OK but you should also allow the user to type in the commands as
specified below. The program should always display game events on the command panel when a button are
clicked - the same as if keyboard entry was used.

Test Quality

Testing is marked as follows.

Quality Check

Marks
Available

Comments

Do all classes have a JUnit test class? 2

Do all methods have at least one JUnit test? 4

Do the JUnit tests provide 100% test coverage. 4

Version 1.2 11

Do the test scripts provide a complete systems test? 4

Has the testing approach been explained in the videos? 2

TOTAL 16

Code Quality
Code quality is marked according to the quality checklist below. Percentage points are converted to grades as
for functionality.

Quality Check Marks
Available

Comments

Is the code readable? 2

Is the project well-structured into classes? 2

Does each method perform a single clearly defined function? 2

Are appropriate data structures used? 2

Are design patterns used where appropriate? 2

Is scope minimised? 2

Is data single source? 2

Is inheritance used wisely? 2

Are naming conventions used consistently? 2

Are constants well used? 2

Are names clear and meaningful? 2

Are comments useful? 2

Is Javadoc used correctly for at least 1 class? 2

Are class diagrams for the project shown in the video? 2

Are sequence diagrams for the project shown in the video? 2

TOTAL 34

Deductions

If necessary, the following deductions will be applied:

• Based on review of the comments in the report on the relative work done and on review of the group
member contributions on GitHub, the grades for individual students in a group may be adjusted. In general,
adjustments are only made in the case of large disparities in work done.

• GitHub not used correctly, up to 2 grade deductions

• No report OR no video, 1 grade deduction (e.g. A to B)

• Incomplete report OR incomplete video, 1-3 grade point deduction (e.g. A to A- or B+ or B)

• No GitHub executable jar release or not working, 1 grade point deduction

• No or incomplete source code in Brightspace but available in GitHub, 1 grade deduction

Version 1.2 12

• No or incomplete GitHub source code release but available in Brightspace, 1 grade deduction

• No or incomplete source code in Brightspace and in GitHub, graded as NM (no mark)

• Up to 5 working days late, 1 grade point deduction.

• Up to 10 working days late, 2 grade points deduction.

