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Preface

In the meantime, more than five years have passed since the first version of this book was written. Since
the statistical software R develops very dynamically some of the features of the first version of the book
no longer work and and many new possibilities have emerged. Therefore it was high time to update the
book and the R code it contains. In particular I use now for some semesters no longer simple R scripts
for my lectures, but corresponding R Markdown documents (see section 1.5).

Other important updates compared to the first version of the book include:
• links to my GitHub repository ISDR
• many more exercises
• brief videos on YouTube
• AL and RMX estimator
• estimation of cut-off values
• boostrap confidence intervals
• more examples about sample size calculation
• statistical test for repeated measurements
• new chapter about multiple testing

The R code used in the individual chapters or sections, can be found on GitHub https://github.com/
stamats/ISDR and is contained in text files (R Markdown files) with the file extension .Rmd. The R
code of each chapter can be run separately from the other chapters. In addition, you can find brief videos
on YouTube at https://youtu.be/6E3QJOc1bnM with short explanations.
The second edition of the book was again created with the help of the software package LATEX and
pdfLATEX. In addition, the extension package "knitr" (Xie (2015a)) for the statistical software R was
used again, which offers flexible possibilities to combine explanations with inputs and outputs of R.

Villingen-Schwenningen, October 2022

Matthias Kohl

https://github.com/stamats/ISDR
https://github.com/stamats/ISDR
https://youtu.be/6E3QJOc1bnM


Preface �rst edition

Statistics is everywhere today and we are steadily, knowingly or unknowingly, confronted with results
of statistical procedures. Examples are internet search engines, targeted ads on websites, assessments
of our creditworthiness, reference ranges of blood tests, weather forecast, election forecast, and many
more. Often, statistical procedures are not appropriately applied or their results are not properly reported.
Therefore, basic statistical knowledge is not only important in professional but also in everyday life and
helps to distinguish between correct and incorrect information.
The basis of this book aremy lecture notes of several statistics courses I gave in recent years at Furtwangen
University, Campus Villingen-Schwenningen, in the framework of various bachelor and master programs
as well as at Freiburg University in the framework of the international master program in biomedical
sciences (IMBS).
As the title of the book already indicates, the introduction to statistical analysis happens by using the
statistical software R (R Core Team (2022a)), a free software that is available for most operating systems.
The R code used in the book is contained in the file www.stamats.de/RCodeEN.zip in form of text files
with file extension .R. The R code of each chapter runs independent of the other chapters.

Note:
For the book several messages generated by R were wittingly suppressed to save space and to keep
focus on the essentials. The suppressed messages are of no importance for the presented analyses.
Conversely, you should be aware that there might be additional messages when you run the code
contained in this book. This also includes innocuous warning messages.

The book was written using the software package LATEX in combination with pdfLATEX. In addition, the
contributed package "knitr" (Xie (2015b)) of the statistical software R was applied, which offers flex-
ible options for combining explanations with input and output of R.

Villingen-Schwenningen, August 2015

Matthias Kohl

www.stamats.de/RCodeEN.zip


1 Statistical Software R

The chapter includes a short introduction to the statistical software R where the following issues are
covered:

• development history based on the statistical programming language S
• modular structure in form of packages
• installation on various operating systems
• installation of the integrated development environment (IDE) RStudio

Working with R in practice is introduced in the subsequent chapters in combination with the introduction
to statistical data analysis.

1.1 R and its development history

The statistical software R (R Core Team (2022a)) is a free, non-commercial implementation of the statis-
tical programming language R developed at the AT&TBell Laboratories by Rick Becker, John Chambers
and co-workers. It is a development environment and a programming language for statistics and graphics
developed under GNU GPL-2/3 and therefore can be installed on arbitrary many computers without any
restriction.

R is a function based language. That is, all actions are initiated by calling functions. In doing so additional
parameters (arguments) are frequently passed to the functions controlling the concrete execution of the
function. The function is identified by its name, the parameters by their name or also by their position.
A call has the following structure (not always directly visible):
FunctionName(parameter1 = value1, parameter2 = value2, ..., parameterN = valueN)

We will see many examples in the course of the book.

We briefly summarize the development history of S and R:
05.05.1976: start of the development of version 1 of S (Chambers (2008, p. 476))
1980: release of version 2 of S (Chambers (2000))
1988: release of version 3 of S (S3) (Chambers (2000))
1992: start of the R project by Ross Ihaka and Robert Gentleman (Hornik (2008))
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August 1993: first files of R published on Statlib (Ihaka (1998)).
Juni 1995: publication of the first GPL (GNU General Public License) version of R (Ihaka (1998))
05.12.1997: the R project officially becomes a GNU project (Ihaka (1997).
1998: release of version 4 of S (S4) (Chambers (2000))
29.02.2000: R 1.0.0 released, an implementation of S3 (Hornik (2008))
04.10.2004: R 2.0.0 released, an advanced version of S4 (Chambers (2008), Hornik (2008))
22.04.2010: R 2.11.0 released, support of Windows 64bit-systems (Dalgaard (2010))
03.04.2013: R 3.0.0 released, unlimited memory allocation in case of 64bit-systems (Dalgaard (2013))
18.06.2015: R 3.2.1 released, version used for writing the first edition of the book (Dalgaard (2015))
24.04.2020: R 4.0.0 released, reduced memory requirements, new color palletes and much more (Dal-

gaard (2020))
In general, there is a new release (version R x.y.0) in spring (March/April) of each year with patches
released (R x.y.1, R x.y.2, etc.) over the year as necessary (R Core Team (2022c)).

The base system of R is developed by the so-called R Core Development Team currently consisting of
21 members (The R Foundation (2022a)). In addition, in 2002 the R Foundation (The R Foundation
(2022b)) has been founded where the R Core Development Team members participate as ordinary mem-
bers. The goals of the foundation include continuation of the development of R, the investigation of new
methods, teaching and training in the area of computational statistics, and organisation of assemblies and
conferences focused on computational statistics.

Furthermore, an R Consortium has been founded in June 2015 under the umbrella of the Linux Foun-
dation for a stronger support of R from industry. Members are companies such as Microsoft, Google,
Oracle, and HP (R Consortium (2022)).

Muenchen (2022) tries to estimate the popularity and the market share of data analysis software. The
statistical software R performs well in all statistics and today plays a central and in some fields even
leading role.

1.2 Structure of R

The statistical software R consists of packages that are organized in one or more libraries. There are three
categories of packages. First of all, there are the base packages providing the basic functionality of R,
which are maintained by the R Core Development Team. Currently, these are the following 14 packages:
"base", "compiler", "datasets", "grDevices", "graphics", "grid", "methods", "parallel",
"splines", "stats", "stats4", "tcltk", "tools", "utils"; for more information see Section 5 in
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the FAQs of R (Hornik (2022)).

The second group of packages, which are also part of the default installation of R, are the recom-
mended packages. These packagesmainly include additional, more complex statistical procedures. Cur-
rently, there are the following 15 packages: "boot", "class", "cluster", "codetools", "foreign",
"KernSmooth", "lattice", "MASS", "Matrix", "mgcv", "nlme", "nnet", "rpart", "spatial",
"survival" (Hornik (2022, Section 5)).

Finally, there are the contributed packages. Due to the open nature of R, anyone can contribute new
packages anytime, which for sure is an important aspect for the success and the wide distribution of R.
There is a continuously increasing developer community steadily contributing new packages to R, where
the number of contributed packages grows exponentially for more than ten years now. Currently, there
are clearly more than 25 000 packages (DataCamp Inc. (2022), Howson Ian (2022)). Those packages are
spread over several so-called repositories. The largest number of packages are on CRAN (Comprehensive
RArchiveNetwork, http://cran.r-project.org/). It currently containsmore than 18 000 packages.
Contributed packages for the analysis of genomic data are mainly part of Bioconductor (Gentleman et al.
(2004), http://www.bioconductor.org/), which currently provides more than 2 000 packages for
download. A strongly growing number of R packages is hosted on GitHub (https://github.com/)
and other git repositories.

1.3 Installation of R

The necessary files for installing R underWindows, Mac OSX, or Linux can be downloaded fromCRAN
(http://cran.r-project.org/) or one of its mirrors. In general, the installation of R does not differ
from the installation of other software on these operating systems.
Windows The Windows installer for 32- and 64-bit can be found under http://cran.r-project.

org/bin/windows/base/. Further information about the installation, updates or also uninstalling
are included in the FAQs for Windows (Ripley and Murdoch (2022)). A short video about the
installation is at https://youtu.be/6E3QJOc1bnM.

Mac OS X The necessary files for Mac OS X as well as a brief manual are given at http://cran.
r-project.org/bin/macosx/. Similar to Windows there is also a FAQ page for Mac OS X
(Iacus et al. (2022)) including additional information.

Linux There are files for
• Debian (http://cran.r-project.org/bin/linux/debian/, Ranke (2022))
• OpenSUSE (http://cran.r-project.org/bin/linux/suse/, Steuer (2022))
• Fedora, Red Hat Enterprise Linux (RHEL), CentOS, Scientific Linux, Oracle Linux (http:
//cran.r-project.org/bin/linux/fedora/, Úcar (2022))

• Ubuntu (http://cran.r-project.org/bin/linux/ubuntu/, Rutter (2022))
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These websites include also brief manuals describing the installation.
The official and comprehensive documentation for the installation of R is the manual “R Installation and
Administration” (R Core Team (2022d)). It also includes descriptions on how to install R from the source
files.

1.4 Working with R

Starting R under Windows opens a simple graphical user interface (GUI) shown in Figure 1.1. One can

Figure 1.1: R GUI (64-bit) on Windows (German system).

now start to enter R commands in the R Console window. This works for simple computations but not
for a real data analysis, which should be well documented and which we might want to repeat in the same
or a slightly modified form for a different dataset. In this case it is recommended to generate a text file
including the R commands. We can use any text editor for this purpose where it is common to use .r or
.R as file extension. However, in programming it is common practice to go one step further and use a
text editor with additional functionality or an integrated development environment (IDE).

Depending on the operating system there are several options. It seems that the largest functionality is
currently provided by the free and open source IDE RStudio (http://www.rstudio.org/). It can be
installed under Linux, Windows, and Mac OS X. I use it for data analysis as well as in my lectures. A
short video about the installation under Windows is at https://youtu.be/mHWiuLqsYtM.

Figure 1.2 shows the RStudio IDE after installation on my Ubuntu Linux system. It looks very similar
on Windows and Mac OS X. You can see three of the four panes. On the left hand side there is the R
Console, in which the statistical software R is running. On the top of the right hand side the windows

Download free eBooks at bookboon.com 4

http://www.rstudio.org/
https://youtu.be/mHWiuLqsYtM


Introduction to statistical data analysis with R 1 Statistical Software R

Figure 1.2: RStudio IDE after installation on Ubuntu Linux (German system).

Environment and History are shown. Environment shows all R objects that are currently loaded or were
generated during the current session. As RStudio has just been started, the Enviroment is empty. The
History contains an history of the R commands that have been executed. On the bottom of the right hand
side there are the windows Files, Plots, Packages, Help, and Viewer. Files shows a file browser, which
after the start shows the current working directory. Window Plots includes the plots generated in the
current session and hence is empty immediately after starting RStudio. In window Packages all pack-
ages installed on the system are shown and can also be loaded via this window. Window Help provides
several ways of help (local and online) for R and RStudio. Finally, in window Viewer local websites or
web applications can be displayed.

After opening a new R script by using the menu item File → New File → R Script, a fourth window
becomes visible (see Figure 1.3). It contains an empty and yet unnamed text file – a so-called R script.
Later on, we will see that text input is supported by several interactive functions, which make it easier for
beginners to write error free R code. Single R commands or also marked command blocks can be sent
to the R Console for execution via the menu item Run. By means of the menu item Source the whole R
script can be executed. The arrangement of the panes can be changed via the menu item Tools→ Global

Options...→ Pane Layout. More details about RStudio will be presented in the course of this book.

1.5 Markdown in combination with R

In the recent years, Markdown was added to R in addition to the classic R scripts. Markdown is a sim-
plified markup language. Its aim is to generate a document that is readable and understandable without
further transformation (Wikipedia contributors (2022e)). The implementation of markdown in R is called

Download free eBooks at bookboon.com 5
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Figure 1.3: RStudio IDE after opening a new R script on Ubuntu Linux (German system).

R Markdown and is supported by RStudio (https://rmarkdown.rstudio.com/). The book Xie et al.
(2018), which online version can be found under https://bookdown.org/yihui/rmarkdown/, con-
tains a detailed Rmarkdown documentation

Markdown respectively, R Markdown is a very simple and easy to learn language. Markdown files are
simply formatted text files, which can be translated into various formats (html, pdf, doc, etc.). The trans-
lation and the formatting of the file is controlled by the header of the file, which starts and ends with a
line consisting of �-. The translation from simple text file to different formats is carried out with the
help of various R packages, such as "knitr" (Xie (2015a)) and "rmarkdown" (Xie et al. (2018)).

For each of the following chapters of the book there is an R Markdown file (file extension: Rmd) con-
taining the R code of the respective chapter in the form of so-called R code chunks. The R Code Chunks
begin with �`r, and ends with �`. After the letter r, additional options can be added. Details about this
can be found in the online version of Xie (2015a) at https://yihui.org/knitr/. Between the code
chunks any additional text can be added and allows the user to create their own documentation of the
individual chapter.

1.6 Exercises

1. Install R and RStudio on your personal computer, notebook, etc.
2. Start RStudio, open a new R script and take a close look at all opened windows and all menu items.
3. Start RStudio, create a new R Markdown file. This requires the installation of additional package,
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which should be carried out automatically. Select HTML as output format. You will notice that
the generated new Rmd file is not empty, but already contains some examples. Compile the file by
using “knit”.

4. Acquaint yourself with the help options available in window Help.
5. Check, if the base and recommended packages are installed on your system (window Packages).

Which R packages are checked after starting RStudio and hence are active, i.e. are loaded and can
immediately be applied?

6. Acquaint yourself with R Markdown.

Download free eBooks at bookboon.com 7



2 Descriptive Statistics

The chapter is about descriptive statistics where the following topics are covered:
• Interplay of probability theory, descriptive and inferential statistics
• Types of attributes and scales of measurement
• Basic function for data import and export with R
• Data import of text files with RStudio
• Frequency tables, bar and pie charts
• Mode, quantile, quartile, median, range, interquartile range (IQR), MAD, box-and-whisker plot

• Cross table, �-coefficient, Pearson’s contingency coefficient, Cramér’s V
• Spearman’s �, Kendall’s �, scatter plot
• Arithmetic mean, geometric mean, standard deviation, coefficient of variation, quartile coefficient

of dispersion
• histogram, density estimation
• Pearson (product-moment) correlation coefficient

TheR code of this chapter is included in the RMarkdown file DescriptiveStatistics.Rmd, which you
can download from my GitHub account (link: https://github.com/stamats/ISDR/blob/main/

DescriptiveStatistics.Rmd). Right click on Raw. Then you can Save target as .... The least
difficulties arise, if you save my R Markdown files in the same folder as the data.

2.1 Basics

Figure 2.1 provides an overview of the interplay between probability theory, descriptive and inferential
statistics. The starting point is a population or universe that has to be clearly characterized. The goal is
to obtain some (new, important) insights about this population, e.g. which party will get how many votes
in the next election or which disease occurs with which frequency. A complete survey in most cases is
impossible, as for instance it would be to expensive due to the size of the population, or as the population
is continuously changing over time.

https://github.com/stamats/ISDR/blob/main/DescriptiveStatistics.Rmd
https://github.com/stamats/ISDR/blob/main/DescriptiveStatistics.Rmd
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Clearly characterized
population

Goal: New insights about a population

Description by complete      
survey not possible

Apply models from 
probability theory
for description

Representative
sample

usually via random selection

Descriptive Statistics: 
Description of the sample 
(no insights about the population!)

Inferential Statistics: 
Determine model parameters, 
validate models

Figure 2.1: Interplay between probability theory, descriptive and inferential statistics.

The statistical way out consists of postulatingmodels from probability theory where the model param-
eters are unknown and have to be determined. For this purpose a representative sample is drawn from
the population, usually via random selection. The task of descriptive statistics is to characterize this
random sample as accurately as possible. That is, descriptive statistics gains no insights about the popu-
lation, but describes “only” the (randomly) selected part from it. Descriptive statistics helps to become
acquainted with the data and to identify uncommon or erroneous values in the data. As a consequence,
it also makes an important contribution to inferential statistics, as valid inference is only possible by
knowing the data and the data quality (“garbage in, garbage out”).

The goal of inferential statistics is to draw inferences from a representative sample about the corre-
sponding population. An important part is to determine (estimate) the unknown parameters of assumed
probability models from the available data. In addition, the validity of existing models can be examined.

Note:
We are dealing with models, i.e. we should not assume that these models exactly reflect the reality.
Instead, the models under certain assumptions and at a certain time point offer a quite good description
of reality. In this sense, one should interpret the following quote of the famous statistician George E.P.
Box (Box and Draper (1987, p. 424)):
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"‘Essentially, all models are wrong, but some are useful."’

The following example demonstrates that model selection is crucial for the result and that identical data
under different assumptions may lead to contradictory results.
Example 2.1. In the Second World War, the goal was to better protect American bombers against fire of
the German air defense. For this purpose, the location and number of bullet hols of returning airplanes
were analyzed. Based on the collected information the Army concluded that the locations with extraordi-
nary many hits should get an additional armor. A plausible result under the assumption that the German
air defense especially aims at these parts of the air planes.
In contrast, the statistician Abraham Wald assumed in his analysis that the hits should be uniformly dis-
tributed over the air planes (Wald (1980)). Since this was not the case for the returning air planes, he
concluded that the not returning air planes were hit at very vulnerable locations and hence crashed. Con-
sequentially, he recommended to add amor at places where the returning air planes had no or only a few
hits.

The elements of a population – which might be persons, items, etc. – are described by a number of
attributes (variables). These attributes can be divided into several types of attributes as shown in
Figure 2.2. The main distinction is between qualitative (categorical) and quantitative (metric) attributes.
These two categories can be divided by the so-called scales of measurement into nominal, ordinal,
interval and ratio scaled, where nominal is the lowest and ratio scaled the highest level. In dependence
of the scale of measurement, certain arithmetic operations are allowed, where the number of allowed
operations increase from the left hand side (nominal) to the right hand side (ratio scaled). Therefore, it
is important to know the scales of measurement of the investigated variables. Otherwise, the measured
values of the variables – the so-called levels of the attributes – could for instance be wrongly described
by descriptive statistical methods.

Note:
The bounds between the scales of measurements are partly fluent; e.g., in practice, a medical score
with many levels is often treated like a metric variable.

The information content of variables increases with the scale of measurement. Thus, during the design of
a study, one should ideally select a variable with the highest possible scale of measurement to describe an
attribute. Unfortunately, this is not always possible in practice, as the measurement of more informative
variables usually requires more efforts and is more expensive. As a consequence, one can not always
avoid to select a less informative variable for a study.

We consider an example.
Example 2.2. Our goal is to characterize the age distribution of a sample or of the respective population.
In this case, the date of birth would be more informative than age in years or age groups, where the
effort to collect the data is more or less the same for all three options. Hence, the date of birth should
be selected. Furthermore, this selection offers the opportunity to restrict the statistical analysis to age in
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Figure 2.2: Types of attributes and scales of measurement.

years or age groups if it turns out later, that the additional information provided by date of birth is not
needed or irrelevant.

2.2 Excursus: Data Import and Export with R

Before we can start with a descriptive analysis, we must first plan and conduct a study and collect data.
In doing so, a variety of things have to be considered. We do not elaborate on those things here, as it
would go beyond the scope of the book.

In larger studies, the collected data is often saved in specifically designed databases, in smaller studies
one or several files of a spreadsheet software are usually used. For the statistical analysis the organization
of the data in a table is most effective, where some redundancy may be very helpful. For more details
we refer to Broman and Woo (2018).

Nowadays, most software offers an option to export data, where in allmost all cases on cen export the
data in one or or several text files. Therefore, we will only consider data import from text files in this
section. Beyond this, R offers a variety of options to import data such as the import of files from other
statistical software packages or from spread sheet software or by interfaces to databases. An overview of
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the various options for data import and export is included in manual “R Data Import/ Export” (R Core
Team (2022b)).

The starting point for reading data from text files is function scan. With this function, data can be
imported from the console or a text file. However, in most cases one needs not to directly apply function
scan, but one can use function read.table, which is much simpler to handle. Furthermore, there are
functions read.csv, read.csv2, read.delim oder read.delim2 that are even more specialized; see
Table 2.1.

Function name Description
scan Read data from console or a text file.
read.table Read data from a text file in spreadsheet format.
read.csv Special case of read.table with decimal point “.” and column

separator “,” (“English csv-file”).
read.csv2 Special case of read.table with decimal point “,” and column

separator “;” (“German csv-file”).
read.delim Special case of read.table with decimal point “.” and column

separator “∖t” (tab).
read.delim2 Special case of read.table with decimal point “,” and column

separator “∖t” (tab).

Table 2.1: Overview of some basic functions for data import with R.

We can also use RStudio to import text files, which is especially helpful for beginners. In window
Environment there is menu item Import Dataset. After selecting From Text File... a window opens
for choosing a text file. After choosing a text file, the window shown in Figure 2.3 opens. The provided
options correspond to the most important arguments of the read.* functions. The data is imported
via one of the read.* functions, where the call for reading in the data is subsequently shown in figure
History. To ensure the exact reproducibility of the import, the R code shown in figure History should be
transferred to the current R script via the menu item To Source.

Note:
Even if the import fails, which for instance may happen if special characters are included in the file
path, the R code for reading in the data is generated in window History. By transfering this R code to
the current R script, making necessary corrections (e.g. correcting the file path) and re-running the R
code one can after all import the file.

For using the result of the import for subsequent analyses, it must be assigned to some variable. The
name of the variable can be specified in field Name (see Fig. 2.3). After the import, a data object with
the chosen name is visible in window Environment; see Figure 2.4. The data object can be viewed in the
editor window by clicking on its name.
The data object is a so-called data.frame, the basic data structure in R for saving datasets. It is similar
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Figure 2.3: RStudio window for import of text files.

Figure 2.4: RStudio window Environment with a data object.

to a table in a spreadsheet program. The columns correspond to the variables (attributes), the rows rep-
resent the observed levels of the studied subjects.

The counterpart to the introduced read.* functions for exporting data are the functions write.table,
write.csv, and write.csv2. If you work with English system settings, you should use write.csv for
exporting data. The generated file can then be openedwithout problems in a current spreadsheet software.

Another form of data import are functions load and readRDS, whichcan be applied to load so-called
.RData respectively .rds files. These files have been generated by R function save or save.image
respectively saveRDS. With these functions one can save single objects (save or saveRDS) or the entire
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content of an R session (save.image) in an .Rdata respectively .rds file. In addition, one can specify
if the file should be compressed (default) or not.

2.3 Import of ICU-Dataset

In this section, we read in the ICUData.csv dataset, which we will analyze in the book in various ways.
It consists of data from 500 patients of an intensive care unit (ICU). The data is not from real patients,
but I have generated it based on my long-term experience with data of intensive care patients. The data
is similar to real data with respect to many aspects.

Please, use the following steps to import the dataset:
1. Download the dataset frommy GitHub-Account and save it on your computer. Avoid using special

characters in the file path.
Link: https://github.com/stamats/ISDR/blob/main/ICUData.csv
Right click on Raw and then you can Save target as....

2. Start RStudio.
3. Change the working directory. Click on ... in window Files (at right edge) and select the folder, in

which you have saved ICUData.csv. Next, click on More→ Set As Working Directory.
4. Check the working directory by entering the following R code in window Console

1 getwd ( )

followed by the Enter/Return-key. The output should correspond to the folder, in which you have
saved file ICUData.csv. If not, please repeat the above steps again.

5. Save the R Markdown file DescriptiveStatistics.Rmd in the same folder as the dataset and
open it with RStudio.

6. Import the ICU dataset by running the following R code.
1 ICUData ← r e a d . c s v ( f i l e = " ICUData .csv " )

In your R markdown file, place the cursor in the line with the above R code and click on Run. By
doing this, the R code is copied to window Console and executed. There should be no output. In
case there is an error message – probably

Error in file(file , "rt"): cannot open the connection

either saving the file or changing the working directory has not worked properly. Please, check
steps 3 and 4 and run the R code again as described above.
Alternatively you can import the data directly from my website.
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1 Link ← " h t t p s : / / r aw . g i t h u b u s e r c o n t e n t . c om / s t ama t s / ISDR / main / ICUData . csv "
2 ICUData ← r e a d . c s v ( f i l e = Link )

In this case you should check your working directory, too and set it to the folder that include the
respective R markdown file.
As a further alternative, you can use the import function of RStudio as described in Section 2.2.
Please make sure that your settings match the settings visible in Figure 2.3.

7. Take a look at window Environment and check if there is object ICUData in the field Data (see
Fig. 2.4). It must be an object of type data.frame with 500 observations (obs.) of 11 variables.
If this is true, the import was successful.

Note:
In step 7 we have used the assignment operator <- to assign the result of the import via read.csv the
name ICUData. That is, the data are saved in a data.frame with name ICUData and we can use this
object for further analysis.

Although the import looks successful at the first glance, it is still possible that the dataset was not imported
as required. Thus, I strongly recommend to check the import more precisely. First, one can use function
View to take a closer look at the imported dataset – if it is not too large.

1 View ( ICUData )

You can also achieve this by clicking on the name of the dataset in window Environment of RStudio.
By doing this, one can for instance see, if the column names and row names (if any) were correctly
transferred, if the entries in the columns are correct, and if there are empty lines or columns. As different
data types look identical or very similar in this view, one should also take a closer look at the structure
of the dataset. For this purpose function str is provided.

1 s t r ( ICUData )

'data.frame ': 500 obs. of 11 variables:

$ ID : int 1 2 3 4 5 6 7 8 9 10 ...

$ sex : chr "female" "female" "male" "male" ...

$ age : int 76 60 66 74 68 68 70 55 75 71 ...

$ surgery : chr "other" "gastrointestinal" "cardiothoracic" "other" ...

$ heart.rate : num 98 80 99.6 110 94.1 88.8 102 106 109 102 ...

$ temperature : num 36.5 38.1 37.4 39.1 38.5 35.1 36.7 39.8 39.9 38.4 ...

$ bilirubin : num 6.51 14.52 22.97 19.3 39.08 ...

$ SAPS.II : int 57 52 57 45 49 53 25 19 58 56 ...

$ liver.failure: int 0 0 0 0 0 0 0 0 0 0 ...

$ LOS : int 1 2 1 2 1 1 1 1 1 3 ...

$ outcome : chr "died" "home" "secondary care/rehab" "home" ...

A similar result one can obtain in window Environment of RStudio by clicking on the blue arrow symbol
in front of ICUData in the field Data. The result is shown in Figure 2.5.
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Figure 2.5: View of the exact structure of a dataset in RStudio.

The two displays are not identical in this case. This is because the import shown in Figure 2.5 was created
with an older version of R. In R version 4.0.0 an important change was made here and the argument
stringsAsFactors was changed from TRUE to FALSE. Since it makes sense for the purposes of our
analyses to read the “string” variables as factors (categorical variables), we import the data again. This
time with the additional setting TRUE for the argument stringsAsFactors.
1 ICUData ← r e a d . c s v ( f i l e = " ICUData .csv " , s t r i n g sA s F a c t o r s = TRUE)
2 ## resp.

3 Link ← " h t t p s : / / r aw . g i t h u b u s e r c o n t e n t . c om / s t ama t s / ISDR / main / ICUData . csv "
4 ICUData ← r e a d . c s v ( f i l e = Link , s t r i n g sA s F a c t o r s = TRUE)

We take another look at the structor of the imported data.
1 s t r ( ICUData )

'data.frame ': 500 obs. of 11 variables:

$ ID : int 1 2 3 4 5 6 7 8 9 10 ...

$ sex : Factor w/ 2 levels "female","male": 1 1 2 2 1 2 2 2 2 2 ...

$ age : int 76 60 66 74 68 68 70 55 75 71 ...

$ surgery : Factor w/ 5 levels "cardiothoracic ",..: 4 2 1 4 4 1 1 1 1 1

...

$ heart.rate : num 98 80 99.6 110 94.1 88.8 102 106 109 102 ...

$ temperature : num 36.5 38.1 37.4 39.1 38.5 35.1 36.7 39.8 39.9 38.4 ...

$ bilirubin : num 6.51 14.52 22.97 19.3 39.08 ...

$ SAPS.II : int 57 52 57 45 49 53 25 19 58 56 ...

$ liver.failure: int 0 0 0 0 0 0 0 0 0 0 ...

$ LOS : int 1 2 1 2 1 1 1 1 1 3 ...

$ outcome : Factor w/ 4 levels "died","home ",..: 1 2 4 2 2 4 4 4 3 4 ...
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The dataset consists of the following variables:
ID: consecutive numbers (integer) from 1 to 500 for identification of the patients
sex: a nominal variable (Factor) with levels: female and male
age: age in years (integer)
surgery: kind of surgery, nominal variable (Factor) with levels: cardiothoracic, gastrointestinal, neuro,

other, and trauma
heart.rate: maximum heart rate in beats per minute (numeric = real number) during the entire stay on

the ICU
temperature: maximum body temperature in ◦C (numeric) during the entire stay on the ICU
bilirubin: maximum level of bilirubin in�mol/l (numeric) during the entire stay on the ICU. The red dye

of human blood is digraded and as an intermediate stage bilirubin emerges, a yellowish substance.
Standard values are below 21 �mol/l where higher values for instance may indicate liver problems
(Wikipedia contributors (2022b)).

SAPS.II: SAPS-II Score (integer) at admission to the ICU. The score reflects the physiological con-
dition of a patient and is used to estimate the severity of disease. The higher the score the more
severe is the disease. The range of values is from 0 to 163, where the values are associated with a
probability of dying (Wikipedia contributors (2021)).

liver.failure: presence of liver failure (integer) where 0 and 1 indicate no and yes, respectively; that
is, strictly speaking this is a nominal variable coded by numbers.

LOS: length of stay on the ICU in days (integer)
outcome: kind of discharge from the ICU (Factor). The possible levels are: died, home, other hospital,

and secondary care/rehab.
Note:
The names of the variables heart.rate, SAPS.II, and liver.failurewere changed during import.
The respective column names include a blank and hence are no syntactically correct variable names
in R. Such changes are done automatically during import. One can avoid it by setting the parameter
check.names. The respective R code would be

1 ICUData ← r e a d . c s v ( f i l e = " ICUData .csv " , check .names = FALSE)

However, check.names = FALSE should only be used after some experience in working with R, as
it may lead to certain unwanted side effects and problems.
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2.4 Excursus: Installation of Contributed Packages

First, make sure that you have an active internet connections. For installing packages one needs to apply
function install.packages. We install the contributed packages "DescTools" (Andri et mult. al.
(2022)), "scales" (Wickham and Seidel (2022)), "ggplot2" (Wickham (2009)) and "MKdescr" (Kohl
(2022a)), which we will use in this chapter.
1 i n s t a l l . p a c k a g e s ( c ( " DescTools " , " s c a l e s " , " g gp l o t 2 " , "MKdescr " ) )

With function c (short for concatenate) the four package names are concatenated to a single vector and
can be installed together.

Note:
When you install for the first time a contributed package, the installationmay not start immediately, but
a new window may open up, in which the path to the library, in which the package shall be installed,
is requested. Here, I would recommend to use the default setting of your operating system; i.e., if
necessary, select this option and confirm it.

RStudio offers an alternative way to install a package via the window Packages. One can open a window
for installation via the menu item Install; see Figure 2.6. The default settings shown in the window

Figure 2.6: Installation of R packages in RStudio.

should only be changed, if you are very experienced in using R. In particular, it is important that Install
dependencies is checked. Since most of the R packages require other R packages to work properly, this
option ensures that these additional R package are automatically installed together with the specified
package.

Note:
Please run the installation only once. Afterwards, the packages are installed and need not be reinstalled
every time when you run an analysis. On the contrary, a repeated installation may damage the current
installation and the respective package can not be used (loaded) any more. In such a case, you should
close RStudio without saving the workspace and afterwards start it again. After the start the workspace
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should be empty. If this is not the case, you have a file named .RData in your current working directory
that is automatically loaded at start-up. In such a case, you should close RStudio again and then remove
this file. Afterwards, start RStudio again and run function remove.packages with the name of the
package that does not load any more. Finally, install the respective package again; for instance

1 r emove . package s ( " g gp l o t 2 " )
2 i n s t a l l . p a c k a g e s ( " g gp l o t 2 " )

As explained in Section 1.2, there are thousands of R packages. Hence, it is reasonable, that installed
package are not loaded automatically. Otherwise your system would become slower and slower the more
package you have installed. Instead, all packages except the base packages (see Section 1.2) must be
explicitly loaded via function library. We load the four packages we have installed previously.

1 l i b r a r y ( DescTools )
2 l i b r a r y ( s c a l e s )
3 l i b r a r y ( g gp l o t 2 )
4 l i b r a r y ( MKdescr )

In most of the cases, a successful loading of a package can only be recongnized by the lack of an error
message. However, nowadays more and more packages print short messages during the load process
confirming the successful loading. Sometimes there are also warnings. One should carefully read such
warnings, but in most of the cases they can be ignored. Repeatedly running library is unproblematic.
The function recognizes that a given package is already loaded and does not reload the package.

Note:
Sometimes the installation of a package may also fail as the installation of dependent packages failed.
In such a case, you should read the error message(s) of the installation or loading of the package very
carefully and you should try to remove the errors step by step. Because of the wide distribution of
R, searching through the internet may help to find a solution in case of unknown or unclear error
messages.

2.5 Categorical Variables

2.5.1 Univariate Analysis

First, we consider all variables separately (univariate) and start with nominal variables. That is, we ana-
lyze a single variable, whose levels are a set of possible names without any ordering. Examples are sex,
blood group, rhesus factor, or also surgery, liver failure and outcome as in case of our ICU dataset (cf.
Section 2.3).

Please first import the ICU dataset as described in Section 2.3, if you have not done it yet. In addition,
install the contributed packages "DescTools" (Andri et mult. al. (2022)) and "ggplot2" (Wickham
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(2009)) as explained in Section 2.4.

In case of nominal variables, descriptive statistics consists of calculating and visualizing absolute and
relative frequencies. With the following R Code we compute the absolute frequencies of the kind of
surgery the ICU patients obtained.
1 t a b l e ( ICUData$ s u r g e r y )

cardiothoracic gastrointestinal neuro other

223 79 46 121

trauma

31

The computation is done by function table. With symbol $ we can access the variables of a dataset
(data.frame). In this case, we access variable surgery, which includes the kind of surgery. We obtain
the relative frequencies by dividing these numbers by the number of patients. This is also called the
empirical frequency distribution. It is not recommended to use 500 here, even if it would be correct.
It is better and more general to divide by the number of rows of the dataset, which can be obtained by
function nrow.
1 t a b l e ( ICUData$ s u r g e r y ) / nrow ( ICUData )

cardiothoracic gastrointestinal neuro other

0.446 0.158 0.092 0.242

trauma

0.062

That is, almost half of the patients underwent a cardiothoracic surgery. This most frequent level is also
calledmode. At second position, we have the other surgeries, followed by gastrointestinal surgeries. The
smallest number of surgeries were caused by trauma, slightlymore by neurological causes. A quicker way
to calculate absolute and relative frequencies is offered by function Freq from package "DescTools"
(Andri et mult. al. (2022)).
1 Freq ( ICUData$ s u r g e r y )

level freq perc cumfreq cumperc

1 cardiothoracic 223 44.6% 223 44.6%

2 gastrointestinal 79 15.8% 302 60.4%

3 neuro 46 9.2% 348 69.6%

4 other 121 24.2% 469 93.8%

5 trauma 31 6.2% 500 100.0%

The function Freq additionally computes the cumulative absolute and relative frequencies.
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The graphical representation of relative and absolute frequencies is best done by bar plots. We first
depict the absolute frequencies applying function barplot.
1 b a r p l o t ( t a b l e ( ICUData$ s u r g e r y ) )

cardiothoracic gastrointestinal neuro other trauma
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We add a title (argument main) and label the y axis (argument ylab) of the bar plot.
1 b a r p l o t ( t a b l e ( ICUData$ s u r g e r y ) , main = "Kind of s u r g e r y " ,
2 y l ab = " Abso lu t e f r e qu en cy " )
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There are many more arguments that can be used to further adapt the plot. We will get to know some
more of them in the course of the book. Various examples of how to configure bar plots are also provided
by the help page of barplot, which will be shown in Window Help of RStudio after running ?barplot.
Alternatively, one can search for help using the search field included in window Help of RStudio.

Current versions of RStudio also offers an interactive way of help. If you start writing code in an R
script, the names of matching objects and, with some delay, matching help is shown; see Figure 2.7. By
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Figure 2.7: Interactive context based help in RStudio.

pressing the F1 key, the related help page opens in window Help.

A bar plot of the relative frequencies can be generated with a very similar R code as in case of the abso-
lute frequencies. One just has to replace the absolute by relative frequencies. In addition to the standard
graphics, there are other graphic systems implemented in R. Currently, the most frequently used system
beside the standard system is probably the implementation of grammar of graphics in package "ggplot2"
(Wickham (2009)). It is one of the packages that made an important contribution to the success of R.
Thus, we use this system to display the relative frequencies.

We generate a bar plot of the relative frequencies using functions ggplot and geom_bar, where the width
of the bars is reduced by argument width. With the help of function aeswe can set the representation of
the data. In the case at hand, we use the relative frequencies as percentages, which are calculated by the
fixed expression (..count..)/sum(..count..). For the scaling of the y-axis there are many options,
which can be generated by scale_y_*. In this case we use a continuous scaling of the y-axis, where
we define the label format using percent_format. This function is included in the package "scales"
(Wickham and Seidel (2022)). Finally, the functions ggtitle and ylab are applied to add a title and
label the y axis of the plot.

1 ## Assign data

2 ggp l o t ( ICUData , a e s ( x=s u r g e r y ) ) +
3 ## Add bars with relative frequencies

4 geom_bar ( a e s ( y = ( . . c o u n t . . ) / sum ( . . c o u n t . . ) ) , w id th = 0 . 5 ) +
5 ## The percent of relative frequency

6 s c a l e _ y _ c o n t i n u o u s ( l a b e l s = p e r c e n t _ f o rma t ( a c cu r a cy = 1 ) ) +
7 ## Title and label of y axis

8 g g t i t l e ( " Kind of s u r g e r y " ) + y l ab ( " R e l a t i v e f r e qu en cy i n %" )
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In practice, pie charts are frequently used instead of bar plots. Of course, this is also possible with R.
The respective function is pie.

1 p i e ( t a b l e ( ICUData$ s u r g e r y ) , main = "Kind of s u r g e r y " )

cardiothoracic

gastrointestinal

neuro
other

trauma

Kind of surgery

This kind of diagram has some drawbacks (see also Chapter 3). On the help page of pie you can read:
“Pie charts are a very bad way of displaying information. The eye is good at judging linear
measures and bad at judging relative areas. A bar chart or dot chart is a preferable way of
displaying this type of data.”

Thus, it is better to use a bar plot or dot chart to make the representation easier to read for the human eye.
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Note:
The use of appropriate colors and diagrams is in more detail described in Chapter 3.

In the sequel, we additionally assume that the categories are ordered; that is, we consider ordinal vari-
ables. The ordering offers several additional ways for statistical analysis. In particular, quantiles are
applicable for various purposes.
Definition 2.3 (Quantile). Let x1, x2,… , xn ∈ ℝ (n ∈ ℕ) be some observations and let x(1), x(2),… , x(n)
be the increasingly sorted observations. Then, the �-quantile for � ∈ (0, 1) is defined by

q� =

⎧

⎪

⎨

⎪

⎩

x(ceiling(n�)
) if n� ∉ ℤ

[x(n�), x(n�+1)] if n� ∈ ℤ
(2.1)

The following remark includes some additional explanations about �-quantiles.
Remark 2.4. (a) If n� is no integer, the �-quantile corresponds to the ceiling(n�)-th observation. Here
“ceiling” means rounding to the next larger integer. In R there is function ceiling; e.g.

1 c e i l i n g ( c (2 .01 , 3 . 8 8 ) )

[1] 3 4

If n� is integer, the �-quantile is not unique and all values in the bounded interval [x(n�), x(n�+1)) are valid
�-quantiles. In practice, this is not satisfactory. Therefore, there is a number of proposals regarding the
value of the interval that should by chosen as representative of the �-quantile. Themost obvious approach
probably is to use the midpoint of the interval. In R function quantile nine different approaches are
implemented; see also Example 2.5.
(b) Important special cases of quantiles are percentiles for � ∈ {0.01, 0.02,… , 0.99, 1.00}, quartiles

for � ∈ {0.25, 0.50, 0.75}, and the median for � = 0.5.

Example 2.5. We consider the numbers 2, 4, 6,… , 20 and want to compute the 20-th percentile, i.e.
� = 0.2. Hence, we get n� = 10 ⋅ 0.2 = 2. Therefore, the 20-th percentile is each number in the bounded
interval [x(2), x(3)] = [4, 6]. For performing this computation in R, we first have to enter the data. In the
case at hand, the functions c (short for concatenate) or seq (short for sequence) can be used.

1 ## Concatenating numbers to a vector

2 x ← c ( 2 , 4 , 6 , 8 , 10 , 12 , 14 , 16 , 18 , 20)
3 ## Sequence: begin = 2, end = 20, distance = 2

4 x ← seq ( from = 2 , t o = 20 , by = 2)

In both cases the result is the vector x including the required numbers. We apply function quantile to
the vector.

1 x
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[1] 2 4 6 8 10 12 14 16 18 20

1 ## R default

2 q u a n t i l e ( x , p rob s = 0 . 2 )

20%

5.6

1 ## Type used by SAS software

2 q u a n t i l e ( x , t y p e = 3 , p rob s = 0 . 2 )

20%

4

1 ## Type used by SPSS and Minitab software

2 q u a n t i l e ( x , t y p e = 6 , p rob s = 0 . 2 )

20%

4.4

We visualize the results using function illustrate.quantile of package "MKdescr" (Kohl (2022a)).

1 i l l u s t r a t e . q u a n t i l e ( x , a l p h a = 0 . 2 )

| |
results of function quantile

population quantile

5 10 15 20
x

Illustration of 0.2−Quantile

Note:
As Example 2.5 demonstrates, we must be aware that different software programs may give different
results in case of quantiles.

We return to our ICU dataset. The medical score SAPS II is a typical example of an ordinal attribute.
We first determine the median of the values via function median.
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1 median ( ICUData$ SAPS.I I )

[1] 42

1 ## also possible

2 q u a n t i l e ( ICUData$SAPS.II , p rob s = 0 . 5 )

50%

42

That is, 50% of the patients have a SAPS II score ≤ 42 and 50% of the patients have a score ≥ 42. The
median is a so-called location parameter and does not give us any information about the variability
of the values. For this purpose we can use quantiles, too. A very frequently used scale or dispersion
parameter is the so-called interquartile range (IQR), the distance between third and first quartile (i.e.
q0.75 − q0.25). In R we can use function IQR to compute the IQR.

1 ## length of the interval

2 IQR ( ICUData$ SAPS.I I )

[1] 26

1 ## IQR-interval

2 q u a n t i l e ( ICUData$SAPS.II , p rob s = c (0 .25 , 0 . 75 ) )

25% 75%

31 57

Consequently, the middle 50% of our patients possess a range of 26 SAPS II points. Another option to
evaluate the disperson of the values is the median absolute deviation (MAD)

MAD (x1, x2,… , xn) = median{|x1 −M|, |x2 −M|,… , |xn −M|

} (2.2)

whereM = median {x1, x2,… , xn}. We obtain with help of function mad

1 mad ( ICUData$SAPS.II , c o n s t a n t = 1 . 0 )

[1] 13

We have to set the additional parameter constant, otherwise a standardized version of the MAD is
calculated.

1 mad ( ICUData$ SAPS.I I )

[1] 19.2738
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The standardized version of MAD is
MAD (x1, x2,… , xn) = 1.4826 ⋅median{|x1 −M|, |x2 −M|,… , |xn −M|

} (2.3)
By applying this standarization, theMADunder certain assumptions (normally distributed data) becomes
comparable to the standard deviation, which we will introduce in Section 2.6. Also in the case of the
interquartile range it is possible to standardize accordingly, which in the case of normally distributed data
leads to a value that can be compared with the standard deviation.

IQR (x1, x2,… , xn) = 0.7413 ⋅ (q0.75 − q0.25) (2.4)
The standardized interquartile range can be calculated with function sIQR from package "MKdescr"

(Kohl (2022a)).
1 sIQR ( ICUData$ SAPS. I I )

[1] 19.27383

The result is identical to the standardized MAD. This is because in the present case the unstandardized
MAD is just half the size of the interquartile range, where the standardization constant of MAD is just
twice the size of the standardization constant of the interquartile range.

For depicting ordinal data we can again use bar plots.
1 ## Assign data

2 ggp l o t ( ICUData , a e s ( x=SAPS. I I ) ) +
3 ## Add bars

4 geom_bar ( a e s ( y = 100∗ ( . . c o u n t . . ) / sum ( . . c o u n t . . ) ) ) +
5 ## Percent of the relative frequency

6 s c a l e _ y _ c o n t i n u o u s ( l a b e l s = p e r c e n t _ f o rma t ( a c cu r a cy = 1 ) ) +
7 ## Title and label of y axis

8 g g t i t l e ( "SAPS I I " ) + y l ab ( " R e l a t i v e f r e qu en cy i n %" )

0%

100%

200%

300%

25 50 75 100 125
SAPS.II

R
el

at
iv

e 
fr

eq
ue

nc
y 

in
 %

SAPS II
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Due to the large number of possible characteristic values, the bar chart is already quite reminiscent of a
histogram, which we will get to know in Section 2.6.1.

Quantiles are also the basis for one of the most important graphical display in descriptive statistics, the
so-called box-and-whisker plot. The box-and-whisker plot very well summarizes the information of
median, IQR and range of the observations. In addition, it can be applied to identify suspicious observa-
tions (outliers).

We generate a box-and-whisker plot of the SAPS II values by applying function illustrate.boxplot
of package "MKdescr" (Kohl (2022a)) to illustrate the definition of the box-and-whisker plot by real
data.

1 i l l u s t r a t e . b o x p l o t ( ICUData$ SAPS. I I )

| |middle 50%| |lower 25% | |upper 25%

| |maximum range of whiskersoutlier region outlier region

m
edian

1. quartile (Q
1)

3. quartile (Q
3)

1. quartile −
 1.5 x IQ

R

low
er fence

3. quartile +
 1.5 x IQ

R

upper fence

IQR = Q3 − Q1

0 50 100
x

Illustration of Box− and Whisker−Plot

As we already know, the median is 42. The box of the box-and-whisker plot represents the middle 50%
of the observations, which lie in the bounded interval [31, 57], whose length corresponds to the IQR,
which is 26 points. Moreover, 25% of the values are smaller than 31 and accordingly, 25% of the values
are larger than 57. Obviously, two patients were very severely sick with scores of 99 and 125 shown as
outliers. Consequentially, the probability of surviving for these two patients was very small and hence,
it is no surprise that both patients died. Nine of the ten patients with the highest SAPS II scores (≥ 83)
died. We repeat the plot applying function geom_boxplot of package "ggplot2" (Wickham (2009)).

1 ggp l o t ( ICUData , a e s ( x = 1 , y = SAPS.I I ) ) +
2 geom_boxplo t ( ) + xl im ( 0 , 2 ) + y l ab ( "SAPS I I Score " ) +
3 g g t i t l e ( " 500 ICU P a t i e n t s " ) +
4 ## remove labels from x-axis

5 x l ab ( " " ) + theme ( a x i s . t i c k s . x = e l emen t _b l a nk ( ) ,
6 a x i s . t e x t . x = e l emen t _b l a nk ( ) )
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We use function xlim to increase the limits of the x-axis, i.e. the box appears narrower. The two values 0
and 2 represent the limits (i.e. start and end) of the x-axis. Since the x-axis does not include any relevant
information and any labels may be rather irritating, we remove all labels from this axis applying functions
xlab and theme.
When working with only a few data points, it is also recommended to display the observed values in the
boxplot. Here we additionally use function geom_point.

1 ggp l o t ( ICUData , a e s ( x = 1 , y = SAPS.I I ) ) +
2 geom_boxplo t ( ) + xl im ( 0 , 2 ) + y l ab ( "SAPS I I Score " ) +
3 geom_poin t ( ) + g g t i t l e ( " 500 ICU P a t i e n t s " ) +
4 ## remove labels from x-axis

5 x l ab ( " " ) + theme ( a x i s . t i c k s . x = e l emen t _b l a nk ( ) ,
6 a x i s . t e x t . x = e l emen t _b l a nk ( ) )
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The disadvantage is that values overlap. A possible solution is alpha blending. In this way, the points are
still drawn on the top of each other. However, the number of points is represented by the color intensity;
i.e., the darker a point is, the more points are overlapping.

1 ggp l o t ( ICUData , a e s ( x = 1 , y = SAPS.I I ) ) +
2 geom_boxplo t ( ) + xl im ( 0 , 2 ) + y l ab ( "SAPS I I Score " ) +
3 geom_poin t ( a l p h a = 0 . 1 ) + g g t i t l e ( " 500 ICU P a t i e n t s " ) +
4 ## remove labels from x-axis

5 x l ab ( " " ) + theme ( a x i s . t i c k s . x = e l emen t _b l a nk ( ) ,
6 a x i s . t e x t . x = e l emen t _b l a nk ( ) )
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Another possibility is the use of jittering In this case all the points are randomly jittered in x- and/or
y-direction. This is implemented in the function geom_gitter.

1 ggp l o t ( ICUData , a e s ( x = 1 , y = SAPS.I I ) ) +
2 geom_boxplo t ( ) + xl im ( 0 , 2 ) + y l ab ( "SAPS I I Score " ) +
3 g e om_ j i t t e r ( h e i g h t = 0 , wid th = 0 .1 , a l p h a = 0 . 2 ) +
4 g g t i t l e ( " 500 ICU P a t i e n t s " ) +
5 ## remove labels from x-axis

6 x l ab ( " " ) + theme ( a x i s . t i c k s . x = e l emen t _b l a nk ( ) ,
7 a x i s . t e x t . x = e l emen t _b l a nk ( ) )
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In summary, the box-and-whisker plot is one of the most important graphics in descriptive statistics and
should be used in any descriptive analysis of ordinal or quantitative data.

Another interesting property of the �-quantile is its robustness against outliers (gross errors) or more
generally incorrect values, respectively. More precisely, up to �% of the data for � ∈ (0, 0.5] and 1− �%
of the data for � ∈ [0.5, 1) may be incorrect values. This fact makes the median especially attractive as
it possesses the maximum robustness in this sense.
Example 2.6. Wie again consider the sequence 2, 4, 6,… , 20 and compute median and third quartile as
well as 90% and 95% quantile.

1 x ← c ( 2 , 4 , 6 , 8 , 10 , 12 , 14 , 16 , 18 , 20)
2 q u a n t i l e ( x , p rob s = c (0 .5 , 0 .75 , 0 .9 , 0 . 95 ) )

50% 75% 90% 95%

11.0 15.5 18.2 19.1

Now, we increase the largest number from 20 to 200, which corresponds to 10% outliers in the case at
hand. We obtain

1 x ← c ( 2 , 4 , 6 , 8 , 10 , 12 , 14 , 16 , 18 , 200)
2 q u a n t i l e ( x , p rob s = c (0 .5 , 0 .75 , 0 .9 , 0 . 95 ) )

50% 75% 90% 95%

11.0 15.5 36.2 118.1
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The 95% and also the 90% quantile are affected and are clearly increased. In contrast, median and third
quartile show no change.
Another option to visualize the distribution of the data, is the so-called empirical cumulative distribution
function.
Definition 2.7 (Empirical cumulative distribution function). Let x1, x2,… , xn ∈ ℝ (n ∈ ℕ) be some
observations and let x(1), x(2),… , x(n) be the increasingly sorted observations. Furthermore, let ℎ(1), ℎ(2),
…, ℎ(n) be the associated relative frequencies. Then, the empirical cumulative distribution function is

F̂n(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if x < x(1)
k
∑

i=1
ℎ(i) if x(k) ≤ x < x(k+1)

1 if x > x(n)

(2.5)

The definition implies certain properties.
Remark 2.8. Looking at the definition, the empirical cumulative distribution function is a monotone
increasing step function, which is continuous from above.

We use functions ecdf and plot to compute and plot the empirical cumulative distribution function of
the SAPS II values.

1 p l o t ( e cd f ( ICUData$ SAPS. I I ) , x l a b = "SAPS I I " , d o . p o i n t s = FALSE ,
2 main = " Emp i r i c a l c umu l a t i v e d i s t r i b u t i o n f u n c t i o n " )

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Empirical cumulative distribution function

SAPS II

F
n(

x)

Because of the quite large number of observations leading to a fine partition of the x-axis and many
small jumps, we do not plot points (do.points = FALSE). The points can be used to illustrate that the
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function is continuous from above. We can generate a similar plot with function stat_ecdf of package
"ggplot2" (Wickham (2009)).

1 ggp l o t ( ICUData , a e s ( x = SAPS. I I ) ) + s t a t _ e c d f ( ) + x l ab ( "SAPS I I " ) +
2 y l ab ( " Fn ( x ) " ) + g g t i t l e ( " Emp i r i c a l c umu l a t i v e d i s t r i b u t i o n f u n c t i o n " )

0.00

0.25

0.50

0.75

1.00

25 50 75 100 125
SAPS II

F
n(

x)
Empirical cumulative distribution function

However, in practice, this plot is used rather rarely, because the interpretation requires some experience
and is rather difficult for users.

2.5.2 Bivariate Analysis

So far we have analyzed the variables separately, but now we want to investigate the relationship between
pairs of variables. We start with nominal variables. In this case, the analysis consists of calculating and
plotting absolute or relative frequencies of all possible combinations of levels. This leads to a so-called
contingency table or cross table. We analyse variables sex and surgery of the ICU dataset. We can
compute the absolute frequencies of all level combinations with function table.

1 t a b l e ( ICUData$ sex , ICUData$ s u r g e r y )

cardiothoracic gastrointestinal neuro other trauma

female 61 31 19 57 7

male 162 48 27 64 24

The absolute numbers suggest that men undergo clearlymore cardiothoracic surgeries thanwomen. Since
the dataset includes clearly more males than females, we should secure this hypothesis by additionally
considering relative frequencies. We apply function proportions to the cross table to compute relative
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frequencies. The argument margin controls if the relative frequencies are computed row- (margin = 1)
or column-wise (margin = 2). In our example, we need the row-wise calculation.
1 p r o p o r t i o n s ( t a b l e ( ICUData$ sex , ICUData$ s u r g e r y ) , margin = 1)

cardiothoracic gastrointestinal neuro other trauma

female 0.34857143 0.17714286 0.10857143 0.32571429 0.04000000

male 0.49846154 0.14769231 0.08307692 0.19692308 0.07384615

For improving the representation, we compute percentages and round the results via function round to
one decimal place.
1 round (100∗ p r o p o r t i o n s ( t a b l e ( ICUData$ sex , ICUData$ s u r g e r y ) , margin = 1 ) , 1 )

cardiothoracic gastrointestinal neuro other trauma

female 34.9 17.7 10.9 32.6 4.0

male 49.8 14.8 8.3 19.7 7.4

For representing absolute and relative frequencies in a cross table we can also use function PercTable
of package "DescTools" (Andri et mult. al. (2022)).
1 Pe r cTab l e ( t a b l e ( ICUData$ sex , ICUData$ s u r g e r y ) , r f r q = " 010 " )

cardiothoracic gastrointestinal neuro other

female freq 61 31 19 57

p.row 34.9% 17.7% 10.9% 32.6%

male freq 162 48 27 64

p.row 49.8% 14.8% 8.3% 19.7%

trauma

female freq 7

p.row 4.0%

male freq 24

p.row 7.4%

The computation of the relative frequencies is controlled by argument rfrq. The value �010� represents
row-wise relative frequencies. The results confirm our first impression that cardiothoracic surgeries were
more frequent in case of men. Conversely, females had remarkably more “other” surgeries.

The strength of the relationship of two (or more) nominal (or also ordinal) variables can be determined
by so-called contingency coefficients.
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Definition 2.9 (Contingency coefficients). Let us assume n ∈ ℕ observations of two variables with l ∈ ℕ
and m ∈ ℕ levels, respectively. That is, the observed pairs of values can be represented by a matrix with
l rows and m columns, where the total number of entries is k = l ⋅ m. Furthermore, let ni (i = 1,… , k)
be the number of observations in cell i, pi (i = 1,… , k) the theoretical probability of cell i, and hence
ei = N ⋅ pi (i = 1,… , k) the expected number of observations in cell i. Then, the �2-statistics is

�2 =
k
∑

i=1

(ni − ei)2

ei
(2.6)

Based on �2 we get the following contingency coefficients

(i) �-coefficient

� =

√

�2

n
(2.7)

(ii) Pearson’s contingency coefficient

C =

√

�2

n + �2
(2.8)

(iii) Cramér’s V

V =

√

�2

n ⋅ (M − 1)
M = min{l, m} (2.9)

We give some further explanations.
Remark 2.10. (a) In practice, it is important to be aware of the maximum possible value of the computed
contingency coefficient. Furthermore, a clear disadvantage of contingency coefficients is that they only
measures the strength of a relationship, but are not able to identify the direction of a relationship, which
for instance is of interest in case of ordinal attributes.
(b) The �-coefficient attains values in the interval [0, 1], where 1 is only possible under certain cir-

cumstances. If the result is 0, the two attributes are independent.
(c) The range of Pearson’s contingency coefficient is

[

0,
√

M
M−1

]

(M = min{l, m}), where 0 indicates
independence of the investigated attributes.
(d) Cramér’s V attains values in the interval [0, 1], where again 0 stands for independence. One

speaks of week dependence if V ≤ 0.3, moderate dependence if 0.3 < V ≤ 0.7, and strong dependence
if V > 0.7.

We apply functions Phi, ContCoef, and CramerV of package "DescTools" (Andri et mult. al. (2022))
to determine the strength of the relationship between sex and surgery.

1 ## phi coefficient

2 Phi ( t a b l e ( ICUData$ sex , ICUData$ s u r g e r y ) )

[1] 0.1846974

1 ## Pearson's contingency coefficient

2 ContCoef ( t a b l e ( ICUData$ sex , ICUData$ s u r g e r y ) )
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[1] 0.1816254

1 ## Cramer's V

2 CramerV ( t a b l e ( ICUData$ sex , ICUData$ s u r g e r y ) )

[1] 0.1846974

We obtain only a weak dependence between sex and surgery. AsM = 2, the �-coefficient and Cramér’s
V are identical.

Bar charts are the usual way to graphically represent contingency tables. We plot the variables sex and
surgery, where we apply function barplot in combination with table and prop.table.

1 b a r p l o t ( p r o p . t a b l e ( t a b l e ( ICUData$ sex , ICUData$ s u r g e r y ) , margin = 1 ) ,
2 b e s i d e = TRUE, l e g e n d . t e x t = TRUE, y l ab = " R e l a t i v e f r e qu en cy " ,
3 main = " Sex and s u r g e r y " )

cardiothoracic gastrointestinal neuro other trauma
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The argument beside = TRUE guarantees that the bars of females and males are beside and not above
each other. By legend.text = TRUEwe obtain a legend explaining the relation between colors and sex.
We will now regenerate the graph by using the function of the package "ggplot2"(Wickham (2009)).
The relative frequencies are calculated within the function geom_bar using the function tapply. With
�dodge� as position, the bars will be displayed side by side (and not on the top of each other). We also
use the additional function scale_fill_grey, which fills the bars with shades of gray.

1 ggp l o t ( ICUData , a e s ( x = su rge ry , f i l l = sex ) ) +
2 geom_bar ( a e s ( y = ( . . c o u n t . . ) / t a p p l y ( . . c o u n t . . , . . f i l l . . , sum ) [ . . f i l l . . ] ) ,
3 p o s i t i o n = " dodge " ) + s c a l e _ f i l l _ g r e y ( ) +
4 s c a l e _ y _ c o n t i n u o u s ( l a b e l s = p e r c e n t _ f o rma t ( a c cu r a cy = 1 ) ) +
5 y l ab ( " R e l a t i v e f r e qu en cy [%] " ) + x l ab ( " Su rge ry " ) +
6 g g t i t l e ( " Sex and s u r g e r y " )
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With the help of the function tapply we can split the values of one variable with the values of another
variable and apply a function to this.
In case of ordinal attributes, we can use rank correlations instead of contingency coefficients, which show
not only the strength, but also the direction of a relationship. The rank of an observation corresponds to
its position inside the sample after decreasingly sorting the observations; i.e., the largest observation has
rank 1, the second largest rank 2, etc.
Definition 2.11 (Spearman’s �). Let (x1, y1), (x2, y2),… , (xn, yn) (n ∈ ℕ) be pairs of observations with
ranks (rx1, ry1), (rx2, ry2),… , (rxn, ryn). Then, Spearman’s � is

� =

n
∑

i=1

(

rxi − mrx
) (

ryi − mry
)

√

n
∑

i=1

(

rxi − mrx
)2 n

∑

i=1

(

ryi − mry
)2

(2.10)

where mrx and mry are the respective average ranks; i.e.

mrx =
1
n

n
∑

i=1
rxi und mry =

1
n

n
∑

i=1
ryi (2.11)

Spearman’s � attains values in [−1, 1], where 1 represents a perfect monotone increasing relation and
−1 a perfect monotone decreasing relation.

We give some additional explanations.
Remark 2.12. (a) If a value was observed several times (at least twice) this is called a binding. If there
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are no bindings, the computation of Spearman’s � simplifies and it holds

� = 1 −
6

n
∑

i=1
(rxi − ryi)2

n(n2 − 1)
(2.12)

(b) Beside Spearman’s �, Kendall’s � is a frequently applied rank correlation coefficient. It compares
the number of concordant and discordant pairs of observations. The result is in [−1, 1]. A value of 1
implies that both variables have exactly the same order, and −1 that they are in perfect inverse order.
Kendall’s � is more appropriate than Spearman’s � in case of small samples or scores with uneven scales.
For more details we refer to Section 3.2.5 of Hedderich and Sachs (2018).
(c) Rank correlations are also very useful in case of metric variables and can help to identify monotone

relations.

We compute the correlation between SAPS II and length of stay (LOS), where we apply function cor.

1 ## Spearman 's rho

2 co r ( ICUData$SAPS.II , ICUData$LOS , method = " spearman " )

[1] 0.3379928

1 ## Kendall's tau

2 co r ( ICUData$SAPS.II , ICUData$LOS , method = " k e n d a l l " )

[1] 0.2518917

Note:
The numbers we have obtained above describe the strength of a monotone relationship, but only if
the relationship is truly monotone. Monotony is an assumption that should be verified before the
computation is performed. In general, one should be aware that most statistical analyses are based
on certain assumptions. If these assumptions are violated, the meaning of the results is unclear. That
is, if there is no simple monotone relationship between SAPS II and length of stay (LOS), the above
results for Spearman’s � or Kendall’s � may lead tomisinterpretations. The verification of assumptions
usually requires a sound knowledge about the investigated relationships.

As expected, there is a positive relationship. Patients with a high SAPS II score are more severely ill and
thus have to stay on the ICU for a longer time period. What works against this, is the fact that patients with
a very high SAPS II value also have a high probability of dying, hence might die just after admission to
ICU. We display the observed values in a scatter plot to check, if this is actually true. We apply function
plot.

1 p l o t ( ICUData$SAPS.II , ICUData$LOS , x l ab = "SAPS I I " , y l a b = "LOS" ,
2 main = "SAPS I I and LOS" )
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Indeed, the patients with the highest SAPS II values have a small LOS and died quite rapidly. The
ordinal or discrete structure of the attributes leads to an overlap of observations. We can use a so-called
alpha blending to better visualize the structure of the point cloud; that is, the final color emerges from
a combination of the original colors. We demonstrate this by means of package "ggplot2" (Wickham
(2009)). The possible shaps of points that are available in R by default are given on the help page of
function points.

1 ggp l o t ( ICUData , a e s ( x=SAPS.II , y=LOS ) ) +
2 ## shape = 19: slightly larger point

3 ## alpha = 0.25: strength of blending

4 geom_poin t ( shape =19 , a l p h a=0 . 25 ) +
5 ## title and labels

6 g g t i t l e ( "SAPS I I and LOS" ) + x l ab ( "SAPS I I " ) + y l ab ( "LOS" )

Download free eBooks at bookboon.com 40



Introduction to statistical data analysis with R 2 Descriptive Statistics

0

25

50

75

100

25 50 75 100 125
SAPS II

LO
S

SAPS II and LOS

The darker the color the more observations overlap. In summary, we can assume a monotone increasing
connection for a certain range of SAPS II scores but surely not for the full range. Therefore, the computed
rank correlations should be interpreted with care. It would even be better to investigate the relationship
in a different way, by some kind of regression analysis. However, this is beyond the scope of this book.

2.6 Metric Variables

2.6.1 Univariate Analysis

As distances and even ratios are defined, further analyses are possible in case of metric variables. If
not explicitly mentioned, the introduced analyses are possible for interval and ratio scaled variables.
Probably the most frequently used statistics to describe data is the arithmetic mean.
Definition 2.13 (Arithmetic mean). Let x1, x2,… , xn ∈ ℝ (n ∈ ℕ) be some observations. Then, the
arithmetic mean is

AM (x1,… , xn) =
1
n

n
∑

i=1
xi (2.13)

In this section, we again use our ICU dataset; see Section 2.3. We compute the arithmetic mean of the
maximum body temperature during the stay on the ICU applying function mean.

1 mean ( ICUData$ t emp e r a t u r e )

[1] 37.6632
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That is, the arithmetic mean is only slightly above the normal range, where the result suggests a precision
that is actually not true. The temperatures are only given with one decimal place. Consequentially, the
arithmetic mean should be rounded to one decimal place. For this, we use function round.

1 round ( mean ( ICUData$ t emp e r a t u r e ) , 1 )

[1] 37.7

It is advisable, to always compare the arithmetic mean with the median, as the median gives another
description of the middle of the data and is very robust against outliers (see Example 2.6).

1 median ( ICUData$ t emp e r a t u r e )

[1] 37.7

As median and arithmetic mean can be regarded as identical, it is likely, that the distribution of the
maximum body temperature is quite symmetric around the arithmetic mean (resp. median). In addition,
there are either no outliers or positive and negative outliers neutralize each other. We repeat the analysis
using variable LOS (length of stay) given in days.

1 round ( mean ( ICUData$LOS ) , 1 )

[1] 5.3

1 median ( ICUData$LOS)

[1] 1

In this case, we see a clear difference between arithmetic mean and median. Either the distribution of
LOS is skewed (more precisely right-skewed, see also Remark 2.23) or there are outliers pulling the
arithmetic mean to the right. We will be able to distinguish these two cases below, where we consider
diagrams of the data.

Another location parameter is the geometric mean, which is applied in case of relative changes. This
measure of location is only meaningfully defined for strictly positive data.
Definition 2.14 (Geometric mean). Let x1, x2,… , xn ∈ (0,∞) (n ∈ ℕ) be some observations. Then, the
geometric mean is

GM (x1,… , xn) = n
√

x1 ⋅ x2 ⋅… ⋅ xn (2.14)
In the following remark, we describe an important connection between geometric and arithmetic mean.
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Remark 2.15. By applying the rules of logarithm we obtain

AM (log(x1),… , log(xn)) =
1
n

n
∑

i=1
log(xi) =

1
n
log

(

x1 ⋅ x2 ⋅… ⋅ xn
)

= log
(

n
√

x1 ⋅ x2 ⋅… ⋅ xn
)

= log
(

GM (x1,… , xn)
)

(2.15)

That is, the arithmetic mean of the logarithmized observations is equal to the logarithm of the geometric
mean where the base of logarithm is irrelevant. If we select the natural logarithm (ln), we can rewrite it
by applying the e-function to

GM (x1,… , xn) = eAM (ln(x1),…,ln(xn)) (2.16)
If one observes processes following an exponential growth or decay, it is often easier to take the loga-
rithm of the data and analyze the logarithmized observations. This is for instance true for the bilirubin
measurements included in our ICU dataset. The base and recommended packages do not include the
geometric mean, but we can apply function Gmean of package "DescTools" (Andri et mult. al. (2022)).
We compute the natural logarithm of the geometric mean.

1 l og (Gmean ( ICUData$ b i l i r u b i n ) )

[1] 2.847326

As our derivation in Remark 2.15 shows, the following R code must yield the same result, which is
actually true.

1 mean ( l og ( ICUData$ b i l i r u b i n ) )

[1] 2.847326

Consequentially, we may compute the geometric mean not only via function Gmean, but also by

1 exp ( mean ( l og ( ICUData$ b i l i r u b i n ) ) )

[1] 17.24162

where exp calculates the e-function. In addition, this form of computation has numerical advantages
as summation is numerically more stable than calculating products. Therefore, the geometric mean is
usually implemented in this way.

In practice, not only location but also dispersion of the observations is of interest. The probably most
frequently applied measure of dispersion is the standard deviation, which is the square root of the vari-
ance.
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Definition 2.16 (Variance, standard deviation). Let x1, x2,… , xn ∈ ℝ (n ∈ ℕ) be some observations.
Then, the sample variance is

Var (x1,… , xn) =
1
n

n
∑

i=1

(

xi − AM (x1,… , xn)
)2 (2.17)

and sample standard deviation reads

SD (x1,… , xn) =
√

Var (x1,… , xn) (2.18)
We give some additional explanations.
Remark 2.17. (a) Instead of 1

n
one often uses 1

n−1 for computing variance and standard deviation. This
minor diffence also makes the difference between descriptive and inferential statistics. With standariza-
tion 1

n
we describe the sample, whereas with standardization 1

n−1 we obtain an unbiased parameter es-
timate for the underlying population; for more details see Example 5.3. If the sample size n is not too
small, we can neglect the difference in practice.
(b) Let us assume the observations were measured in unitU . Then, variance has unitU 2 and standard

deviation unit U . This is one reason why standard deviation is more frequently applied in practice than
variance.

We compute variance and standard deviation for the maximum body temperature. The respective func-
tions in R are var and sd both using standardization 1

n−1
.

1 va r ( ICUData$ t emp e r a t u r e )

[1] 3.011869

1 sd ( ICUData$ t emp e r a t u r e )

[1] 1.735474

By multiplying the result with n−1
n
, we obtain the “true” sample values.

1 n ← nrow ( ICUData )
2 ( n−1 ) / n∗ va r ( ICUData$ t emp e r a t u r e )

[1] 3.005846

1 s q r t ( ( n−1 ) / n ) ∗ sd ( ICUData$ t emp e r a t u r e )

[1] 1.733738

Rounding to one decimal place, which should be done based on the given precision, would lead to iden-
tical results. Similarly to the comparison of arithmetic mean and median, we now compare standard
deviation and the standardized MAD (cf. equations (2.3) and (2.4)).
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1 sd ( ICUData$ t emp e r a t u r e )

[1] 1.735474

1 mad ( ICUData$ t emp e r a t u r e )

[1] 1.18608

1 sIQR ( ICUData$ t emp e r a t u r e )

[1] 1.111952

There are clear differences between the results. Either the temperature distribution can not be described
by a distribution that is symmetric around the arithmetic mean or there are outliers distorting the standard
deviation. We will identify the cause below.

In case of positive measurements, one in practice often uses the following standardized dispersion mea-
sure.
Definition 2.18 (Coefficient of variation). Let x1, x2,… , xn ∈ [0,∞) (n ∈ ℕ) be some positive observa-
tions. Then, the coefficient of variation is

CV (x1,… , xn) =
SD (x1,… , xn)
AM (x1,… , xn)

(2.19)

We give some additional explanations.
Remark 2.19. (a) The coefficient of variation is a dimensionless quantity, which is frequently given in
percent; that is, percental dispersion with reference to the arithmetic mean. Consequentially, it should
only be applied to ratio scaled variables.

(b) There are variants of the coefficient of variation based on quantiles. One option is based on median
and MAD

medCV (x1,… , xn) =
MAD (x1,… , xn)
median (x1,… , xn)

(2.20)
Alternatively, one can use quartiles leading to the so-called quartile coefficient of dispersion

QCD (x1,… , xn) =
IQR (x1,… , xn)

median (x1,… , xn)
(2.21)

We apply these standardized dispersion measures to the maximum body temperature and use the func-
tions CV, medCV and iqrCV from package "MKdescr" (Kohl (2022a)).

1 CV( ICUData$ t emp e r a t u r e )

[1] 0.04607877

1 medCV( ICUData$ t emp e r a t u r e )

Download free eBooks at bookboon.com 45



Introduction to statistical data analysis with R 2 Descriptive Statistics

[1] 0.03146106

1 iqrCV ( ICUData$ t emp e r a t u r e )

[1] 0.02949474

We get only minor variations around the arithmetic mean respectively, median in the range of about 3-
5%, where the values of medCV and iqrCV are quite similar.

In the following definition we give the standard deviation for the geometric mean.
Definition 2.20 (Geometric standard deviation). Let x1, x2,… , xn ∈ (0,∞) (n ∈ ℕ) be some positive
observations. Then, the geometric standard deviation is

SDGM (x1,… , xn) = e

√

1
n

n
∑

i=1
(ln(xi)−ln(GM (x1,…,xn)))2 (2.22)

We briefly motivate this definition.
Remark 2.21. It holds

SD
(

ln(x1),… , ln(xn)
)

=

√

√

√

√

1
n

n
∑

i=1

(

ln(xi) − AM
(

ln(x1),… , ln(xn)
))2 (2.23)

By using the connection (2.15) and by analogously introducing the geometric standard deviation, we get

SD
(

ln(x1),… , ln(xn)
)

=

√

√

√

√

1
n

n
∑

i=1

(

ln(xi) − ln
(

GM (x1,… , xn)
))2

= ln
(

SDGM (x1,… , xn)
)

(2.24)

By applying the e-function, Definition 2.20 follows. Futhermore, the expression below the sigma sign
may be rewritten as

ln(xi) − ln
(

GM (x1,… , xn)
)

= ln
(

xi
GM (x1,… , xn)

)

(2.25)

We check equation (2.24) using the bilirubin values of our ICU dataset, where we use function Gsd of
package "DescTools" (Andri et mult. al. (2022)) for computing the geometric standard deviation.

1 l og ( Gsd ( ICUData$ b i l i r u b i n ) )

[1] 0.7238379

1 sd ( l og ( ICUData$ b i l i r u b i n ) )

[1] 0.7238379
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In addition to location and scale measures, shape measures are used in case of metric variables. A shape
measure of symmetry is skewness.
Definition 2.22 (Skewness). Let x1, x2,… , xn ∈ ℝ (n ∈ ℕ) be some observations. Then, the skewness
is

Skew (x1,… , xn) =
1
n

n
∑

i=1

(

xi − AM (x1,… , xn)
SD (x1,… , xn)

)3

(2.26)

If Skew (x1,… , xn) < 0, the data distribution is left-skewed or negatively skewed, if Skew (x1,… , xn) >
0, it is right-skewed or positively skewed.

We give some additional explanations.
Remark 2.23. (a) By centering the date with respect to the arithmetic mean and standardizing it by the
standard deviation, which is also called z-transformation, one gets the so-called z-score, a dimensionless
score. As skewness is defined based on the z-score, it is also a dimensionless measure.
(b) The skewness of a distribution can also be identified by using arithmetic mean and median. If

AM (x1,… , xn) < median (x1,… , xn), the distribution is left-skewed. Conversely, if AM (x1,… , xn) >
median (x1,… , xn) the distribution is right-skewed; see also Figure 2.8.

right−skewed

Arith. mean
Median

symmetric left−skewed

Figure 2.8: Examples of skewness.

We compute the skewness of the maximum body temperature by applying function Skew of package
"DescTools" (Andri et mult. al. (2022)).

1 Skew ( ICUData$ t emp e r a t u r e )

[1] -8.77457

The result, which indicates a strongly left-skewed distribution, contradicts our observation above, where
median and arithmetic mean were (more or less) identical giving evidence for a symmetric distribution.
A closer look at the measured temperatures shows that patient 398 had an abnormally low maximum (!)
body temperature of 9.1◦C (measurement or transcription error?). We repeat the computation without
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patient 398. For accessing the maximum body temperature of patient 398, we can use square brackets [
and his index.

1 ## Patient 398

2 ICUData$ t emp e r a t u r e [ 398 ]

[1] 9.1

A negative index means that this index is omitted. We obtain

1 Skew ( ICUData$ t emp e r a t u r e [−398 ] )

[1] 0.3142909

Now, the skewness is close to 0 and confirms our first impression. The distribution of the values, without
patient 398, is quite symmetric around the arithmetic mean. Furthermore, omitting patient 398 also
clearly reduces the standard deviation

1 sd ( ICUData$ t emp e r a t u r e [−398 ] )

[1] 1.173187

which is now very close to the standardized MAD and the standardized IQR.
Note:
Single outliers may have a strong influence on certain statistical procedures and may clearly distort
the results. Examples are arithmetic mean, variance/standard deviation, and skewness. Therefore, it
is important to always investigate the data with respect to suspicious values.

We compute the skewness for length of stay (LOS). Based on arithmetic mean and median, we concluded
above that the distribution must be right-skewed. Thus, we would expect a positive value of skewness.

1 Skew ( ICUData$LOS)

[1] 4.880826

Indeed, the result confirms our first analysis.

Another measure of shape is the kurtosis.
Definition 2.24 (Kurtosis). Let x1, x2,… , xn ∈ ℝ (n ∈ ℕ) be some observations. Then, the kurtosis is

Kurt (x1,… , xn) =
1
n

n
∑

i=1

(

xi − AM (x1,… , xn)
SD (x1,… , xn)

)4

− 3 (2.27)

If Kurt (x1,… , xn) < 0, the data distribution is platykurtic, if Kurt (x1,… , xn) > 0, it is leptokurtic.
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We give some additional explanations.
Remark 2.25. The reference for defining the kurtosis is the normal distribution (see Section 4.2). By
subtracting 3 in the above definition, the normal distribution has kurtosis 0. For clarification one speaks
in this case also from excess or excess kurtosis. If we observe a negative (excess) kurtosis, the distribution
is flatter and less curved than the normal distribution. If the (excess) kurtosis is positive, the distribution
is steeper and more curved than the normal distribution; see also Figure 2.9.

platykurtic

Normal distribution

leptokurtic

Normal distribution

Figure 2.9: Examples of kurtosis.

We compute the kurtosis of the maximum body temperature of the ICU patients using function Kurt of
package "DescTools" (Andri et mult. al. (2022)). Due to the strong impact of patient 398 on skewness,
we compare the kurtosis with and without this patient.
1 Kur t ( ICUData$ t emp e r a t u r e )

[1] 144.4649

1 Kur t ( ICUData$ t emp e r a t u r e [−398 ] )

[1] 0.3431707

This shows once again how big the influence of one single observation can be. We conclude that the
distribution is not extremely leptokurtic, but except for one observation can be quite well described by a
normal distribution. We determine the kurtosis of length of stay (LOS).
1 Kur t ( ICUData$LOS)

[1] 33.59482

That is, the distribution of LOS is leptokurtic.

We proceed with various options for plotting metric variables. We start with a box-and-whisker plot of
the maximum body temperature. We apply the functions of package "ggplot2" (Wickham (2009)).
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1 ## Box-and-whisker plot at position x = 1

2 ggp l o t ( ICUData , a e s ( x = 1 , y = t emp e r a t u r e ) ) +
3 geom_boxplo t ( ) + xl im ( 0 , 2 ) + y l ab ( "Maximum body t emp e r a t u r e " ) +
4 g e om_ j i t t e r ( h e i g h t = 0 , wid th = 0 .1 , a l p h a = 0 . 1 ) +
5 g g t i t l e ( " 500 ICU p a t i e n t s " )
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We see some minor outliers and the value of patient 398, which extremly differs from all other observa-
tions.

We futher analyse the distribution using histograms. A histogram is a special kind of bar chart, that is
obtained by splitting the range of a metric variable in consecutive intervals. For each interval the absolute
or relative frequency of the included observations is visualized by a bar. For choosing the intervals, there
are some rules of thumb, which are used by software programs to automatically select a number of equal
length intervals. However, in most cases it is better to select the intervals by hand and choose a division
that fits to the context. We generate a histogram of the maximum body temperatures, where we use
intervals of length 0.5◦C . We can specify the intervals by argument breaks.

1 h i s t ( ICUData$ t empe r a t u r e , b r e a k s = seq ( from = 9 .0 , t o = 42 , by = 0 . 5 ) ,
2 main = " 500 ICU p a t i e n t s " , x l a b = "Maximum body t emp e r a t u r e " ,
3 y l ab = " Abso lu t e f r e qu en cy " )
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Again, we clearly see the extreme value of patient 398. To get a better view of the distribution, we can
either remove the value of patient 398 or restrict the range of the x-axis by argument xlim. We select
the second option. Furthermore, we add a vertical line for the median by applying function abline.
1 h i s t ( ICUData$ t empe r a t u r e , b r e a k s = seq ( from = 9 .0 , t o = 42 , by = 0 . 5 ) ,
2 main = " 500 ICU p a t i e n t s " , x l a b = "Maximum body t emp e r a t u r e " ,
3 y l ab = " Abso lu t e f r e qu en cy " , x l im = c ( 3 3 , 4 3 ) )
4 a b l i n e ( v = median ( ICUData$ t emp e r a t u r e ) )
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The plot confirms our previous computations; i.e., the distribution is quite symmetric around the arith-
metic mean respectively median and the distribution of the maximum body temperature in the ICU popu-
lation (except for patients with strong undercooling/hypothermia) is probably well described by a normal
distribution.

Next, we take a look on length of stay, where we use function geom_histogram of package "ggplot2"
(Wickham (2009)) to generate a histogram. As length of the intervals we use one day, which we can
specify by argument binwidth.

1 ggp l o t ( ICUData , a e s ( x = LOS ) ) + geom_his togram ( b i nw id t h = 1) +
2 x l ab ( " Length o f s t a y i n days " ) + y l ab ( " Abso l u t e f r e qu en cy " ) +
3 g g t i t l e ( " 500 ICU p a t i e n t s " )
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The figure confirms our previous computations. We get a clearly right-skewed and quite spiky distribu-
tion. The majority of patients had a LOS of only a few days. The maximum LOS was 105 days.

Alternatively, we can visualize the distribution of the observed values bymeans of their estimated density.
The empirical densitymay be regarded as a smoothed version of a histogram. In R we can apply function
density to compute the density (more precisely: the kernel density estimation). The result can be
visualized via function plot. We consider the maximum body temperature and omit patient 398.

1 p l o t ( d e n s i t y ( ICUData$ t emp e r a t u r e [−398 ] ) , x l a b = "Maximum body t emp e r a t u r e " ,
2 y l ab = " Den s i t y " , main = " 500 ICU p a t i e n t s " )
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We get a density that is quite symmetric around the arithmetic mean. If we want to display histogram and
density together, we must use argument freq = FALSE in the call of function hist. With this setting
the density scale is used for plotting the histogram. The function lines adds a line to an already existing
plot and can be used to add the estimated density to the histogram.

1 h i s t ( ICUData$ t emp e r a t u r e [−398 ] , b r e a k s = seq ( from = 33 , t o = 42 , by = 0 . 5 ) ,
2 x l ab = "Maximum body t emp e r a t u r e " , y l a b = " Den s i t y " , f r e q = FALSE ,
3 main = " 500 ICU p a t i e n t s " )
4 l i n e s ( d e n s i t y ( ICUData$ t emp e r a t u r e [−398 ] ) )
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The density curve adapts well to the histogram. We use function ggplot in combination with functions
geom_histogram and geom_density to generate a similar plot with package "ggplot2" (Wickham
(2009)).

1 ggp l o t ( ICUData [−398 , ] , a e s ( x=t emp e r a t u r e ) ) +
2 geom_his togram ( ae s ( y= . . d e n s i t y . . ) , b i nw id t h = 0 . 5 ) +
3 geom_dens i t y ( c o l o r = " o range " ) + y l ab ( " Den s i t y " ) +
4 x l ab ( "Maximum body t emp e r a t u r e " ) +
5 g g t i t l e ( " 500 ICU p a t i e n t s " )
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The estimated densities are very similar or even identical in both figures, however the histograms differ.
That happens, because in case of geom_histogram one considers intervals that are open to the right-
hand side and closed to the left-hand side, whereas in case of hist it is the other way round, i.e. open
to the left and closed to the right. In priciple, this could be achieved, by additionally setting closed

= "right" in function geom_histogram. Unfortunately, this does not currently work and closed =

"left" and closed = "right" give identical results.

1 ggp l o t ( ICUData [−398 , ] , a e s ( x=t emp e r a t u r e ) ) +
2 geom_his togram ( ae s ( y= . . d e n s i t y . . ) , b i nw id t h = 0 .5 , c l o s e d = " r i g h t " ) +
3 geom_dens i t y ( c o l o r = " o range " ) + y l ab ( " Den s i t y " ) +
4 x l ab ( "Maximum body t emp e r a t u r e − c l o s e d = ’ r i g h t ’ " ) +
5 g g t i t l e ( " 500 ICU p a t i e n t s " )
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1 ggp l o t ( ICUData [−398 , ] , a e s ( x=t emp e r a t u r e ) ) +
2 geom_his togram ( ae s ( y= . . d e n s i t y . . ) , b i nw id t h = 0 .5 , c l o s e d = " l e f t " ) +
3 geom_dens i t y ( c o l o r = " o range " ) + y l ab ( " Den s i t y " ) +
4 x l ab ( "Maximum body t emp e r a t u r e − c l o s e d = ’ l e f t ’ " ) +
5 g g t i t l e ( " 500 ICU p a t i e n t s " )
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Both figures are identical. For practical applications this small bug in the function geom_histogram is
not relevant.
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Note:
In case of ggplot, we not only omit the temperature of patient 398 but by [-398,] remove all data
of patient 398. More precisely, we remove row 398 from the dataset.

We may also visualize the distribution of the maximum body temperature by means of the empirical
cumulative distribution function (cf. Definition 2.7). We first apply functions ecdf and plot where we
again omit patient 398.

1 p l o t ( e cd f ( ICUData$ t emp e r a t u r e [−398 ] ) , x l a b = "Maximum body t emp e r a t u r e " ,
2 main = " Emp i r i c a l c umu l a t i v e d i s t r i b u t i o n f u n c t i o n " , d o . p o i n t s = FALSE)
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Because of the large number of small jumps, we do not plot points (i.e., do.points = FALSE). We can
also generate an analogous figure by means of function stat_ecdf of package "ggplot2" (Wickham
(2009)).

1 ggp l o t ( ICUData [−398 , ] , a e s ( x = t emp e r a t u r e ) ) + s t a t _ e c d f ( ) +
2 x l ab ( "Maximum body t emp e r a t u r e " ) + y l ab ( " Fn ( x ) " ) +
3 g g t i t l e ( " Emp i r i c a l c umu l a t i v e d i s t r i b u t i o n f u n c t i o n " )

Download free eBooks at bookboon.com 57



Introduction to statistical data analysis with R 2 Descriptive Statistics

0.00

0.25

0.50

0.75

1.00

34 36 38 40 42
Maximum body temperature

F
n(

x)

Empirical cumulative distribution function

Another important application of these way to display the empirical distribution of the data, is to compare
it with the distribution of an assumed probability model. In doing so, a graphical validation of an assumed
model is possible. We will investigate this in more detail in Chapter 5.

2.6.2 Bivariate Analysis

The strength and direction of the relationship between metric variables can be described by means of
correlation, similar to the case of ordinal data (see Section 2.5.2). Beside rank correlations one can use
the Pearson correlation.
Definition 2.26 (Pearson correlation). Let (x1, y1), (x2, y2),… , (xn, yn) ∈ ℝ2 be some pairs of observa-
tions. Then, the Pearson (product-moment) correlation (coefficient) is

r =

n
∑

i=1

(

xi − AM (x1,… , xn)
) (

yi − AM (y1,… , yn)
)

√

n
∑

i=1

(

xi − AM (x1,… , xn)
)2 n

∑

i=1

(

yi − AM (y1,… , yn)
)2

(2.28)

The Pearson correlation may attain values in [−1, 1] where 1 represents a perfect positive linear relation
and −1 a perfect negative linear relation.

We give some additional explanations.
Remark 2.27. (a) The assumption that there is a linear relation and hence, the Pearson correlation is
appropriate to describe the strength of the relationship is a rather strong assumption. Rank correlations
are more flexible, as they can be used to describe monotone relationships.
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(b) A closer look at the equations shows that Spearman’s � (cf. Definition 2.11) is nothing else but the
Pearson correlation of the ranks.
(c) By adding 1

n
to the numerator of the Pearson correlation, the numerator is identical to the sample

covariance of the two variables. By expanding the denominator analogously, it becomes the product of
the two standard deviations. That is, the Pearson correlation can be regarded as a normalized covari-
ance.

We investigate the connection between maximum body temperature and maximum heart rate.

1 co r ( ICUData$ t empe r a t u r e , ICUData$ h e a r t . r a t e )

[1] 0.1763067

There is a weak positive relation; i.e., with increasing body temperature also the heart rate tends to
increase. The relevance of this result is again difficult to judge, as it is unclear whether there really is
a linear relation between these two variables. Before we plot the data, let’s first see how point clusters
generated by two linearly related variables look like. For this we use the function simCorVars from the
package "MKdescr" (Kohl (2022a)).
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We thus obtain ellipsoidal point clusters and, in the case of a correlation of 0, a circle. In the case of
negative correlations we get correspondingly mirrored point clusters.
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We plot the data by means of a scatter diagram.
1 ggp l o t ( ICUData , a e s ( x=t empe r a t u r e , y= h e a r t . r a t e ) ) +
2 ## shape = 19: somewhat larger point

3 ## alpha = 0.25: strength of alpha blending

4 geom_poin t ( shape =19 , a l p h a=0 . 25 ) +
5 ## title and axes labels

6 g g t i t l e ( " 500 ICU p a t i e n t s " ) + x l ab ( "Maximum body t emp e r a t u r e " ) +
7 y l ab ( "Maximum h e a r t r a t e " )
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We again see that patient 398 is an outlier. Furthermore, we see rather narrow ellipse-shaped point
cluster, which indicates a high positive correlation and seems to contradict the calculation. Here the
value of patient 398 represents a so-called leverage point; that is, it leverages our analysis. This can
be immediately visualized by using geom_smooth to plot the corresponding two linear regression lines
(with and without patient 398). We also label the plot by applying the function annotate.
1 ggp l o t ( ICUData , a e s ( x=t empe r a t u r e , y= h e a r t . r a t e ) ) +
2 ## shape = 19: somewhat larger point

3 ## alpha = 0.25: strength of alpha blending

4 geom_poin t ( shape =19 , a l p h a=0 . 25 ) +
5 ## Linear regression line

6 geom_smooth ( d a t a = ICUData [−398 , ] , method = " lm" , se = FALSE) +
7 geom_smooth ( method = " lm" , se = FALSE , c o l o r = " r ed " ) +
8 a n n o t a t e ( " t e x t " , x = c (25 , 25 ) , y = c (110 , 105 ) ,
9 l a b e l = c ( " w i t h ou t p a t i e n t 398 " , " wi th p a t i e n t 398 " ) ,
10 c o l o r = c ( " b l u e " , " r ed " ) ) +
11 ## title and axes labels

12 g g t i t l e ( " 500 ICU p a t i e n t s " ) + x l ab ( "Maximum body t emp e r a t u r e " ) +
13 y l ab ( "Maximum h e a r t r a t e " )
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The blue regression line, computed without patient 398, clearly tilts when we add patient 398 and we get
a clearly different result. We repeat the analysis without this patient.
1 co r ( ICUData$ t emp e r a t u r e [−398 ] , ICUData$ h e a r t . r a t e [−398 ] )

[1] 0.2978033

By omitting a single value, the Pearson correlation is almost twice as large, but still does not correspond
to the visual impression. The very narrow ellipsoidal point cluster that can be seen suggests an evenmuch
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higher positive correlation. The reason of this is that the outlier not only interferes in the calculation, but
also clearly changes the axis scaling. We repeat the plot without the patient 398.

1 ggp l o t ( ICUData [−398 , ] , a e s ( x=t empe r a t u r e , y= h e a r t . r a t e ) ) +
2 ## shape = 19: somewhat larger point

3 ## alpha = 0.25: strength of alpha blending

4 geom_poin t ( shape =19 , a l p h a=0 . 25 ) +
5 ## Linear regression line

6 geom_smooth ( method = " lm" , se = FALSE) +
7 ## title and axes labels

8 g g t i t l e ( " 500 ICU p a t i e n t s " ) + x l ab ( "Maximum body t emp e r a t u r e " ) +
9 y l ab ( "Maximum h e a r t r a t e " )

100

150

34 36 38 40 42
Maximum body temperature

M
ax

im
um

 h
ea

rt
 r

at
e

500 ICU patients

Now the graphical representation coincides quite well with the calculated value, and a weak elliptical
point cluster can be seen.

Note:
Single outlier can have a very strong influence on many statistical procedures. These include, for
example, Pearson correlation and linear regression analysis. The results can be undermined by them
and even the presence of a lot of data (“big data”) cannot protect against this effect. In extreme cases,
a single observation can cause a completely different statistical result. In statistics this is also called
a “breakdown” of the applied statistical procedure.

We investigate the influence of outliers on Spearman’s � and Kendall’s �.

1 ## Spearman 's rho

2 co r ( ICUData$ t empe r a t u r e , ICUData$ h e a r t . r a t e , method = " spearman " )
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[1] 0.2659957

1 co r ( ICUData$ t emp e r a t u r e [−398 ] , ICUData$ h e a r t . r a t e [−398 ] , method = " spearman " )

[1] 0.2707241

1 ## Kendall's tau

2 co r ( ICUData$ t empe r a t u r e , ICUData$ h e a r t . r a t e , method = " k e n d a l l " )

[1] 0.1826903

1 co r ( ICUData$ t emp e r a t u r e [−398 ] , ICUData$ h e a r t . r a t e [−398 ] , method = " k e n d a l l " )

[1] 0.1858804

Both rank correlations change only slightly. Thus, the transition to ranks generates a certain robustness
against outliers comparable to quantiles (cf. Example 2.6). We compute the Pearson correlation and
additionally apply function rank.

1 co r ( r ank ( ICUData$ t emp e r a t u r e ) , r ank ( ICUData$ h e a r t . r a t e ) )

[1] 0.2659957

Indeed, it turns out that the Spearman correlation is just the Pearson correlation of ranks; see Re-
mark 2.27 (b).

Note:
The popular saying: “A picture is worth a thousand words” applies also to statistics. Hence, always
try to look at your data. It serves as a check of the data, e.g. for identifying wrong or erroneous
observations or outliers as well as for confirming computed results.

2.7 Exercises

Use the ICU dataset and always briefly describe your results.
1. Compute absolute and relative frequencies for variable outcome.
2. Use a bar chart to visualize the relative frequencies for variable outcome. Apply the standard

function barplot as well as the functions of package "ggplot2" (Wickham (2009)).
3. Determine the 95% quantile, median, inter quartile range, MAD, arithmetic mean, standard devia-

tion, coefficient of variation, skewness, and kurtosis of variable heart.rate. What do the results
tell you about the distribution of the values?
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4. Determine the 95% quantile, median, inter quartile range, MAD, arithmetic mean, standard devi-
ation, coefficient of variation, skewness, and kurtosis of variable age. What do the results tell you
about the distribution of the values?

5. Determine the 95% quantile, median, inter quartile range, MAD, arithmetic mean, standard devi-
ation, coefficient of variation, skewness, and kurtosis of variable LOS. What do the results tell you
about the distribution of the values?

6. Draw a box-and-whisker plot as well as a histogram combined with a density plot of variable
heart.rate. Apply the standard functions as well as the functions of package "ggplot2" (Wick-
ham (2009)). Describe and interpret the plots.

7. Draw a box-and-whisker plot as well as a histogram combined with a density plot of variable age.
Apply the standard functions as well as the functions of package "ggplot2" (Wickham (2009)).
Describe and interpret the plots.

8. Draw a box-and-whisker plot as well as a histogram combined with a density plot of variable LOS.
Apply the standard functions as well as the functions of package "ggplot2" (Wickham (2009)).
Describe and interpret the plots.

9. Investigate in a suitable manner (!) the relation between variables liver.failure and outcome.
Interpret the results and plot the data in an appropriate way. Is the graph in accordance with your
calculations?

10. Investigate in a suitable manner (!) the relation between variables sex and outcome. Interpret the
results and plot the data in an appropriate way. Is the graph in accordance with your calculations?

11. Investigate in a suitable manner (!) the relation between variables age and SAPS.II. Interpret the
results and plot the data in an appropriate way. Is the graph in accordance with your calculations?

12. Investigate in a suitable manner (!) the relation between variables age and LOS. Interpret the results
and plot the data in an appropriate way. Is the graph in accordance with your calculations?

13. Investigate in a suitable manner (!) the relation between variables age and outcome. Interpret the
results and plot the data in an appropriate way. Is the graph in accordance with your calculations?

14. Investigate in a suitable manner (!) the relation between variables sex and LOS. Interpret the results
and plot the data in an appropriate way. Is the graph in accordance with your calculations?
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This rather short chapter deals with the correct use of colors and the generation of diagrams, which
represent the available data in a most suitable way. It covers the following topics:

• Recommendations for handling colors
• Use of predefined color palettes
• Export of diagrams
• Recommendations for generating diagrams according to E. Tufte

TheR code of this chapter is included in the RMarkdown file Colors.Rmd, which you can download from
my GitHub account (link: https://github.com/stamats/ISDR/blob/main/Colors.Rmd). Right
click on Raw. Then you can Save target as .... The least difficulties arise, if you save my R Mark-
down files in the same folder as the data.
First, we will install the required packages for this chapter.
1 i n s t a l l . p a c k a g e s ( c ( " RColorBrewer " , " g g s c i " ) )

Make sure that you have already installed the packages from chapter 2 (Section 2.4).
1 l i b r a r y ( g gp l o t 2 )
2 l i b r a r y ( RColorBrewer )
3 l i b r a r y ( g g s c i )

As explained in Section 2.4, repeated execution of library should be without problems.

3.1 Colors

As we have seen in the last chapter, diagrams play a crucial role in understanding the available data. By
the proper use of colors, the expressiveness and aesthetics of a graphic can be clearly improved. Fig-
ure 3.1 shows a negative example. Neither the type of diagram nor the colors are appropriately chosen.
The selected type of diagram makes it hard to tell the exact proportions (as absolute or relative frequen-
cies). The colors red and blue are very intense and not adapted to the answers. Furthermore, the graphic
does not make clear, if there is another category between “We don’t care about colors” and “We love
colors”. The category might exist, but nobody selected it or the category was not provided. In pie charts
“empty” categories can not be directly seen.

At the DSC conference 2003, Ross Ihaka (Ihaka (2003)) specified the following options for handling
colors:

https://github.com/stamats/ISDR/blob/main/Colors.Rmd
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Figure 3.1: A negative example for using colors and diagrams.

1. Avoid colors.
2. Determine colors by experimentation.
3. Use “good taste” or expertise.
4. Use fixed palettes designed by an expert.
5. Look for guiding principles.

We briefly comment on these options:
Ad 1: Of course, one can try to avoid colors, but colors can be very helpful and can clearly improve the

expressiveness of a graphic.
Ad 2: The determination of colors by experimentation is usually very time consuming.
Ad 3: This requires a special talent for colors or a respective experience in handling colors.
Ad 4: Good idea!
Ad 5: Where can we find such guiding principles?

The following basic principles in handling colors are given in Zeileis et al. (2009):
• The colors should not be unappealing.
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• The colors in a statistical graphic should cooperate with each other.
• The colors should work everywhere.

A project that applies these principles is ColorBrewer (Harrower and Brewer (2003)). It provides color
palettes for various purposes on the website www.colorbrewer2.org. These color palettes can be ap-
plied in R by package "RColorBrewer" (Neuwirth (2014)). We load the package and take a look at
the various color palettes using function display.brewer.all. First, we consider the qualitative color
palettes, which can be used for displaying categorical variables.

1 d i s p l a y . b r e w e r . a l l ( t y p e = " qua l " )

Accent

Dark2

Paired

Pastel1

Pastel2

Set1

Set2

Set3

In this case, it is important that there is no color that dominates the others. All colors should appeal
equally “important”. The second group of color palettes provides colors for attributes, whose levels
range from unimportant or uninteresting to important or interesting.

1 d i s p l a y . b r e w e r . a l l ( t y p e = " seq " )
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Blues

BuGn

BuPu

GnBu

Greens

Greys

Oranges

OrRd

PuBu

PuBuGn

PuRd

Purples

RdPu

Reds

YlGn

YlGnBu

YlOrBr

YlOrRd

Finally, there is a third group of color palettes for variables with a range from negative to neutral to
positive.

1 d i s p l a y . b r e w e r . a l l ( t y p e = " d iv " )

BrBG

PiYG

PRGn

PuOr

RdBu

RdGy

RdYlBu

RdYlGn

Spectral

On the website www.colorbrewer2.org one can additionally choose colors by the following criteria:
• colorblind safe
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• print friendly
• photocopy safe
• LCD friendly

Figure 3.2 compares the introductory negative example with a corresponding pie chart, where the colors
are adapted to the categories. For the new diagram ColorBrewer palette RdYlGn was applied. A further

We hate
 colors

We oppose
 colors

We don't care
 about colors

We love colors

We hate
 colors

We oppose
 colors

We don't care
 about colors

We love colors

Figure 3.2: A negative example with improved colors.

improvement of the diagram could either consist of labeling the pieces by (absolute or relative) frequen-
cies or by transferring the results to a bar chart. In particular, in case of a bar chart one could make clear
that there is a category “We tolerate colors” by adding a bar of height 0; see Figure 3.3.

We plot the absolute frequencies of the types of surgeries as in Section 2.5.1, where we additionally use
color palette Set1 of ColorBrewer. For this, we first generate a vector of colors by applying function
brewer.pal of package "RColorBrewer" (Neuwirth (2014)).
1 ## n = 5 colors of palette with name Set1

2 c o l s ← b r ew e r . p a l ( n = 5 , name = " Se t1 " )
3 c o l s

[1] "# E41A1C" "#377 EB8" "#4 DAF4A" "#984 EA3" "# FF7F00"

That is, the colors are saved in hexadecimal code. R includes several functions for various color spaces,
which can be used to determine the hexadecimal code of colors. For instance, if the red-green-blue
(RGB) code is known, one can use function rgb.
1 rgb ( r ed = 228 , g r e en = 26 , b l u e = 28 , maxColorValue = 255)
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Figure 3.3: From a negative to a positive example.

[1] "# E41A1C"

A large number of colors can also be specified by their names. More precisely, there are 657 colors in R
that are saved by their names. One can use function colors to display these colors and function col2rgb
to determine their red-green-blue code; e.g.

1 c o l 2 r g b ( " r o y a l b l u e " )

[,1]

red 65

green 105

blue 225

The standard functions for plotting data all have argument col, which can be used to specify colors. We
now generate the bar chart.

1 ICUData ← r e a d . c s v ( f i l e = " ICUData .csv " )
2 b a r p l o t ( t a b l e ( ICUData$ s u r g e r y ) , main = " Types o f s u r g e r y " ,
3 y l ab = " Abso lu t e f r e qu en cy " , c o l = c o l s )
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Package "ggplot2" (Wickham (2009)) also provides various ways of using colors. We generate the bar
chart of the relative frequencies included in Section 2.5.1, where we this time color the bars via palette
NPG from "ggsci" package.
1 ## Define data

2 ggp l o t ( ICUData , a e s ( x=s u r g e r y ) ) +
3 ## Add bars of relative frequencies

4 geom_bar ( a e s ( y = 100∗ ( . . c o u n t . . ) / sum ( . . c o u n t . . ) ) , w id th = 0 .5 ,
5 ## Fill bars with color

6 f i l l = pa l_npg ( ) ( 5 ) ) +
7 ## Title and label of y-axis

8 g g t i t l e ( " Types o f s u r g e r y " ) + y l ab ( " R e l a t i v e f r e qu en cy i n %" )
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The used function pal_npg does not directly return the color palette, but creates a function that can be
used to select a given number of colors from the NPG color palette.
1 pa l_npg ( )
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function (n)

{

n_values ← length(values)

if (n > n_values) {

warning ("This manual palette can handle a maximum of ",

n_values , " values. You have supplied ", n, ".",

call. = FALSE)

}

unname(values[seq_len(n)])

}

<bytecode: 0x55f76b379c88 >

<environment: 0x55f766bc62e8 >

Therefore, in the code you can see two consecutive pairs of round brackets. First, with the function call
the named function is generated and then immediately evaluated with the value 5.

1 pa l_npg ( ) ( 5 )

[1] "# E64B35FF" "#4 DBBD5FF" "#00 A087FF" "#3 C5488FF" "# F39B7FFF"

Besides the presented packages "RColorBrewer" (Neuwirth (2014)) and "ggsci" (Xiao (2018)) there
are a lot of other packages, which provide different color palettes.

At the end of this section, we would like to discuss three situations that occur again and again in con-
nection with color palettes. The first situation is specifically related to the "RColorBrewer" package.

1 c o l s 2 ← b r ew e r . p a l ( n = 2 , name = " Se t1 " )

Warning in brewer.pal(n = 2, name = "Set1 "):

minimal value for n is 3, returning requested palette

with 3 different levels

1 c o l s 2

[1] "# E41A1C" "#377 EB8" "#4 DAF4A"

The warning message triggered by the above code indicates that in case of this package it is not possible
to select less than three colors from a color palette. The package strictly adheres to the default of the web
page www.colorbrewer2.org, where it is also not possible to select fewer than three colors. So if we
need only one or two colors from a ColorBrewer 2.0 color palette, we have to additionally select them
with the help of the square brackets. In the following we select the first and second color.

1 c o l s 2 ← b r ew e r . p a l ( n = 3 , name = " Se t1 " ) [ 1 : 2 ]
2 c o l s 2
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[1] "# E41A1C" "#377 EB8"

We have now created a color vector that contains only the first two colors of the color palette. The second
situation we want to deal with, is the specific selection of certain colors from a color palette. Suppose
we want to use the colors orange, red and green from the NPG color palette in exactly this order. Here
again the square brackets will help us in combination with the function c, with which we can create an
arbitrary index vector for the selection.

1 c o l s 3 ← pa l_npg ( ) ( 5 ) [ c ( 5 , 1 , 3 ) ]
2 c o l s 3

[1] "# F39B7FFF" "# E64B35FF" "#00 A087FF"

Accordingly, we first select color 5 (orange), then color 1 (red) and finally color 3 (green). Finally,
we want to deal with the situation where we need more colors than are contained in the selected color
palette. We can use the function colorRampPalette to interpolate colors. Of course, this does not make
sense for every color palette. Sequential or diverging color palettes are particularly suitable for this. For
diverging color palettes ColorBrewer 2.0 provides a maximum of eleven colors as we see here at the
example of the color palette RdYlBu (red - yellow - blue).

1 co l s 11 ← b r ew e r . p a l ( n = 11 , name = "RdYlBu" )
2 co l s 11

[1] "# A50026" "# D73027" "# F46D43" "# FDAE61" "# FEE090" "# FFFFBF" "# E0F3F8"

[8] "# ABD9E9" "#74 ADD1" "#4575 B4" "#313695"

We will now expand these eleven colors to 32 colors.

1 co l s 32 ← c o l o rRampPa l e t t e ( c o l s 1 1 ) ( 3 2 )
2 co l s 32

[1] "# A50026" "# B50F26" "# C51E26" "# D52E26" "# DF412F" "# E85538" "# F26941"

[8] "# F67D4A" "# F99254" "# FCA75E" "# FDB96B" "# FDC97A" "# FDD989" "# FEE599"

[15] "# FEF0A8" "# FEFAB7" "# FAFDC8" "# F0F9DA" "# E6F5EC" "# D9EFF6" "# C8E7F1"

[22] "# B6DEEC" "# A5D4E6" "#93 C6DE" "#82 B8D7" "#70 A9CF" "#6197 C5" "#5285 BC"

[29] "#4472 B3" "#3 D5EA9" "#374 A9F" "#313695"

We get the required number of colors. The function colorRampPalette creates a function similar to
the function pal_npg, which can then be used to obtain the desired number of colors. This explains why
two pairs of round brackets are necessary here as well.
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Figure 3.4: RStudio window Plots with an example.

3.2 Excursus: Export of Diagrams

In RStudio the generated diagrams are shown in window Plots and can be exported by menu item Export
to various graphic formats or pdf; see Figure 3.4. By clicking on Save as Image... a new window opens,
in which the size of the image, the file name, the folder and the graphic format can be chosen (see Fig-
ure 3.5). It depends on the operating systen and maybe additionally installed graphics software, which
graphic formats are available. By choosing Save as PDF..., the window shown in Figure 3.6 opens. One
can specify the size, the file name and the folder. For a quick import of plots for example in a document
or email, one can use menu item Copy to Clipboard.... In most cases however, it is preferable to first save
the graphic as image or pdf and then import the generated file.

The described options are convenient and quick and in most cases lead to the wanted result. But, es-
pecially in case of complex graphics there may be problems under certain circumstances. Moreover,
sometimes it is necessary to adapt further parameters during the export such as resolution, compression
rate or font size. In such a situation, one directly has to use the export functions of R. As already men-
tioned, the available devices depend on the operating system and maybe additionally installed software.
The main functionality is provided by base package "grDevices" (R Core Team (2022a)). In addition,
there are some contributed packages offering further options. Table 3.1 contains an overview of common
devices supported by R.
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Figure 3.5: RStudio window for saving a plot as image.

Figure 3.6: RStudio window for saving a plot as pdf file.

Note:
Raster graphics are based on a grid of pixels, where every pixel has a certain color. The best possible
way to display such images is the resolution, in which they were generated. In case of rescaling,
especially enlarging, the quality of these images declines. In contrast, vector graphics are based on a
description of the image and can be rescaled without any problems. In addition, vector graphics often
require clearly less memory.

The export of a plot to some file always consists of the following three steps:
1. Open the desired device.
2. Generate the plot.
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Function name Description
bmp Bitmap (bmp) a standard format of raster graphics in Microsoft Win-

dows.
jpeg Compressed image files of raster graphics, very common in Internet.
png Portable network graphics (png) for lossless compressed image files of

raster graphics, usually more appropriate for statistical graphics than
jpeg.

tiff Tagged image file format (tiff) especially used for high-resolution print-
able raster graphics.

pdf Portable document format (pdf) a very common file format that embeds
graphics as vector graphics.

postscript PostScript (ps) a vector graphics format frequently used for printing, es-
pecially the further developed Encapsulated PostScript (eps) is of interest
for graphics.

svg Scalable vector graphics (svg) a vector graphics format for web browsers.

Table 3.1: Overview of devices supported by R.

3. Close the device using function dev.off.
As an example, we generate a png image.

1 ## 1. Open the device

2 ## height and width in number of pixels

3 png ( f i l e = " Example_Image.png " , h e i g h t = 640 , wid th = 640)
4 ## 2. Generate the plot

5 b a r p l o t ( t a b l e ( ICUData$ s u r g e r y ) , main = " Type of s u r g e r y " ,
6 y l ab = " Abso lu t e f r e qu en cy " , c o l = c o l s )
7 ## 3. Close the device

8 d e v . o f f ( )

After running this code, there is an image file called Example_Image.png in the current working direc-
tory, which includes the generated plot.
Besides single images, one can even generate movies with R; e.g., package "animation" (Xie (2013))
and "gganimate" (Pedersen and Robinson (2022)) provides various options and contains some interest-
ing examples.

3.3 Diagrams

The negative example of Section 3.1 (see Figure 3.1) confirms the statement in Section 2.5.1, that pie
charts are not the best option for displaying information. Please, try to order the categories shown in
Figure 3.7 or even try to determine the plotted frequencies. This gets even worse by introducing a further
dimension in form of a three-dimensional pie chart; see Figure 3.8.
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Figure 3.7: Order the categories!

Note:
The third dimension in three-dimensional pie and bar charts, which are frequently used nowadays,
leads to a perspective distortion. Moreover, it contradicts one of the recommendations of E. Tufte
given below, as the number of information carrying dimensions (= 3) is larger than the dimension of
the plotted data (= 2).

In contrast, the order of the categories is immediately visible by using a bar chart as in Figure 3.9.

The following recommendations go back to Eduard Tufte (see Globus (1994)):
• The numbers, that can bemeasured off the graphic, should be directly proportional to the numerical

quantities represented by them.
• Use a clear, detailed and complete labeling to avoid a graphical bias and ambiguity.
• Explanations of the data should be given on the graphic itself.
• Important events in the data should be labeled.
• It is important to show the variation of the data and not of the design.
• The number of information carrying dimensions should not exceed the dimension of the data.
• Never use graphics outside of their context.
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Figure 3.8: Once again: Order the categories!
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Figure 3.9: And once again: Order the categories!
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In the sequel, we present some more examples for using diagrams in combination with colors. We start
with a plot of the SAPS II scores for the different types of surgery, where we use box-and-whisker plots.
As there is no obvious order between the types of surgery, we choose a qualitative color palette, in this
case Set3 of ColorBrewer (Harrower and Brewer (2003)). First, we apply function boxplot.

1 c o l s ← b r ew e r . p a l ( n = 5 , name = " Se t3 " )
2 boxp l o t ( SAPS. I I ∼ su rg e r y , d a t a = ICUData , y l a b = "SAPS I I " ,
3 main = "SAPS I I dependen t on t ype o f s u r g e r y " , c o l = c o l s )
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For splitting the scores by types of surgery, we have used a so-called formula. The expression SAPS.II
∼ surgerymeans that the left-hand side SAPS.II has to be considered in dependence of the right hand
side surgery. Not surprisingly, we see the largest range in case of other surgeries and the values in case
of neurological surgeries tend to be higher.

We repeat the plot using package "ggplot2" (Wickham (2009)). The colors can be specified by argument
fill of function geom_boxplot.

1 ## Define data

2 ggp l o t ( ICUData , a e s ( x = su rge ry , y = SAPS. I I ) ) +
3 ## Box-and-whisker plot with colors

4 geom_boxplo t ( f i l l = c o l s ) +
5 ## Labeling

6 y l ab ( "SAPS I I " ) + g g t i t l e ( "SAPS I I dependen t on t ype o f s u r g e r y " )
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The use of colors is often also useful in case of histograms. We repeat the histogram of the maximum
body temperature generated in Section 2.6.1. We split the maximum body temperature in the following
three intervals: < 36◦C (too low), 36 − 37.5◦C (normal), > 37.5◦C (too high). For the first interval,
consisting of five sub-intervals, we use ColorBrewer palette Blues and revert the order of the colors
with function rev. For the normal range, consisting of three sub-intervals, we use color green (more
precisely: #31A354) and replicate the color with function rep. For the third interval, consisting of nine
sub-intervals, we select ColorBrewer palette Reds. For getting a better overview, we omit patient 398.

1 c o l s 1 ← r ev ( b r ew e r . p a l ( 5 , " B lues " ) )
2 c o l s 2 ← r ep ( " #31A354" , 3 )
3 c o l s 3 ← b r ew e r . p a l ( 9 , " Reds " )
4 h i s t ( ICUData$ t emp e r a t u r e [−398 ] , b r e a k s = seq ( from = 33 .5 , t o = 42 , by = 0 . 5 ) ,
5 main = " 500 ICU p a t i e n t s " , y l a b = " Abso lu t e f r e qu en cy " ,
6 x l ab = "Maximum body t emp e r a t u r e " , c o l = c ( co l s1 , co l s2 , c o l s 3 ) )
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We generate a similar figure by means of package "ggplot2" (Wickham (2009)). Here, there is an
additional (empty) sub-interval on the left- and right-hand side. Thus, we have to add one more color in
category one (too low) and three (too high).
1 ggp l o t ( ICUData [−398 , ] , a e s ( x=t emp e r a t u r e ) ) +
2 geom_his togram ( b i nw id t h = 0 .5 , f i l l = c ( co l s1 , co l s2 , c o l s 3 ) ) +
3 y l ab ( " Abso l u t e f r e qu en cy " ) + x l ab ( "Maximum body t emp e r a t u r e " ) +
4 g g t i t l e ( " 500 ICU p a t i e n t s " )
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The use of colors is also helpful in case of scatter diagrams and can for example be used to visualize a
third variable in addition to the variables on x and y axis. First, we apply function plot. We generate
a vector of colors that has entry red (more precisely: #E41A1C) for females and entry blue (more pre-
cisely: #377EB8) for males. For this, we start with an empty vector generated by function character.
Accordingly, it is a vector that can include letters or strings. By using the square brackets [, the vector
is filled with red at positions of female patients and with blue at positions of male patients. The sign ==
is a so-called logical operator that can be used to check for equality.

1 ## Generate empty vector

2 co l sSex ← c h a r a c t e r ( nrow ( ICUData ) )
3 ## Fill with colors

4 co l sSex [ ICUData$ sex == " fema le " ] ← " #E41A1C"
5 co l sSex [ ICUData$ sex == "male " ] ← " #377EB8"

Using argument pch = 19 (pch = point character), we select a thicker point as plot symbol. The possible
plot symbols are specified in the help page of function points. We restrict the x axis to the interval
[33, 43] to obtain a better overview. We also add a legend to the plot via function legend to explain the
meaning of the colors.

1 p l o t ( x = ICUData$ t empe r a t u r e , y = ICUData$ h e a r t . r a t e , pch = 19 ,
2 x l ab = "Maximum body t emp e r a t u r e " , y l a b = "Maximum h e a r t r a t e " ,
3 main = " 500 ICU p a t i e n t s " , c o l = co l sSex , x l im = c ( 3 3 , 4 3 ) )
4 l e g end ( x = " t o p l e f t " , l e g end = c ( " f ema le " , " male " ) , pch = 19 ,
5 c o l = c ( " #E41A1C" , " #377EB8" ) )
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The observations of females and males are quite uniformly distributed over the whole scatter diagram,
which indicates that there is no influence of sex on maximum body temperature and maximum heart rate.
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In case of package "ggplot2" (Wickham (2009)), it is very easy to additionally use alpha blending.
Furthermore, the assignment of colors to the sexes is much easier and can be done by applying function
scale_colour_manual. The order of the colors should match the order of sexes. This by default is
alphabetical; i.e the first color will be female and the second will be assigned to male.
1 ggp l o t ( ICUData [−398 , ] , a e s ( x=t empe r a t u r e , y=h e a r t . r a t e , c o l o u r=sex ) ) +
2 ## shape = 19: somewhat larger point

3 ## alpha = 0.4: strength of blending

4 geom_poin t ( shape =19 , a l p h a=0 . 4 ) +
5 ## colors

6 s c a l e _ c o l o u r _manu a l ( v a l u e s = c ( " #E41A1C" , " #377EB8" ) ) +
7 ## labeling

8 g g t i t l e ( " 500 ICU p a t i e n t s " ) + x l ab ( "Maximum body t emp e r a t u r e " ) +
9 y l ab ( "Maximum h e a r t f r e qu en cy " )
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3.4 Exercises

Use the ICU dataset.
1. Generate a bar chart to plot the relative frequencies of variable outcome. Use the standard function

barplot as well as the functions of package "ggplot2" (Wickham (2009)) in combination with
color palette Set2 of package "RColorBrewer" (Neuwirth (2014)). Save the plots as jpeg files.

2. Generate a bar chart to plot the relative frequencies of variable sex. Use the standard function
barplot as well as the functions of package "ggplot2" (Wickham (2009)). Use an appropriate
color palette of package "RColorBrewer" (Neuwirth (2014)). Save the plots as jpeg files.

3. Generate a bar chart to plot the relative frequencies of variable liver.failure. Use the standard
function barplot as well as the functions of package "ggplot2" (Wickham (2009)). Use an
appropriate color palette of package "ggsci" (Xiao (2018)). Save the plots as jpeg files.
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4. Draw box-and-whisker plots of variable age where you split the values by variable outcome. Use
the standard function boxplot as well as the functions of package "ggplot2" (Wickham (2009))
in combination with appropriate colors for the boxes. Save the plots as svg files.

5. Draw box-and-whisker plots of variable bilirubin where you distinguish between patients with
and without liver failure. Use the standard function boxplot as well as the functions of package
"ggplot2" (Wickham (2009)) in combination with appropriate colors for the boxes. Save the
plots as svg files.

6. Draw box-and-whisker plots of variable LOS where you distinguish between female and male pa-
tients. Use the standard function boxplot as well as the functions of package "ggplot2" (Wick-
ham (2009)) in combination with appropriate colors for the boxes. Save the plots as svg files.

7. Generate a histogram of variable heart.rate. Consider the range from 70 to 100 as normal. Use
appropriate colors for the histogram and apply the standard function hist as well as the functions
of package "ggplot2" (Wickham (2009)). Save the plots as png files.

8. Generate a histogram of variable bilirubin. Consider concentrations from 1 to 20 as normal. Use
appropriate colors for the histogram and apply the standard function hist as well as the functions
of package "ggplot2" (Wickham (2009)). Save the plots as png files.

9. Generate a histogram/bar chart of variable SAPS.II. Fill the bars in a way which makes it clear
that the severity of disease increases with an increasing SAPS-II score. Use appropriate colors for
the histogram/bar chart and apply the standard function hist as well as the functions of package
"ggplot2" (Wickham (2009)). Save the plots as png files.

10. Draw a scatter diagram of the heart rate dependent on age and additionally mark female and male
patients by colors. Use the standard function plot as well as the functions of package "ggplot2"
(Wickham (2009)). Save the plots in pdf files.

11. Draw a scatter diagram of the bilirubin concentration dependent on age and additionally mark
patients with and without liver failure. Use the standard function plot as well as the functions of
package "ggplot2" (Wickham (2009)). Save the plots in pdf files.

12. Draw a scatter diagram of the heart rate dependent on the body temperature and additionally mark
the outcome of the patients by colors. Use the standard function plot as well as the functions of
package "ggplot2" (Wickham (2009)). Save the plots in pdf files.
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We need models of probability theory to be able to infer from a sample to the underlying population
(cf. Section 2.1). The basis of such models are probability distributions, where in the simplest case, the
probability distributions are already the models that shall be investigated. In this case, the goal of infer-
ential (parametric) statistics consists of estimating the unknown parameters of the assumed probability
distributions from the given data.

This chapter introduces the probability, cumulative distribution, and quantile functions of discrete and
(absolutely) continuous probability distributions. It covers the following probability distributions:

• Bernoulli distribution Bernoulli (p)
• Binomial distribution Binom (m, p)
• Hypergeometric distribution Hyper (m, n, k)
• Negative binomial distribution Nbinom (r, p)

Special cases: Pascal distribution, Pólya distribution, geometric distribution
• Poisson distribution Pois (�)
• Normal distribution Norm (�, �2)
• Log-normal distribution Lnorm (�, �)
• Gamma distribution Gamma (�, �)

Special cases: Exponential distribution, Erlang distribution, �2 distribution
• Weibull distribution Weibull (�, �)
• Distributions arising in connection with normal distributions: �2 distribution Chisq (n), t distribu-

tion t (n), F distribution F (m, n)
The R code of this chapter is included in the RMarkdown file ProbabilityDistributions.Rmd, which
you can download frommyGitHub account (link: https://github.com/stamats/ISDR/blob/main/
ProbabilityDistributions.Rmd). Right click on Raw. Then you can Save target as .... The
least difficulties arise, if you save my R Markdown files in the same folder as the data.
We will now install the additional packages required for this chapter. We begin with package "distr"
(Ruckdeschel et al. (2006)).

1 i n s t a l l . p a c k a g e s ( " d i s t r " )

https://github.com/stamats/ISDR/blob/main/ProbabilityDistributions.Rmd
https://github.com/stamats/ISDR/blob/main/ProbabilityDistributions.Rmd
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Another interesting package is package "distr6" (Sonabend and Kiraly (2022)), which unfortunately
is not (resp. no longer) on CRAN. We may install the package as usual by adding the repository of
"distr6" to the predefined repositories.

1 # Add repository raphaels1

2 o p t i o n s ( r e po s = c ( r a p h a e l s 1 = " h t t p s : / / r a p h a e l s 1 . r− u n i v e r s e . d e v " ,
3 CRAN = " h t t p s : / / c l o u d . r− p r o j e c t . o r g " ) )
4 # Install distr6

5 i n s t a l l . p a c k a g e s ( " d i s t r 6 " )

Alternatively, we can install the package directly from its GitHub repository by using package "remotes"
(Csárdi et al. (2021)).

1 i n s t a l l . p a c k a g e s ( " r emo t e s " )
2 r emo t e s : : i n s t a l l _ g i t h u b ( " a l a n− t u r i n g− i n s t i t u t e / d i s t r 6 " )

By remotes::install_github the function install_github from package "remotes" is called
without explicitly loading package "remotes".
The packages from previous Chapters 2 and 3 should have been installed, too. Now, we will load all
packages required for this chapter.

1 l i b r a r y ( d i s t r )
2 l i b r a r y ( d i s t r 6 )

As explained in Section 2.4, repeated execution of library is not problematic.

4.1 Discrete Distributions

We consider a function X, which attains its values in the space of natural numbers with certain proba-
bilities. Such a function X is called a discrete random variable. The values of a random variable are
called realisations.

We can uniquely describe the discrete probability distribution or discrete distribution of a random
variable X by specifying the probability P (X = k) of all possible values k ∈ ℕ of X. The function

d(k) = P (X = k) (4.1)

is called probability mass function of X. The function

p(k) = P (X ≤ k) =
k
∑

i=0
P (X = i) =

k
∑

i=0
d(i) (4.2)

is called cumulative distribution function of X. Its inverse is the quantile function

q(p) = min {k ∈ ℕ | p(k) ≥ p} p ∈ [0, 1] (4.3)
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Important parameters of a distribution, which can also be used for its characterization, are expectation
and variance. The expectation of X, E(X) for short, is the value of X that we can expect in mean. It
holds

E(X) = ∑

k∈ℕ
k ⋅ d(k) (4.4)

i.e., the possible levels of X are multiplied by their probabilities and added. The variance of X, Var(X)
for short, is the expected value of the quadratic deviations from the expectation

Var(X) = ∑

k∈ℕ
(k − E(X))2 ⋅ d(k) (4.5)

Often, the square root of the variance is considered, which is called standard deviation of X, �X =
√Var(X) for short.

In this section, several important discrete distributions are introduced.

Bernoulli distribution
The simplest discrete distribution is the so-called Bernoulli distribution, for which two applications are
sketched in the following example.
Example 4.1. (a) We consider the production of bulbs, where 1% of the bulbs are defective. That is,
we can describe the production process by a discrete random variable X, which may attain the values
0 = defective and 1 = not defective. This leads to the following probability mass function

P (X = 0) = 0.01 and P (X = 1) = 1 − 0.01 = 0.99 (4.6)

(b) In a randomized controlled clinical trial two interventions are compared where 65% of the patients
are randomly assigned to intervention I and accordingly, 35% of the patients to intervention II. This
procedure can be described by the discrete random variable X, which attains value 0 = intervention I
with probability 65% and value 1 = intervention II with probability 35%, respectively. It yields the
following probability mass function

P (X = 0) = 0.65 and P (X = 1) = 1 − 0.65 = 0.35 (4.7)

The probability distribution that underlies both examples is defined as follows.
Definition 4.2 (Bernoulli distribution). Let X be some discrete random variable, that may only attain
values 0 and 1. Then, the probability mass function of the distribution of X is

d(k) = P (X = k) = pk(1 − p)1−k =

⎧

⎪

⎨

⎪

⎩

p if k = 1

1 − p if k = 0
(4.8)

where p ∈ [0, 1]. The distribution is called Bernoulli distribution with parameter p, abbreviated by
X ∼ Bernoulli (p).
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Binomial distribution
The Bernoulli distribution can be generalized to the so-called binomial distribution. The following ex-
ample shows two possible applications.
Example 4.3. (a)We again consider the production of bulbs, where 1% of the bulbs is defective and want
to check the quality of the last batch. For this purpose, we randomly draw with replacement a sample of
size m = 20 bulbs from the batch (=population). LetX be the random variable describing the number of
defective bulbs. By means of the distribution of X, we can for instance specify how likely it is to draw
exactly one defective bulb. We get

P (X = 1) = 20 ⋅ 0.01 ⋅ 0.9919 = 16.5% (4.9)

Because of the 20 draws, there are 20 possibilities to draw a defective bulb, which happens with a prob-
ability of 0.01. In the remaining 19 draws a properly functioning bulb is drawn with probability 0.99 in
each draw. Due to the (stochastic) independence of the draws, the probabilities are multiplied.
(b) In 2014, the prevalence of diabetes among adults amounted to about 9% (WHO (2015b)), where

prevalence is the proportion of a population that has a disease. We conduct a trial and randomly draw
with replacement a sample of 50 persons. The number of persons having diabetes in our sample is
denoted by the random variable X. How likely is it, that our sample contains at least two persons with
diabetes? In this case, it is simpler to consider the so-called complementary event: the sample contains
no or exactly one person with diabetes. We obtain

P (X = 0) = 0.9150 = 0.9% and P (X = 1) = 50 ⋅ 0.09 ⋅ 0.9149 = 4.4% (4.10)

Thus, the wanted probability reads

P (X ≥ 2) = 1 − P (X ≤ 1) = 1 − P (X = 0) − P (X = 1) = 1 − 0.009 − 0.044 = 94.7% (4.11)

In general, we get the following discrete probability distribution.
Definition 4.4. We consider a box (urn) with black and white balls, where the proportion of white balls
is equal to p ∈ [0, 1]. We randomly draw m-times (m ∈ ℕ) with replacement from this box and describe
the number k ∈ {1, 2,… , n} of drawn white balls by the random variableX. Then, the probability mass
function of X reads

d(k) = P (X = k) =
(

m
k

)

pk(1 − p)m−k (4.12)
where

(

m
k

)

= m!
k!(m − k)!

(4.13)
is the binomial coefficient and ! indicates factorials. This distribution is called Binomial distribution
with parameters m and p, abbreviated by X ∼ Binom (m, p).

We give some additional explanations.
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Remark 4.5. (a) The factorial of k ∈ ℕ is defined as

k! =

⎧

⎪

⎨

⎪

⎩

1 if k = 0

1 ⋅ 2 ⋅… ⋅ k if k ≥ 1
(4.14)

(b) A closer look at the probability mass functions of the Bernoulli and the binomial distribution shows
Bernoulli (p) = Binom(1, p).
(c) Expectation and variance of Binom (m, p) are

E(X) = m ⋅ p Var(X) = m ⋅ p ⋅ (1 − p) (4.15)

The statistical software R includes the probability mass functions, cumulative distribution functions and
quantile functions of many discrete probability distributions. In general, the names of these basic func-
tions always consist of a prefix and some abbreviation of the name of the probability distribution. The
possible prefixes are
d: probability mass function
p: cumulative distribution function
q: quantile function
r: function for generating (pseudo) random numbers
Therefore, it is sufficient to know the abbreviation of the distribution to apply the respective functions.

In case of the binomial distribution, the abbreviation is binom and the respective functions are: dbinom,
pbinom, qbinom, and rbinom. The parameters m and p of the binomial distribution are called size and
prob in R.

We compute the probabilities of Example 4.3 using R.

1 ## a) Exactly one defective bulb

2 dbinom (1 , s i z e = 20 , prob = 0 . 01 )

[1] 0.1652337

1 ## b) No person with diabetes

2 dbinom (0 , s i z e = 50 , prob = 0 . 09 )

[1] 0.008955083

1 ## b) Exactly one person with diabetes

2 dbinom (1 , s i z e = 50 , prob = 0 . 09 )

[1] 0.04428338
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For determining the probability that at least two persons with diabetes are drawn, it is easier to apply the
cumulative distribution function.

1 ## b) At least two persons with diabetes: 1-P(X ≤ 1)

2 1 − pbinom (1 , s i z e = 50 , prob = 0 . 09 )

[1] 0.9467615

Alternatively and numerically somewhat more precise, we can compute this probability by using argu-
ment lower.tail = FALSE. Then, the probability P (X > k) instead of P (X ≤ k) is computed.

1 ## b) At least two persons with diabetes: P(X > 1)

2 pbinom (1 , s i z e = 50 , prob = 0 .09 , l o w e r . t a i l = FALSE)

[1] 0.9467615

By means of the quantile function, we can for instance determine how many defective bulbs we can at
most expect with a probability of at least 99%.

1 qbinom (0 .99 , s i z e = 20 , prob = 0 . 01 )

[1] 2

Consequentially, if there are more than two defective bulbs during quality control, it may indicate a
quality problem; i.e., a larger proportion of defective bulbs. Because it is very unlikely (< 1%) to draw
three or more defective bulbs, if there are only 1% defective bulbs in the batch. The probability is about
0.1%.

1 pbinom (2 , s i z e = 20 , prob = 0 .01 , l o w e r . t a i l = FALSE)

[1] 0.001003576

Function rbinom can be used to generate random numbers. If we adapt this to our diabetes example,
every random number represents a trial, more precisely, the number of persons with diabetes in that trial.
We simulate ten trials.

1 rbinom (10 , s i z e = 50 , prob = 0 . 09 )

[1] 2 5 6 3 5 1 6 7 4 6
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Note:
The increase of the power of computers raised the popularity of simulations considerably. Nowdays,
complex probability models can be simulated thousand of times. Simulations are used, for instance,
for planning of clinical trials, weather reports or currently to predict the course of the COVID19
pandemic.

We can also plot the probability mass function, the cumulative distribution function, and the quantile
function of this binomial distribution. For this, package "distr" (Ruckdeschel et al. (2006)) can be used,
which includes an object-oriented implementation of probability distributions. We load the package and
by function Binom generate a random variable X with distribution Binom (20, 0.01) matching our bulb
example.

1 l i b r a r y ( d i s t r )
2 X ← Binom ( s i z e = 20 , prob = 0 . 01 )

By means of function plot, we can display the probability (mass) function, the cumulative distribution
function (CDF), and the quantile function of a given random variable.

1 p l o t (X)
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Even though "distr6" package is relatively new package, it can be seen as further development of
"distr". Instead so called S4 object oriented programming, it uses R6 object oriented programming. We
load the package and create a random variableX6with distribution Binom (50, 0.09), which corresponds
to our diabetes example.

1 X6 ← Binomia l $new ( prob = 0 .09 , s i z e = 50)
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By means of function plot, we can the probability (mass) function and cumulative distribution function
(CDF) of the given random variable.
1 p l o t (X6)
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With function summary (more precisely, the respectivemethod for distr6-objects) one can get an overview
of the most important properties of the given random variable.
1 summary (X6)

Binomial Probability Distribution.

Parameterised with:

Id Support Value Tags

1: prob [0,1] 0.09 linked ,required

2: qprob [0,1] linked ,required

3: size ℕ+ 50 required

Quick Statistics

Mean: 4.5

Variance: 4.095

Skewness: 0.4052163

Ex. Kurtosis: 0.1242002

Support: {0, 1,...,49, 50} Scientific Type: ℕ0
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Traits: discrete; univariate

Properties: asymmetric; leptokurtic; positive skew

Hypergeometric distribution
If we draw without instead of with replacement, it results in the so-called hypergeometric distribution.
The following example is very similar to Example 4.3.
Example 4.6. (a)We consider a box (= population) with m+ n = 500 bulbs, where m = 5 are defective
and randomly draw without replacement a sample of k = 20 bulbs. Let X be the random variable
describing the number of defective bulbs in our sample. By means of the distribution of X, we can for
instance determine how likely it is to draw no defective bulb. It holds

P (X = 0) = 495
500

⋅
494
499

⋅ ⋯ ⋅
476
481

= 81.5% (4.16)

There are 20 draws, where in each draw a functioning bulb is drawn and put aside. Hence, numerator
and denominator are reduced by one after each draw; i.e., the proportion of defective bulbs changes from
draw to draw.
(b) In 2000, the population of Andorra was about 66000 inhabitants (Wikipedia contributors (2022a)),

where about 6000 inhabitants (WHO (2015a)) had diabetes. We conduct a trial in Andorra and randomly
draw without replacement 50 inhabitants. Let X be the random variable describing the number of per-
sons having diabetes in our sample. How likely is it that there is at least one person in our sample having
diabetes? We consider the complementary event: the sample includes no person with diabetes and obtain

P (X = 0) = 60000
66000

⋅
59999
65999

⋅ ⋯ ⋅
59951
65951

= 0.9% (4.17)

Thus, the wanted probability is

P (X ≥ 1) = 1 − P (X = 0) = 1 − 0.009 = 99.1% (4.18)

We define the hypergeometric distribution.
Definition 4.7. We consider a box (urn) with m ∈ ℕ white and n ∈ ℕ black balls and randomly draw
k ∈ ℕ balls without replacement (k < m+ n). The random variableX, describing the number j of white
balls in the sample (j ≤ m), has the following probability mass function

d(j) = P (X = j) =

(m
j

)( n
k−j

)

(m+n
k

) (4.19)

The distribution is called hypergeometric distribution with parameters m, n and k, abbreviated by X ∼
Hyper (m, n, k).

We give some additional explanations.
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Remark 4.8. (a)For large populations and samples the computation of the binomial coefficients included
in the definition of the hypergeometric distribution is difficult. This is caused by the fact that factorials
of large numbers have to be determined and the factorial grows exponentially.
(b) Already for populations of a moderate size and if the sample is not too large compared to the

population, the difference between hypergeometric and binomial distribution is very small. It means, it
only happens with a small probability that the same ball is drawn more than once.
(c) Expectation and variance of Hyper (m, n, k) read

E(X) = k ⋅ m
m + n

Var(X) = k ⋅ m
m + n

⋅
n

m + n
⋅
m + n − k
m + n − 1

(4.20)

The formulas show a certain analogy to the binomial distribution. The factor m+n−k
m+n−1 representing the

essential difference to the binomial distribution is called finite population correction. We will meet it
once again in Example 5.13.

The hypergeometric distribution is abbreviated by hyper in R leading to functions dhyper, phyper,
qhyper, and rhyper. We compute the probabilities of Example 4.6 using R.

1 ## a) no defective bulb

2 dhyper ( 0 , m = 5 , n = 495 , k = 20)

[1] 0.8146893

1 ## b) no person with diabetes

2 dhyper ( 0 , m=6000 , n=60000 , k = 50)

[1] 0.008502747

We can compute the probability of at least one person with diabetes by directly applying function phyper
with argument lower.tail = FALSE

1 ## b) at least one person with diabetes

2 phyper ( 0 , m=6000 , n=60000 , k=50 , l o w e r . t a i l = FALSE)

[1] 0.9914973

We simulate 10 samples of size 50 for our diabetes example.

1 r h yp e r ( 10 , m=6000 , n=60000 , k=50)

[1] 5 3 3 5 5 3 9 4 8 6

That is, every number represents the number of persons with diabetes in a random sample of size 50. We
visualize the distribution Hyper (5, 495, 20) of the bulb example by means of package "distr" (Ruck-
deschel et al. (2006)).
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1 X ← Hyper (m=5 , n=495 , k=20)
2 p l o t (X)
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We use function summary of package "distr6" (Sonabend and Kiraly (2022)) to summarize the distri-
bution of the light bulb example.

1 X6 ← Hype rgeome t r i c $new ( s i z e = 500 , s u c c e s s e s = 5 , draws = 20)
2 summary (X6)

Hypergeometric Probability Distribution.

Parameterised with:

Id Support Value Tags

1: draws {0, 1,...,499, 500} 20 required

2: failures {0, 1,...,499, 500} linked ,required

3: size ℕ0 500 required

4: successes {0, 1,...,499, 500} 5 linked ,required

Quick Statistics

Mean: 0.2

Variance: 0.1904609

Skewness: 2.074205

Ex. Kurtosis: 3.837489

Support: {0, 1,...,4, 5} Scientific Type: ℕ0

Traits: discrete; univariate

Properties: asymmetric; leptokurtic; positive skew
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As the following comparison for our bulb example shows, the hypergeometric and the binomial distribu-
tion already yield quite similar results, although the population is relatively small.
1 ## probability of 0, 1, 2, 3 defective bulbs

2 ## with replacement

3 dbinom ( 0 : 3 , s i z e =20 , prob=0 . 01 )

[1] 0.8179069376 0.1652337248 0.0158557615 0.0009609552

1 ## without replacement

2 dhyper ( 0 : 3 , m=5 , n=495 , k=20)

[1] 0.8146893166 0.1711532178 0.0136348475 0.0005134461

With operator : we can quickly generate integer sequences; e.g.
1 0 :3

[1] 0 1 2 3

1 8 :11

[1] 8 9 10 11

1 −3 : 5

[1] -3 -2 -1 0 1 2 3 4 5

Negative binomial distribution
Another important discrete distribution, which is in a certain way related to the binomial distribution, is
the negative binomial distribution. We start with an introductory example showing possible applications
of this distribution.
Example 4.9. (a)We again consider the production of bulbs, where 1% of the bulbs is defective. Let X
be the random variable that describes the number of functioning bulbs drawn (with replacement) until
the first defective bulb is obtained. How likely is it that exactly the 20th bulb is the first defective bulb?
That is, we first get 19 functioning bulbs leading to

d(19) = P (X = 19) = 0.9919 ⋅ 0.01 = 0.8% (4.21)
(b) In 2014, the worldwide prevalence (disease frequency) of diabetes in adults was about 9% (WHO

(2015b)). We conduct a trial and draw (with replacement) a sample of 250 persons. We need at least 20
persons with diabetes such that our trial has the required validity (power). How likely is it that we get
the necessary number of diabetes patients at the latest with inclusion of the 250th person? That is, that
we have to draw at most 230 persons without diabetes. The answer is, as we will see below,

p(230) = P (X ≤ 230) =
230
∑

l=0

(

l + 20 − 1
l

)

⋅ 0.91l ⋅ 0.0920 = 74.1% (4.22)

Thus, we will get 20 diabetes patients with a probability of about 74%.
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We define the negative binomial distribution.
Definition 4.10 (Negative binomial distribution). We consider a box (urn) with black and white balls,
where the proportion of white balls is p ∈ [0, 1]. We randomly draw with replacement from the box
until we have got r ∈ ℕ white balls. Let X be the random variable describing the number k ∈ ℕ0 =
{0, 1, 2,…} of black balls that we obtain until we have got r white balls for the first time. The probability
mass function of X is

d(k) = P (X = k) =
(

k + r − 1
k

)

(1 − p)kpr (4.23)
The distribution is called negative binomial distribution with parameters r and p, abbreviated by: X ∼
Nbinom (r, p).

We give some additional explanations.
Remark 4.11. (a) The negative binomial distribution is a so-called waiting time distribution. We can
apply it to specify how many unsuccessful attempts or eventless time intervals we have to wait until the
required number of successes or events has occurred.
(b) The negative binomial distribution can be generalized such that parameter r ∈ (0,∞) ⊂ ℝ.
(c) The negative binomial distribution is sometimes also called Pascal distribution or Pólya distribu-

tion. This mainly happens when the range of r is important. The name Pascal distribution is usually
used if r ∈ ℕ and the name Pólya distribution if r ∈ (0,∞). In case of r = 1, it is also called geometric
distribution.
(d) Expectation and variance of Nbinom (r, p) are

E(X) = r
p

1 − p
Var(X) = r

p
(1 − p)2

(4.24)

In R, the negative binomial distribution is abbreviated by nbinom and the parameters are called size

and prob as in case of the binomial distribution. Thus, we get functions dnbinom, pnbinom, qnbinom,
and rnbinom. We compute the probabilities of Example 4.9 using R.

1 ## a) 20th bulb = 1st defective bulb

2 dnbinom (19 , s i z e = 1 , prob = 0 . 01 )

[1] 0.008261686

1 ## b) At most 250 persons to get 20 patients with diabetes

2 pnbinom (230 , s i z e = 20 , prob = 0 . 09 )

[1] 0.7407983

We can also use the quantile function in case of the diabetes example. We can for instance determine the
sample size, which is needed, such that we achieve our goal of 20 diabetes patients with a given (high)
probability. In such cases 90%, 95%, or even 99% are frequently used. In case of at least 95% certainty,
we obtain
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1 qnbinom (0 .95 , s i z e = 20 , prob = 0 . 09 )

[1] 286

The number represents the number of persons without diabetes, i.e., in total we should randomly draw
306 persons. We simulate 10 diabetes trials.

1 rnbinom (10 , s i z e = 20 , prob = 0 . 09 )

[1] 240 148 151 222 146 227 234 265 303 141

Each of the numbers above states how many persons without diabetes had to be drawn to get the required
number of 20 persons with diabetes. We visualize the negative binomial distribution of our bulb example
by means of package "distr" (Ruckdeschel et al. (2006)).

1 X ← Nbinom ( s i z e = 1 , prob = 0 . 01 )
2 p l o t (X, c e x . p o i n t s = 0 . 75 )
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With the help of argument cex.pointswe reduce the size of the plotted points. We can also use function
summary of package "distr6" (Sonabend and Kiraly (2022)) to summarize the distribution.

1 X6 ← Nega t i v eB inomia l $new ( s i z e = 1 , prob = 0 . 01 )
2 summary (X6)

Negative Binomial (fbs) Probability Distribution.

Parameterised with:

Id Support Value Tags

1: form {fbs , sbf , tbf , tbs} fbs required ,immutable
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2: mean ℝ+ required ,linked

3: prob (0,1) 0.01 required ,linked

4: qprob (0,1) required ,linked

5: size ℕ+ 1 required

Quick Statistics

Mean: 99

Variance: 9900

Skewness: 2.000025

Ex. Kurtosis: 6.000101

Support: ℕ0 Scientific Type: ℕ0

Traits: discrete; univariate

Properties: asymmetric; leptokurtic; positive skew

Poisson distribution
As last discrete distribution, we introduce the Poisson distribution, which has various applications.
Example 4.12. (a)A conventional bulb today has an average (median) lifespan of 1000 hours. Assuming
an exponential decrease of the number of functioning bulbs, we obtain

50% = 0.5 = P (Time till failure > 1000ℎ) = e−1000� (4.25)
which leads to a failure rate per hour of about � = 0.0007. We assume that we have 20 bulbs in our
home that are on for 100 hours per month. LetX be the random variable describing the number of bulbs
failing per month. How likely is it, that we have to change at least one bulb per month? We obtain

P (X ≥ 1) = 1 − P (X = 0) = 1 − e−20⋅100⋅0.0007 = 1 − e−1.4 = 75.3% (4.26)
(b) The proportion of persons newly falling ill in a certain time period is called incidence or incidence

rate. Finland has worldwide the highest incidence rate of type 1 diabetes for children up to an age of
15 years. On average, every year 55 of 100 000 children in that age newly fall ill with type 1 diabetes
(Harjutsalo et al. (2013)), which corresponds to a rate of � = 0.00055.
According to Wikipedia contributors (2022c) there live about 900 000 children in that age in Finland;
that is, on average we have to expect 495 new cases per year. LetX be the number of new cases per year.
How likely is it, that there are more than 450 new cases in one year in Finland? As we will see below,
we get

P (X > 450) = 1 − P (X ≤ 450) = 1 −
450
∑

k=0

495k
k!

e−495 = 97.8% (4.27)
We define the Poisson distribution.
Definition 4.13 (Poisson distribution). A random variableX follows a Poisson distribution with param-
eter � ∈ (0,∞), if it has the following probability mass function

P (X = k) = �k

k!
e−� k ∈ ℕ0

abbreviated by: X ∼ Pois (�).

Download free eBooks at bookboon.com 99



Introduction to statistical data analysis with R 4 Probability Distributions

We give some additional explanations.
Remark 4.14. (a) The parameter � describes the number of events that we can expect on average in a
predefined time period.
(b) The Poisson distribution has various applications and can also be used as an approximation of

the binomial distribution. The approximation works well if the probability p of the event is small and the
sample size n is large. In this case, we may use Pois (np) as approximation for Binom (n, p). Therefore,
the Poisson distribution is also called the distribution of rare events.
(d) Expectation and variance of Pois (�) are

E(X) = � Var(X) = � (4.28)

The Poisson distribution is abbreviated by pois in R leading to functions dpois, ppois, qpois, and
rpois. We compute the probabilities of Example 4.12 using R.

1 ## a) no defectice bulb

2 dpo i s ( 0 , lambda = 1 . 4 )

[1] 0.246597

By means of ppois and lower.tail = FALSE we obtain

1 ## a) at least one defective bulb

2 ppo i s ( 0 , lambda = 1 .4 , l o w e r . t a i l = FALSE)

[1] 0.753403

1 ## b) at least 450 new cases

2 ppo i s ( 450 , lambda = 495 , l o w e r . t a i l = FALSE)

[1] 0.9784977

By applying the quantile function, we can determine how many bulbs per month we have to change at
most with a high probability (here at least 99%).

1 qpo i s (0 .99 , lambda = 1 . 4 )

[1] 5

That is, a stock of five bulbs should suffice for more than one month with a high probability (≥ 99%).
The exact probability is

1 ppo i s ( 5 , lambda = 1 . 4 )

[1] 0.9967989
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We simulate the number of new cases of type 1 diabetes in Finland for ten years.

1 r p o i s ( 10 , lambda = 495)

[1] 526 488 498 503 519 507 521 547 518 471

We visualize the distribution of the bulb example by means of package "distr" (Ruckdeschel et al.
(2006)).

1 X ← Po i s ( lambda = 1 . 4 )
2 p l o t (X)
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Finally, we summarize the distribution by using function summary of package "distr6" (Sonabend and
Kiraly (2022)).

1 X6 ← Po i s s on $new ( r a t e = 1 . 4 )
2 summary (X6)

Poisson Probability Distribution.

Parameterised with:

Id Support Value Tags

1: rate ℝ+ 1.4 required

Quick Statistics

Mean: 1.4

Variance: 1.4

Skewness: 0.8451543

Ex. Kurtosis: 0.7142857

Download free eBooks at bookboon.com 101



Introduction to statistical data analysis with R 4 Probability Distributions

Support: ℕ0 Scientific Type: ℕ0

Traits: discrete; univariate

Properties: asymmetric; leptokurtic; positive skew

4.2 Continuous Distributions

A random variable X, which may attain all values in an interval I ⊂ ℝ, is called continuous random
variable.

Note:
This notion of continuity does not reflect a property of function X, i.e., the random variable X in not
necessarily a continuous function. This notion of continuity – more precisely absolute continuity –
is derived from the distribution of X. It means that the cumulative distribution function p of X is
(almost everywhere) differentiable with derivative d = p′ respectively, p is the indefinite integral of d

p(x) =

x

∫
−∞

d(t) dt (4.29)

We may describe the continuous probability distribution of random variableX, or continuous distri-
bution of X for short, by the so-called probability density or density d, where

d(x) ≥ 0 for (almost) all x ∈ ℝ and
∞

∫
−∞

d(x) dx = 1 (4.30)

must hold. The probability P (X ∈ [a, b]) of some interval [a, b] ∈ ℝ is given by

P (X ∈ (a, b]) =

b

∫
a

d(x) dx = p(b) − p(a) (4.31)

Thus, the probability is nothing else but the area under the density curve. In particular, it follows

P (X = x) = 0 (4.32)

i.e., single points possess probability 0. Consequentially, it holds

P (X ∈ (a, b)) = P (X ∈ (a, b]) = P (X ∈ [a, b)) = P (X ∈ [a, b]) (4.33)

That is, it does not make any difference, if we consider open, semi-open or closed intervals. Similar to
the discrete case, the quantile function in general reads

q(p) = min {x ∈ ℝ | p(x) ≥ p} p ∈ [0, 1] (4.34)
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Every cumulative distribution function is monotonically increasing, if it is even strictly monotonically
increasing, the quantile function is just the usual inverse function of the cumulative distribution function.

As in case of the computation of probabilities, one has to integrate to determine expectation and variance
of continuous random variables. The expectation reads

E(X) =
∞

∫
−∞

x d(x) dx (4.35)

and the variance is
Var(X) =

∞

∫
−∞

(x − E(X))2 d(x) dx (4.36)

Note:
Strictly speaking, there are no continuous random variables in practice, as all measurements that we
make can only be done with restricted precision and hence, may at most produce finitely many results.
Therefore, continuous random variables can be regarded as an abstract description of reality, in which
the restricted precision of our measurements is ignored. Nevertheless, they are very useful and yield
sufficiently precise descriptions in many practical applications.

Normal distribution
In the sequel, we will introduce some important continuous distributions. We start with the probably
most important continuous distribution in statistics, the normal or Gaussian distribution.
Definition 4.15 (Normal distribution). A real random variable X follows a Normal or Gaussian distri-
bution with mean � ∈ ℝ and standard deviation � ∈ (0,∞), if it has the following density

d(x) = 1
√

2��
e−

1
2

(

x−�
�

)2

(4.37)

It is abbreviated by X ∼ Norm (�, �2).

We give some additional explanations.
Remark 4.16. (a) The central role of the normal distribution follows from the fact that a superposition
(sum) of independent factors, under quite weak assumptions can, at least approximately, be described
by this distribution. This is a paraphrase of the statement of one of the most important theorems of
probability theory, the central limit theorem.

(b) In presence of a normal distribution, we can make quite precise statements about the probabilities
of certain intervals using only its mean and standard deviation. It holds

P (X ∈ [� − �, � + �]) = 68.3%

P (X ∈ [� − 2�, � + 2�]) = 95.4%

P (X ∈ [� − 3�, � + 3�]) = 99.7%

(4.38)
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This yields the often handy and easy to remember 2� rule: Within a distance of 2� around the mean
(expectation) about 95% of the values are located. The 2� rule is relatively robust and approximately
holds for quite many distributions.
(c) The normal distributions also plays an important role in quality and process control. The name of

one of the most famous quality management systems – Six Sigma – comes from the normal distribution.
Thus, the goal of this system is an extremely low failure probability.

(d) As the names of the parameters already indicate, the expectation and variance of Norm (�, �2) are

E(X) = � Var(X) = �2 (4.39)

(e) If X ∼ Norm (�, �2), it holds

Z =
X − �
�

∼ Norm (0, 1) (4.40)

and one also calls Norm (0, 1) the standard normal distribution. We selected the letter Z intendendly,
since this distribution is sometimes also called Z-distribution and correspondingly we also refer to it as
z-transformation or z-score (cf. Remark 2.23)).

The normal distribution is abbreviated by norm in R leading to the functions dnorm (density), pnorm,
qnorm, and rnorm. The names of the parameters are mean and sd. In the following example, we present
two applications of the normal distribution.
Example 4.17. (a) The body height of adults in a country can be well described by normal distributions.
In case of the women in Germany, we get a mean of about 167 cm and a standard deviation of about
6.0 cm. In case of the men in Germany, the mean is about 180 cm and the standard deviation about
6.5 cm (Wikipedia (2015)). We plot the density function of men and women using function curve.

1 cu rve ( exp r = dnorm ( x , mean = 167 , sd = 6 . 0 ) , from = 140 , t o = 210 , n = 501 ,
2 c o l = " #E41A1C" , x l a b = "Body h e i g h t i n cm" , y l ab = " Den s i t y " ,
3 main = "Body h e i g h t o f German men and women" )
4 cu rve ( exp r = dnorm ( x , mean = 180 , sd = 6 . 5 ) , from = 140 , t o = 210 , n = 501 ,
5 add = TRUE, c o l = " #377EB8" )
6 l e g end ( " t o p l e f t " , l e g end = c ( "women" , "men" ) , f i l l = c ( " #E41A1C" , " #377EB8" ) )
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The argument expr is the R expression that shall be plotted. With from and to one can specify the range
of the x axis where expression expr is evaluated and drawn on a grid of n equidistant points. Finally,
by using add = TRUE we can add further curves to an already existing plot. The proportion of women
larger than 175 cm accordingly is

1 pnorm (175 , mean = 167 , sd = 6 .0 , l o w e r . t a i l = FALSE)

[1] 0.09121122

The tallest 5% of men are taller than

1 qnorm (0 .95 , mean = 180 , sd = 6 . 5 )

[1] 190.6915

(b) The intelligence quotient (IQ) can also very well be described by a normal distribution. The IQ
scales have a mean of 100 and a standard deviation of 15 (Wikipedia contributors (2022d)). We plot the
respective normal distribution by means of package "distr" (Ruckdeschel et al. (2006)).

1 X ← Norm (mean = 100 , sd = 15)
2 p l o t (X)
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Thus, the 2� rule states that about 5% of the population have an IQ score smaller than 70 or larger than
130. Reversely, about 2.5% of the population have an IQ smaller than 70 or larger than 130, respectively.
Finally, we summarize the distribution using function summary of package "distr6" (Sonabend and
Kiraly (2022)).

1 X6 ← Normal$new (mean = 100 , sd = 15)
2 summary (X6)

Normal Probability Distribution.

Parameterised with:

Id Support Value Tags

1: mean ℝ 100 required

2: prec ℝ+ linked ,required

3: sd ℝ+ 15 linked ,required

4: var ℝ+ linked ,required

Quick Statistics

Mean: 100

Variance: 225

Skewness: 0

Ex. Kurtosis: 0

Support: ℝ Scientific Type: ℝ

Traits: continuous; univariate

Properties: symmetric; mesokurtic; no skew
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Log-normal distribution
The second important continuous distribution is closely related with the normal distribution and is called
log-normal distribution. We first give the definition.
Definition 4.18 (Log-normal distribution). A real random variable X attaining only positive values
follows a log-normal distribution with mean � ∈ ℝ and standard deviation � ∈ (0,∞), if it has the
following density

d(x) =

⎧

⎪

⎨

⎪

⎩

1
√

2��x
e−

1
2

(

log(x)−�
�

)2

if x > 0

0 else
(4.41)

It is abbreviated by X ∼ Lnorm (�, �).

We give some additional explanations.
Remark 4.19. (a) The log-normal distribution occurs in many scientific disciplines. In particular, many
biological processes happen on an exponential scale and thus many parameters in biology and medicine
can be described by a log-normal distribution. That is, in a similar way as additive superpositions in the
sense of the central limit theorem lead to a normal distribution, multiplicative superpositions lead to a
log-normal distribution.
(b) IfX is log-normal distributed, log(X) is normal distributed. In view of part (a) we can say, that a

multiplicative superposition by applying the logarithm becomes an additive superposition.
(c) The parameters of the log-normal distribution are nothing else but the expectation and the variance

of log(X). For the random variable X itself we get

E(X) = e�+
�2
2 Var(X) = e2�+�2(e�2 − 1) (4.42)

The log-normal distribution is abbreviated by lnorm in R. Accordingly, we obtain functions dlnorm,
plnorm, qlnorm, and rlnorm, where the names of the parameters are meanlog and sdlog. We give an
examples for an application of the log-normal distribution.
Example 4.20. (a) For examining the thyroid function the concentration of thyrotropin (TSH) in the
blood is analyzed. Its concentration in persons with normal thyroid function can be described by a log-
normal distribution (Hamilton et al. (2008)). The declarations of the normal range vary especially with
regard to the upper bound. In this example, we use a normal range of 0.27-4.2 �lU∕ml for adults (Hage-
mann (2014)). By using the connection between log-normal and normal distribution, we can determine
the distribution of TSH in persons with normal thyroid function. In addition, we use the information that
the normal or reference range of a parameter is always chosen such that 2.5% of the healthy persons
may have lower or higher values, respectively (Wikipedia contributors (2022f)). In case of the normal
distribution, the normal range approximately corresponds to the 2� interval.
After log-transforming, the normal range reads [-1.309,1.435]. Since the normal distribution is symmet-
ric, the expectation must be the middle of this interval, i.e., � = 0.063. The length of the interval roughly
is 4�, more precisely it is 3.92�. Starting with the interval length of 2.744, the division by 3.92 leads to
� = 0.7. Therefore, the distribution of log-TSH is Norm (0.063, 0.72), thus TSH is Lnorm (0.063, 0.7)
distributed. We plot the distribution of TSH by means of package "distr" (Ruckdeschel et al. (2006)).
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1 X ← Lnorm ( meanlog = 0 .063 , s d l og = 0 . 7 )
2 p l o t (X)
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Finally, we summarize the distribution by using function summary of package "distr6" (Sonabend and
Kiraly (2022)).

1 X6 ← Lognormal $new ( meanlog = 0 .063 , s d l og = 0 . 7 )
2 summary (X6)

Lognormal Probability Distribution.

Parameterised with:

Id Support Value Tags

1: mean ℝ+ required ,means

2: meanlog ℝ 0.063 required ,means

3: prec ℝ+ required ,vars

4: preclog ℝ+ required ,vars

5: sd ℝ+ required ,vars

6: sdlog ℝ+ 0.7 required ,vars

7: var ℝ+ required ,vars

8: varlog ℝ+ required ,vars

Quick Statistics

Mean: 1.360701

Variance: 1.170738

Skewness: 2.888357

Ex. Kurtosis: 17.79117

Support: ℝ+ Scientific Type: ℝ+
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Traits: continuous; univariate

Properties: asymmetric; leptokurtic; positive skew

(b) Several examples of applications of the log-normal distribution from various scientific disciplines
are collected in Limpert et al. (2001) and Limpert and Stahel (2011). In particular, both articles give
recommendations for handling log-normal distributed data in practice.
Gamma distribution
A very flexible distribution with many application is the so-called gamma distribution.
Definition 4.21 (Gamma distribution). A real random variable X attaining only positive values follows
a gamma distribution with scale parameter � ∈ (0,∞) and shape parameter � ∈ (0,∞), if it has the
following density

d(x) =

⎧

⎪

⎨

⎪

⎩

1
��Γ(�)x

�−1e−
x
� if x > 0

0 else
(4.43)

where the gamma function Γ is

Γ(x) =

∞

∫
0

tx−1e−t dt (4.44)

It is abbreviated by X ∼ Gamma (�, �).

We give some additional explanations.
Remark 4.22. (a) The shape parameter makes the gamma distribution very flexible, thus it has many
applications for instance in insurance mathematics, genetics or also medicine.

(b) An important special case of the gamma distribution is the exponential distribution, which is
obtained for � = 1. In addition, one usually uses the rate � = 1

�
as parameter leading to the following

density

d(x) =

⎧

⎪

⎨

⎪

⎩

�e−�x if x > 0

0 else
(4.45)

It is abbreviated by X ∼ Exp (�). One can consider it as the continuous counterpart of the geometric
distribution, a special case of the negative binomial distribution. It describes the time between two events
of a process, where the events occur continuously and independently from each other at a fixed rate. It
is for instance used to estimate survival probabilities.
(c) If we simultaneously consider k ∈ ℕ independent processes, whose events follow Exp (�), their sum

follows a so-called Erlang distribution. The Erlang distribution itself is a special case of the gamma
distribution, where it holds � = k and one usually uses the rate � = 1

�
as second parameter as in case of

the exponential distribution. Hence, the density reads

d(x) =

⎧

⎪

⎨

⎪

⎩

�k

(k−1)!
xk−1e−�x if x > 0

0 else
(4.46)
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The Erlang distribution can for example be used to model the time between calls in a call center, where
the number of calls may for instance be described by a Poisson distribution. The Erlang distribution is
therefore a waiting time distribution and can be regarded as a continuous variant of the negative binomial
distribution.
(d) Another important special case of the gamma distribution is the �2 distributionwith n ∈ ℕ degrees

of freedom, Chisq (n) for short. It holds � = 2 and � = n
2
. Thus, the density reads

d(x) =

⎧

⎪

⎨

⎪

⎩

1

2
n
2 Γ( n2 )

x
n
2−1e−

1
2x if x > 0

0 sonst
(4.47)

The �2 distribution also arises in the framework of the normal distribution as we will see later in this
section.
(e) Expectation and variance of X ∼ Gamma (�, �) are

E(X) = �� Var(X) = ��2 (4.48)

We introduce some applications of the gamma distribution. The gamma distribution is available in R
in form of the functions dgamma, pgamma, qgamma, and rgamma, where the parameters are called scale
and shape. The exponential distribution is provided by functions dexp, pexp, qexp, and rexp with
parameter rate.
Example 4.23. (a) A modern battery of a smart phone has a median life expectancy of two years. We
use the exponential distribution to model the life expectancy, which yields

0.5 = P (X ≤ 5years) = 1 − e−2years⋅� (4.49)

This leads to a failure rate per year of � = 0.34657. We plot the distribution by means of package
"distr" (Ruckdeschel et al. (2006)).

1 X ← Exp ( r a t e = 0 .34657 )
2 p l o t (X)
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We summarize the distribution by using the function summary of the package "distr6" (Sonabend and
Kiraly (2022)).
1 X6 ← Expon e n t i a l $new ( r a t e = 0 .34657 )
2 summary (X6)

Exponential Probability Distribution.

Parameterised with:

Id Support Value Tags

1: rate ℝ+ 0.34657 linked ,required

2: scale ℝ+ linked ,required

Quick Statistics

Mean: 2.88542

Variance: 8.325648

Skewness: 2

Ex. Kurtosis: 6

Support: ℝ0+ Scientific Type: ℝ0+

Traits: continuous; univariate

Properties: asymmetric; leptokurtic; positive skew

Thus, how likely is it that the battery fails already in the first year?
1 pexp ( 1 , r a t e = 0 .34657 )

[1] 0.2928907
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That is, more than 30% of the batteries fail already in the first year. After how many years are 99% of the
batteries out of order? We obtain

1 qexp (0 .99 , r a t e = 0 .34657 )

[1] 13.28785

That is, in the extreme case a battery may theoretically work for more than 13 years.
(b) The gamma distribution offers a way to model the hospital length of stay of a group of patients;

e.g., all patients with a certain diagnosis or more precisely belonging to a certain DRG (diagnosis related
group). Assuming a scale parameter of � = 5 and a shape parameter of � = 1.8 for a selected DRG, we
obtain the following density, which we plot using function curve

1 cu rve ( dgamma ( x , s c a l e = 5 , shape = 1 . 8 ) , from = 0 , t o = 30 , n = 501 ,
2 x l ab = " Ho s p i t a l l e n g t h o f s t a y i n days " , y l a b = " Den s i t y " ,
3 main = "A s e l e c t e d DRG" )
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We summarize the distribution by using function summary of package "distr6" (Sonabend and Kiraly
(2022)).

1 X6 ← Gamma$new ( shape = 1 .8 , s c a l e = 5)
2 summary (X6)

Gamma Probability Distribution.

Parameterised with:

Id Support Value Tags
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1: mean ℝ+ linked ,required

2: rate ℝ+ linked ,required

3: scale ℝ+ 5 linked ,required

4: shape ℝ+ 1.8 required

Quick Statistics

Mean: 9

Variance: 45

Skewness: 1.490712

Ex. Kurtosis: 3.333333

Support: ℝ+ Scientific Type: ℝ+

Traits: continuous; univariate

Properties: asymmetric; leptokurtic; positive skew

That is, most of the patients of this DRG will be discharged within a few days. But, it may happen that
patients have to stay in the hospital for more than two weeks. How likely is it, that a randomly selected
patient has to stay in the hospital for more than ten days? We get

1 pgamma (10 , s c a l e = 5 , shape = 1 .8 , l o w e r . t a i l = FALSE)

[1] 0.3472818

Thus, slightly more than one third of the patients have to stay for more than ten days. After how many
days 99% of the patients have been discharged? We obtain

1 qgamma (0 .99 , s c a l e = 5 , shape = 1 . 8 )

[1] 31.3043

That is, it happens only very rarely that a patient has to stay for more than one month.

Weibull distribution
If the failure rate changes over time, the so-called Weibull distribution offers a way to model the process.
We start with its definition.
Definition 4.24 (Weibull distribution). A real random variable X attaining only positive values follows
a Weibull distribution with scale parameter � ∈ (0,∞) and shape parameter � ∈ (0,∞), if it has the
following density

d(x) =

⎧

⎪

⎨

⎪

⎩

�
�

(

x
�

)�−1
e−

(

x
�

)�

if x > 0

0 else
(4.50)

It is abbreviated by X ∼ Weibull (�, �)
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We give some additional explanations.
Remark 4.25. (a) The Weibull distribution plays an important role in the reliability analysis of parts
and components for instance in the automobile industry. In contrast to the exponential distribution, the
shape parameter offers a possibility to model also aging.

(b) The Weibull distribution belongs to the class of extreme value distributions, more precisely it is
an extreme value distribution of Typ III. By the theorem of Fisher–Tippett–Gnedenko, this distribution,
under certain assumptions, arises as the maximum of independent random variables.
(c) In case � = 1, the Weibull distribution is identical to the exponential distribution.
(d) Expectation and variance are

E(X) = �Γ
(

1 + 1
�

)

Var(X) = �2
(

Γ
(

1 + 2
�

)

− Γ
(

1 + 1
�

)2)

(4.51)

We introduce some applications.
Example 4.26. (a)We again consider the battery of a modern smart phone with a failure rate of 0.34657
as in Example 4.23 (a), i.e. � = 1

0.34657 . In addition, we assume that its aging can be described by a shape
parameter of � = 2.12. We plot the distribution using function curve
1 cu rve ( dwe i b u l l ( x , s c a l e = 1 / 0 .34657 , shape = 2 . 12 ) , from = 0 , t o = 30 , n = 501 ,
2 x l ab = " L i f e expec t a n cy i n y e a r s " , y l a b = " Den s i t y " ,
3 main = " L i f e expe c t a n cy of a sma r t phone b a t t e r y i n c l u d i n g ag ing " )
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We summarize the distribution by using the function summary of package "distr6" (Sonabend and
Kiraly (2022)).
1 X6 ← d i s t r 6 : : Weibu l l $new ( shape = 2 .12 , s c a l e = 1 / 0 .34657 )
2 summary (X6)
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Weibull Probability Distribution.

Parameterised with:

Id Support Value Tags

1: altscale ℝ+ linked ,required

2: scale ℝ+ 2.88542 linked ,required

3: shape ℝ+ 2.12 required

Quick Statistics

Mean: 2.555462

Variance: 1.606889

Skewness: 0.5551175

Ex. Kurtosis: 0.1124261

Support: ℝ0+ Scientific Type: ℝ0+

Traits: continuous; univariate

Properties: asymmetric; leptokurtic; positive skew

Since there is also a function in the package "distr" called Weibull, we have to specify distr6::

to distinguish it. More precisely, the operator :: is used to access the objects of the Namespace of a
package, here "distr6".
There are less defective batteries in the first year than in case of the exponential distribution, namely

1 pwe i b u l l ( 1 , s c a l e = 1 / 0 .34657 , shape = 2 . 12 )

[1] 0.1003672

only around 10%. However, it takes less time until 99% of the batteries are out of order i.e., only about

1 qwe i b u l l (0 .99 , s c a l e = 1 / 0 .34657 , shape = 2 . 12 )

[1] 5.930083

years.
(b) The Weibull distribution is also used to model wind speed. We assume that the maximum wind

speeds (in m
s
) per day at a selected place may be described by a Weibull distribution with � = 5.5 and

� = 2. We plot the distribution by means of package "distr" (Ruckdeschel et al. (2006)).

1 X ← Weibu l l ( s c a l e = 5 .5 , shape = 2)
2 p l o t (X)
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We summarize the distribution by using function summary of package "distr6" (Sonabend and Kiraly
(2022)).

1 X6 ← d i s t r 6 : : Weibu l l $new ( shape = 2 , s c a l e = 5 . 5 )
2 summary (X6)

Weibull Probability Distribution.

Parameterised with:

Id Support Value Tags

1: altscale ℝ+ linked ,required

2: scale ℝ+ 5.5 linked ,required

3: shape ℝ+ 2 required

Quick Statistics

Mean: 4.874248

Variance: 6.491706

Skewness: 0.6311107

Ex. Kurtosis: 0.2450893

Support: ℝ0+ Scientific Type: ℝ0+

Traits: continuous; univariate

Properties: asymmetric; leptokurtic; positive skew

We get as median wind speed

1 qwe i b u l l (0 .5 , s c a l e = 5 .5 , shape = 2)
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[1] 4.57905

which is a gentle breeze. How likely is at least a strong breeze, i.e., a wind speed of at least 11m
s
? We

obtain
1 pwe i b u l l ( 11 , s c a l e = 5 .5 , shape = 2 , l o w e r . t a i l = FALSE)

[1] 0.01831564

That is, it happens only in about 2% of the days.

�2, t and F distribution
Finally, we introduce some continuous distributions that arise in the context of the normal distribution
and play an important role in inferential statistics. We first give the definitions.
Definition 4.27 (�2, t and F distribution). (a) A real random variable X attaining only positive values
follows a �2 distribution with n ∈ ℕ degrees of freedom, if it has the following density

d(x) =

⎧

⎪

⎨

⎪

⎩

1

2
n
2 Γ( n2 )

e−
1
2xx(

n
2−1) if x > 0

0 else
(4.52)

It is abbreviated by X ∼ Chisq (n).
(b) A real random variable X follows a t distribution with n ∈ ℕ degrees of freedom, if it has the

following density

d(x) =
Γ( n+1

2
)

Γ( n
2
)
√

�n

(

1 + t2

n

)− n+1
2 (4.53)

It is abbreviated by X ∼ t (n)
(c) A real random variableX attaining only positive values follows an F distribution with m ∈ ℕ and

n ∈ ℕ degrees of freedom, if it has the following density

d(x) =

⎧

⎪

⎨

⎪

⎩

Γ( n+m2 )
Γ( n2 )Γ(

m
2 )
n
n
2m

m
2

x
n
2 −1

(m+nx)
n+m
2

if x > 0

0 else
(4.54)

It is abbreviated by X ∼ F (m, n).

We give some additional explanations.
Remark 4.28. (a) The �2 distributions arises as the sum of the square of n independent standard nor-
mal random variables. In inferential statistics, the distribution for instance occurs in connection with
estimating the variance.
(b) Let Z be some standard normal random variable and Y an independent Chisq(n) distributed ran-

dom variable. Then, it holds
√

n Z
√

Y
∼ t (n) (4.55)
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The distribution arises in inferential statistics for example by considering standardized arithmetic means.
(c) Let X ∼ Chisq (m) and Y ∼ Chisq (n) be some independent random variables. Then, it holds

n ⋅X
m ⋅ Y

∼ F (m, n) (4.56)
The distribution arises in inferential statistics for instance by investigating the ratio of two variances.

Note:
Of course, there are many more probability distributions, which can be used as models for various
applications. In particular, these basic distributions can be applied for constructing more complex
models such as regression models.

Table 4.1 includes important notions from statistics and their counterparts in probability theory. There
Statistics Probability theory

attribute/variable random variable
levels possible values of a random variable

relative frequency probability
frequency distribution probability mass function
density estimation (probability) density

empirical cumulative distribution function cumulative distribution function
(sample) quantile quantile
arithmetic mean expectation
(sample) variance variance

Table 4.1: Notions from statistics and their counterparts in probability theory.

are also counterparts to (sample) correlation and covariance in probability theory. For their definition one
has to consider the common distribution of two random variables, which goes beyond this introductory
book.

4.3 Exercises

Please always describe and explain your results in detail.
1. Plot the distribution Binom (20, p) for p ∈ {0.1, 0.2,… , 0.9} bymeans of package "distr" (Ruck-

deschel et al. (2006)).
2. Determine expectation and variance of Binom (2, p) without using the explicit formulas for expec-

tation and variance.
3. People with blood group 0-negative are universal donors, where about 7% of the humans have this

blood type. Let us assume you conduct a trial, in which 20 persons are randomly selected. How
likely is it that there are at least three universal donors in the sample? Use the binomial distribution.
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4. The lethality – i.e. the proportion of ill people who die from the disease – of Sars-CoV-2 (COVID-
19) in Korea through March 20, 2020, was approximately. 1.09% (Shim et al. (2020)). Assume
that this lethality rate also applies to the approx. 83.2 million people in Germany (2019). Assume
further that 70% of the inhabitants in Germany must contract the virus before herd immunity de-
velops. Howmany deaths are then to be expected in Germany (expected value)? Howmany deaths
are then to be expected in Germany with a probability of at least 99% (quantile)? Use the binomial
distribution.

5. In a certain hospital the mean birth rate (expected value) is 1.8 births per hour. Howmany delivery
rooms does the hospital need, such that each birth is in a delivery room with 95% probability? Use
the Poisson distribution.

6. In the European Union, a rare disease is defined as one with an incidence lower than 1 in 2000
people. The incidence rate per year of sarcoidosis is about 5-60 cases per 100 thousand population.
How many new cases can be expected in Germany per year if we assume the worst case (60 cases
per 100 thousand) and a population of 83.2 million in Germany (2019)? What is the maximum
number of new cases to be expected in Germany per year with a probability of at least 99%. Use
the Poisson distribution.

7. An oil company conducts a geological study in a certain regionwhere it is drilled for oil at randomly
selected positions. Let us assume that the probability of finding oil in the selected region is 20%.
How likely is it that the company has to drill at least five times until the first oil find? How often the
company has to drill to find oil twice with 99% certainty? Apply the negative binomial distribution.

8. The probability of getting all the numbers right in the Eurojackpot, is
1

(50
5

)

×
(10
2

)

≈ 1.049 × 10−8

How many times do you have to play one field every Friday until you have at least a 50% or 99%
probability of getting all the numbers right for the first time? What would this cost you if one field
currently cost 2.20 euros? Use negative binomial distribution.

9. Plot the distribution Gamma (1, �) for � ∈ {0.1, 0.5, 1.0, 2.0, 5.0, 10.0} by means of package
"distr" (Ruckdeschel et al. (2006)). The function to generate gamma distributed random vari-
ables is called Gammad.

10. Determine expectation and variance of Exp (1) without using the explicit formulas for expectation
and variance.

11. The expected birth weight of healthy boys is � = 3.35 kg with a standard deviation of � = 0.43 kg.
How likely is it that a healthy boy with a birth weight of less than 3 kg is born? What is the normal
range of the birth weight of boys? Apply the normal distribution.

12. We assume that the duration in days between the onset of symptoms in the carrier and the infected
in the case of Sars-CoV-2 (COVID-19) can be described by log-normal distribution with � = 2.78
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and � = 2.02. Accordingly, how long does it take, on median, for the pairs (carrier and infected)
to show symptoms?

13. You want to investigate the impact of gamma rays and conduct an animal experiment with mice.
The mice are exposed to a radiation of 2.4 Gray. The survival time of the mice in weeks can be
described by a gamma distribution with parameters � = 7 and � = 6. How likely is it that a
randomly chosen mouse lives between 25 and 50 weeks? How many weeks does it take until 95%
of the mice have died?

14. The median life time of a common bulb today is 1000 hours. We assume that we can describe
the life time by a Weibull distribution with � = 1250 and � = 1.8. How likely is it that a bulb is
defective already in the first 100 hours? After how many hours are 99% of the bulbs defective?

15. The maximum water level [in cm] of the river Neckar in Rottweil (Baden-Württemberg) can be
described by a Weibull distribution with shape paramether � = 4.5 and scale parameter � = 270.
Calculate the values for 2-year, 10-year, 50-year and 100-year floods. The values correspond to
the 50%, 90%, 98%, and 99% quantiles of the distribution.
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5 Estimation

The chapter is about estimating parameters of simple parametric models. It covers the following topics:
• Issues of inferential statistics
• Importance of estimation in the framework of inferential statistics
• Parametric probability models
• Point estimator, estimator
• Unbiasedness, efficiency, consistency
• Maximum likelihood estimator (abbreviated: ML estimator)
• Quantile-quantile plot (abbreviated: qq plot)
• Minimum distance estimator (abbreviated: MD estimator)
• Kolmogorov(-Smirnov)-MD estimator (abbreviated: KS-MD estimator)
• Cramér-von-Mises-MD estimator (abbreviated: CvM-MD estimator)
• Asymptotically linear estimator (abbreviated: AL estimator)
• Radius-minimax estimator (abbreviated: RMX estimator)
• Interval estimator, confidence interval
• Confidence interval for arithmetic mean and standard deviation
• Exact confidence intervals, asymptotic confidence intervals
• Bootstrap confidence intervals
• Confidence intervals for ML estimators
• Continuity correction, finite-sample correction
• Confidence intervals for median and MAD
• Confidence intervals for CvM-MD estimators
• Confidence intervals for MD estimators
• Confidence intervals for AL and RMX estimators
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TheR code of this chapter is included in the RMarkdown file Estimation.Rmd, which you can download
frommyGitHub account (link: https://github.com/stamats/ISDR/blob/main/Estimation.Rmd).
Right click on Raw. Then you can Save target as .... The least difficulties arise, if you save my R
Markdown files in the same folder as the data.
We first install the packages required in this chapter. Since the package "RobLox" (Kohl (2019)) depends
on the Bioconductor package "Biobase" (Huber et al. (2015)), we first install "Biobase". We also need
the package "BiocManager" (Morgan (2019)) for this purpose.

1 i n s t a l l . p a c k a g e s ( " BiocManager " )
2 BiocManager : : i n s t a l l ( " B iobase " , upda t e = FALSE)

Now we can install the required packages.

1 i n s t a l l . p a c k a g e s ( c ( " d i s t rMod " , " q q p l o t r " , "RobLox " , " g r i d E x t r a " , "MKinfer " ,
2 " ROptEst " , " RobExtremes " , "MKpower" , "MKclass " ) )

Furthermore, we install package "rmx" (Kohl (2022c)) from GitHub which is not yet on CRAN.

1 ## Development version from GitHub

2 # install.packages("remotes")

3 r emo t e s : : i n s t a l l _ g i t h u b ( " s t ama t s / rmx " , b u i l d _ v i g n e t t e s = TRUE)

Make sure that you have already installed the packages from the previous Chapters 2, 3 and 4.
We load all packages required for the chapter.

1 l i b r a r y ( g gp l o t 2 )
2 l i b r a r y ( MKdescr )
3 l i b r a r y ( d i s t rMod )
4 l i b r a r y ( q q p l o t r )
5 l i b r a r y ( RobLox )
6 l i b r a r y ( g r i d E x t r a )
7 l i b r a r y ( MKinfer )
8 l i b r a r y ( ROptEst )
9 l i b r a r y ( RobExtremes )
10 l i b r a r y (MKpower )
11 l i b r a r y ( MKclass )
12 l i b r a r y ( rmx )
13 l i b r a r y (MASS)
14 l i b r a r y ( boo t )
15 l i b r a r y ( p a r a l l e l )

As already explained in Section 2.4, repeated execution of library is not problematic. The packages
"MASS" (Venables and Ripley (2002)), "boot" (Canty and Ripley (2021)) and "parallel" (R Core
Team (2022a)) do not need to be installed, since they belong to the group of recommended and base
packages and are therefore already included in the standard installation of R (cf. Section 1.2).
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5.1 Introduction

This introduction provides a brief example to make clear, which questions we can address applying in-
ferential statistics.

We consider a coin and for simplicity label the sides with 0 and 1, where we exclude the possibility that
after tossing the coin might land on its edge. We are interested in the question:

Is it a fair coin?

Here, fair means that both sides of the coin occur with equal probability. We can describe the coin toss
using the Bernoulli distribution Bernoulli (p), where p is the probability that side 1 is tossed. By means
of this probability model, we can state the question more precisely and obtain:

Is the probability of side 1 equal to 50%, abbreviated: p = 0.5?

How can we address this question? We could test the coin by a very detailed materials analysis. However,
this surely would be very costly and only possible with an appropriate technical equipment. Certainly, a
random experiment is faster and simpler: we toss the coin several times and record the results. The re-
sults of this random experiment are our sample, which is the basis for our decision by means of statistical
procedures.

Before we conduct this random experiment, there are some things to clarify:
I: How often should we toss the coin to get a most reliable result?
II: How do we summarize the results such that we may infer the actual probability p of side 1 in a most

optimal way?
III: Is the observed count of side 1 in the range of the expected frequency of a fair coin or is it too small

or too large?
The answers of inferential statistics to these questions are:
Ad I: We can perform a so-called sample size calculation using a confidence interval (see Section 5.3) or

statistical test (see Chapter 6). With these procedures, we can determine the number of replications
in such a way that we can decide, if the coin is fair with a given certainty.

Ad II: By means of point estimators (see Section 5.2) we can summarize the observed values. In case
of the coin, the observed relative frequency of side 1 can be compared with the theoretical value
(p = 0.5).

Ad III: We can again use confidence intervals or statistical tests to correctly answer this question with a
given high certainty. For instance, if p = 0.5 is covered by the computed confidence interval, we
consider the coin as a fair coin.
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Note:
Statistics is not able to absolutely answer a question. The possibility of a wrong decision can never be
excluded. Some scientists even believe that most of the published research results are wrong (Ioannidis
(2005)). This criticism may be approached with a proper methodology, sufficiently large trials, a
careful application of statistical procedures, and a cautios interpretation of the results. Moreover,
everything should be documentend completely and comprehensively to make the research replicable
and reproducible (Gentleman and Temple Lang (2007)).

5.2 Point Estimation

In this section, we want to determine the unknown parameters of simple parametric models. This proce-
dure is called estimation, more precisely we are looking for point estimators of the unknown parameters.
We first define the notions parametric model and point estimator.
Definition 5.1 (Parametric model, point estimator). (a) A parametric model is a set  = {P� | � ∈ Θ} of
probability distributions, where the elements of  are uniquely identifiable by their parameter � ∈ Θ ⊂
ℝk (k ∈ ℕ). This is also called a parametric family.

(b) Let  = {P� | � ∈ Θ} be a parametric family of probability distributions, where Θ ⊂ ℝk (k ∈ ℕ)
is the set of all possible parameters. Furthermore, let x1,… , xn be a representative sample of size n ∈ ℕ
from some element P� ∈  (� unknown). Then, a point estimator or estimator Sn is a random variable

Sn ∶ ℝn → Θ, (x1,… , xn) → Sn(x1,… , xn) =∶ �̂ (5.1)
where �̂ is the point estimation or estimation of �.

We give some additional explanations.
Remark 5.2. (a) The notion parametric family implies that the elements of the set may be identified by
their parameters. Formally, there is a function that maps a given � to a certain P� and the mapping is
unique.
(b) The observations of a representative sample correspond to realizations of independent random

variables X1,… , Xn, where it holds Xi ∼ P� (i = 1,… , n). Therefore, the random variables are also
called independent and identical distributed (iid).
(c) A point estimator Sn is a random variable, i.e., a random function. Consequentially, an estimator

has a certain distribution that depends on the unknown distribution P�. The quality of an estimator is
usually assessed by E(Sn) und Var(Sn). If E(Sn) = �, the estimator is called bias-free or unbiased. It
means that the estimator in average estimates the true parameter. If Var(Sn) is additionally minimal,
the estimator is called efficient. That is, there is no unbiased estimator that is able to estimate � more
accurately. For more complex models it is usually difficult or even impossible to find efficient estimators.
In such a case one often considers the mean squared error (MSE)

MSE(Sn) = E(Sn − �)2 =
(

E(Sn − �)
)2 + Var(Sn) = Bias(Sn)2 + Var(Sn)

and tries to minimize it. Instead of unbiasedness, one often has to be satisfied with the so-called con-
sistency, which means that the estimator with increasing sample size more and more approaches (in a
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probability theoretic sense) the true (unknown) parameter; i.e., lim
n→∞

Sn = � (in a probability theoretic
sense). Figure 5.1 illustrates the notions unbiased and efficient, where the center of the circle corresponds
to the true (unknown) parameter.

Figure 5.1: Illustration of unbiased and efficient.

In the following example, we introduce some unbiased and efficient estimators.
Example 5.3. (a) We consider the probability model {Bernoulli (p) | p ∈ (0, 1)}. The, the relative fre-
quency is an unbiased and efficient estimator of the unknown probability p.

(b) Let the probability model { (�, �2) |� ∈ ℝ} be given, where �2 ∈ (0,∞) is known. Then, the
arithmetic mean is an unbiased and efficient estimator of the unknown expectation �.
(c) The situation becomes somewhat more complicated in case of the model { (�, �2) |� ∈ ℝ, � ∈

(0,∞)}. The sample variance is a possible estimator for the unknown variance �2, but it is not unbiased.
The bias is − 1

n
�2. We obtain an unbiased estimator by using the standardization 1

n−1 ; i.e.

S̃n(x1,… , xn) =
1

n − 1

n
∑

i=1

(

xi − AM (x1,… , xn)
)2 (5.2)

Therefore, avoiding a bias is the reason why one usually uses 1
n−1 instead of 1n for computing the empirical

variance. Regarding the accuracy of the estimation, the variance of the (true) sample variance is smaller
than the variance of S̃n.
We use our ICU dataset und want to estimate the prevalence (disease frequency) of liver failure on the
ICU. Please, import the dataset as described in Section 2.3, if you have not done this already. There you
also find more information about the data. In contrast to descriptive statistics, it is now necessary for the
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validity of the results that the 500 ICU patients were randomly and representatively selected from the
ICU population. We compute the relative frequency as described in Section 2.5.1.

1 ICUData ← r e a d . c s v ( f i l e = " ICUData .csv " , s t r i n g sA s F a c t o r s = TRUE)
2 ## unbiased and efficient

3 t a b l e ( ICUData$ l i v e r . f a i l u r e ) / nrow ( ICUData )

0 1

0.96 0.04

That is, 4% of the randomly selected ICU patients had a liver failure. We now regard this as an estimate
for all ICU patients and later we will further ensure the result. Therefore, a possible model for the preva-
lence of liver failure on the ICU is Bernoulli (0.04).

The analysis in Section 2.6.1 suggests that the maximum body temperature of ICU patients – except for
strongly undercooled (hypothermic) patients such as patient 398 – is quite well described by a normal
distribution. We estimate expectation and variance.

1 ## unbiased and efficient

2 mean ( ICUData$ t emp e r a t u r e [−398 ] )

[1] 37.72044

1 ## unbiased

2 sd ( ICUData$ t emp e r a t u r e [−398 ] )

[1] 1.173187

The results are identical to Section 2.6.1. However, we do not longer use these values for describing the
sample, but as parameters of a probability model, which describes the underlying population.

Note:
For interpreting the result and inferring to the ICU population, it is of crucial importance, whether we
want to include strongly undercooled patients such as patient 398. If this is not the case, we can use
Norm (37.7, 1.22) as a model for the maximum body temperature. Otherwise, we have to understand
that we can not describe the maximum body temperature by a normal distribution as such an extreme
temperature as 9.1◦C is practically impossible.

We apply the estimated model and compute the probability that the maximum body temperature is less
than 10◦C . We get

1 pnorm (10 , mean = 37 .7 , sd = 1 . 2 )

[1] 3.404114e-118
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Next, we will address the question how to find optimal or at least good estimators. This is also called
estimator construction. The probably most frequently applied principle is maximum likelihood, which
is defined as follows.
Definition 5.4 (Maximum likelihood estimator). Let  = {P� | � ∈ Θ}, Θ ⊂ ℝk (k ∈ ℕ), be some prob-
ability model with probability mass function or density d�. Furthermore, let x1,… , xn be realizations of
independent and P� distributed random variables X1,… , Xn. Then, the likelihood function is

L(�) =
n
∏

i=1
d�(xi) (5.3)

and themaximum likelihood estimator (abbreviated: ML estimator) for � is the position of the maximum
of L(�).

We give some additional explanations.
Remark 5.5. (a) In case of the ML estimator, � is chosen such that the observed data has the maximum
possible probability in the assumed probability model.
(b) The ML construction principle is generally applicable and usually leads to an (asymptotically)

unbiased and efficient estimator. However, there are also probability models, where it is not applicable.
(c) In simple cases, the ML estimator can be determined by direct analytical calculations. The nu-

merical computation of the likelihood function is numerically difficult in practice (product of many small
numbers) and usually the so-called log-likelihood function is used

l(�) = ln (L(�)) =
n
∑

i=1
ln
(

d�(xi)
) (5.4)

where the position of the maximum is identical to L(�). This simple “trick” clearly simplifies the numer-
ical computations and leads to more stable results.
(d) There are several R packages that include functions to compute ML estimators. For simple proba-

bility models one can for example apply the packages "stats4" (R Core Team (2022a)), "MASS" (Ven-
ables and Ripley (2002)), "fitdistrplus" (Delignette-Muller and Dutang (2015)), or "distrMod"
(Kohl and Ruckdeschel (2010)).

We present some examples of ML estimators.
Example 5.6. (a) In case of the simple Bernoulli model  = {Bernoulli (p) | p ∈ (0, 1)}, the ML esti-
mator can explicitly be determined via the first derivative of the log-likelihood function. The likelihood
function reads

L(p) =
n
∏

i=1
pxi(1 − p)1−xi (5.5)

and thus the log-likelihood function is

l(p) =
n
∑

i=1
ln
[

pxi(1 − p)1−xi
]

=
n
∑

i=1

[

xi ln(p) + (1 − xi) ln(1 − p)
] (5.6)
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We calculate the derivative of the log-likelihood function and obtain

l′(p) = d
dp
l(p) =

n
∑

i=1

[

xi
p
−
1 − xi
1 − p

]

= 1
p

n
∑

i=1
xi −

1
1 − p

[

n −
n
∑

i=1
xi

]

= − n
1 − p

+
(1 − p) + p
p(1 − p)

n
∑

i=1
xi

= − n
1 − p

+ 1
p(1 − p)

n
∑

i=1
xi

(5.7)

Setting the first derivative equal to zero (l′(p) = 0) yields
n

1 − p
= 1
p(1 − p)

n
∑

i=1
xi ⇐⇒ p = 1

n

n
∑

i=1
xi (5.8)

As xi can only take the values 0 and 1, the arithmetic mean of the xi is nothing else but the relative
frequency of 1.
(b) Normal distribution model: The ML estimator for the expectation is the arithmetic mean, for the

variance it is the sample variance (i.e. standardization 1
n
).

(c) Poisson model: The ML estimator is the arithmetic mean.
(d) Exponential model: The ML estimator is the inverse of the arithmetic mean.

Instead of the functions mean and sd, we apply function fitdistr of package "MASS" (Venables and
Ripley (2002)) to determine the ML estimator of the maximum body temperature. We need not to install
package "MASS", since it belongs to the group of recommended packages and thus is included in the
standard installation of R. We use the normal distribution model and exclude patient 398.
1 f i t d i s t r ( ICUData$ t emp e r a t u r e [−398 ] , d en s fun = " normal " )

mean sd

37.72044088 1.17201119

( 0.05246643) ( 0.03709937)

As the ML estimator for the variance includes the standardization 1
n
, the result slightly differs from the

result of function sd. In addition to the estimates, we get some additional output showing the standard
errors of the estimates; see Section 5.3 for more details.

Alternatively, we use package "distrMod" (Kohl and Ruckdeschel (2010)), which is derived from pack-
age "distr" (Ruckdeschel et al. (2006)). Here, the estimation proceeds in two steps. First, we define
the probability model and then we estimate the parameters of the generated model by means of function
MLEstimator.
1 ## Change output options

2 d i s t rModOp t i on s ( s h ow . d e t a i l s = " minimal " )
3 ## Define probability model

4 model ← NormLoca t ionSca leFami ly ( )
5 ## Estimate parameters by ML

6 MLEstimator ( ICUData$ t emp e r a t u r e [−398 ] , model )

Download free eBooks at bookboon.com 128



Introduction to statistical data analysis with R 5 Estimation

Evaluations of Maximum likelihood estimate:

-------------------------------------------

mean sd

37.72044088 1.17201119

( 0.05246643) ( 0.03709937)

The normal distribution model is called NormLocationScaleFamily, because it is more generally a
location and scale model, since expectation (location parameter) as well as variance (dispersion or scale
parameter) must be estimated. The result for the ML estimate is identical to the result of fitdistr.

Note:
The abstract object-oriented implementation in the package "distrMod" (Kohl and Ruckdeschel
(2010)) allows the calculation of some additional quantities, which can be used, for example,
for the calculation of confidence intervals (Section 5.3) or for diagnostics. With the help of
distrModOptions function and the option show.details = �minimal�, the corresponding ad-
ditional outputs were deliberately suppressed. This serves the clarity and the better understanding of
the outputs. The additional information would require explanations, which exceed the contents of this
book.

Although the estimation of the unknown parameters worked without any problems, this does not mean
that one can blindly trust the estimated values and that the fitted model actually fits the data. Before
statistical results and estimated models are further interpreted, a model validation should always be
performed. This is also called model diagnostics. For the validity of each statistical analysis, certain
conditions are necessary, which can be more or less strict. The aim of this step is to check the validity of
these assumptions and thus of the statistical results, which is difficult in most cases. In case of new data
being collected and used for validation, this is also referred to as external validation. If the validation
is based on the same data that was used for the estimation, this is called an internal validation.

Note:
In internal validation, one should proceed very carefully, since every statistical procedure in a certain
way also tries to “impose” the model or the assumptions on the data. So there is a risk of underesti-
mating the deviations from the model or the preconditions. This is called (re-)substitution bias. The
usual approach to reduce or avoid this bias is the use of so-called resampling methods. With these
methods (e.g. cross-validation or bootstrap), one usually selects a part of the data set at random and
performs the statistical method on this part. The remaining part is used for validation. Since this is a
random selection, one can repeat this procedure many times and get an impression of the validity of
the statistical results and their variance. For simple models resampling methods are usually not used.
Therefore I will not pursue this approach here.

Some requirements can be examined with the help of statistical tests. However, I do not recommend
this approach, since it is usually unclear, which power (cf. Chapter 6) these tests have for the respective
situation. Moreover, these pre tests rely on further assumptions that are necessary for them to keep the
type I error (cf. Chapter 6) and to generate valid results. In the following, we will apply diagnostic plots,
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which in my opinion represent the best possibility for model validation. In the given example, we are
dealing with a simple parametric model, namely the normal distribution. Since the density as well as
the (cumulative) distribution function and the quantile function are defining functions for the normal
distribution, it makes sense to take a look at these functions for the estimated model and to compare
them with the corresponding empirical counterparts obtained from the available data.
We plot the data (without patient 398) and the estimated model by means of a histogram in combination
with a density plot.

1 h i s t ( ICUData$ t emp e r a t u r e [−398 ] , b r e a k s = seq ( from = 33 , t o = 42 , by = 0 . 5 ) ,
2 main = "Maximum body t emp e r a t u r e " , y l a b = " Den s i t y " , f r e q = FALSE)
3 l i n e s ( d e n s i t y ( ICUData$ t emp e r a t u r e [−398 ] ) )
4 cu rve ( dnorm ( x , mean = 37 .7 , sd = 1 . 2 ) , c o l = " d a r k r e d " , from = 33 , t o = 42 ,
5 n = 501 , add = TRUE, lwd = 2)
6 l e g end ( " t o p r i g h t " , f i l l = " d a r k r e d " , l e g end = " Es t ima t e d model " )
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ICUData$temperature[−398]
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Argument lwd controls the thickness of the lines, where the default value is 1 and values larger than 1 lead
to thicker lines. We repeat the plot applying the functions of package "ggplot2" (Wickham (2009)). Be-
side the functions ggplot, geom_histogram, and geom_density, we need function stat_function,
which can be used to add the graph of a function to a plot. With function annotate we can add some
text to the plot.

1 ggp l o t ( ICUData [−398 , ] , a e s ( x=t emp e r a t u r e ) ) +
2 geom_his togram ( ae s ( y= . . d e n s i t y . . ) , b i nw id t h = 0 .5 , f i l l = " d a r kg r ey " ) +
3 geom_dens i t y ( c o l o r = " o range " ) + y l ab ( " Den s i t y " ) +
4 s t a t _ f u n c t i o n ( fun = dnorm , a r g s = l i s t ( mean = 37 .7 , sd = 1 . 2 ) ,
5 c o l o r = " d a r k r e d " , lwd = 2) +
6 a n n o t a t e ( " t e x t " , x = 40 , y = 0 .31 , c o l = " d a r k r e d " ,
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7 l a b e l = " E s t ima t e d model " ) +
8 g g t i t l e ( "Maximum body t emp e r a t u r e " )
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We can see that the actual data and the estimated model data are quite similar. Certain random deviations
from the model assumptions are always to be expected and further complicate the assessment of validity.
The other way around, it is the case that perfect agreement between the model and the data can be an
indication for a manipulation of the data. An example for this is the discussion surrounding the work
of Fisher (1936), who questioned the results of Mendel (1866), whether Mendel adapted his results on
heredity somewhat to his expectations; see also Novitski (2004).

In a similar way, we could compare the empirical cumulative distribution function with the cumulative
distribution function of the model. This is called a pp-plot (probability-probability plot). A pp-plot
can be generated using package "qqplotr" (Almeida et al. (2018)) with the functions stat_pp_point,
stat_pp_line and stat_pp_band in combination with the package "ggplot2" (Wickham (2009)).

1 ggp l o t ( ICUData [−398 , ] , a e s ( sample = t emp e r a t u r e ) ) +
2 q q p l o t r : : s t a t _ pp_b and ( dparams = l i s t ( mean = 37 .7 , sd = 1 . 2 ) ) +
3 q q p l o t r : : s t a t _ p p _ p o i n t ( dparams = l i s t ( mean = 37 .7 , sd = 1 . 2 ) ) +
4 q q p l o t r : : s t a t _ p p _ l i n e ( ) +
5 x l ab ( " Cumula t ive d i s t r i b u t i o n o f t h e model " ) +
6 y l ab ( " Observed cumu l a t i v e p r o b a b i l i t y " ) +
7 g g t i t l e ( " pp−Plo t f o r Norm(37 .7 , 1 . 2 ) " )
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pp−Plot for Norm(37.7, 1.2)

Again, we can see a great similarity between the actual data and the model. The points line up along the
bisector and are to a very large extent within the 95% confidence band, which is formed from point-wise
bootstrap confidence intervals. For details about confidence intervals and about bootstrap confidence
intervals see Section 5.3.

We also want to compare the quantile functions. For such comparisons, the so-called quantile-quantile
plot (qq-plot for short) is most frequently applied. In this plot, the empirical and theoretical quantiles
are compared. The closer the points are to the straight line, the better the theoretical model explains the
observations. In case of the normal distribution, we can use R functions qqnorm and qqline.

1 qqnorm ( ICUData$ t emp e r a t u r e [−398 ] , main = " qq−Plo t f o r Normal D i s t r i b u t i o n " ,
2 y l ab = "Maximum body t emp e r a t u r e " )
3 q q l i n e ( ICUData$ t emp e r a t u r e [−398 ] )
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We can also use the functions stat_qq and stat_qq_line of package "ggplot2" (Wickham (2009))
for qq-plots. Since there is also function stat_qq_line in package "qqplotr" (Almeida et al. (2018)),
the additional usage of ggplot2:: guarantees that the function from package "ggplot2" is called.

1 ggp l o t ( ICUData [−398 , ] , a e s ( sample = t emp e r a t u r e ) ) +
2 s t a t _ q q ( ) + ggp l o t 2 : : s t a t _ q q _ l i n e ( ) +
3 x l ab ( " T h e o r e t i c a l Q u a n t i l e s " ) +
4 y l ab ( " Observed Maximal Body Tempera tu r e " ) +
5 g g t i t l e ( " qq−Plo t f o r Normal D i s t r i b u t i o n " )
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qq−Plot for Normal Distribution

With the help of this plot we can generally check, if the data may stem from a normal distribution. In the
current situation, we see that a higher quantity of high temperatures were observed as we would expect
in case of the normal distribution. If we want to compare the data with a very concrete distribution, we
can use package "ggplot2" (Wickham (2009)) and specify the respective parameters.

1 ggp l o t ( ICUData [−398 , ] , a e s ( sample = t emp e r a t u r e ) ) +
2 s t a t _ q q ( dparams = l i s t ( mean = 37 .7 , sd = 1 . 2 ) ) +
3 ggp l o t 2 : : s t a t _ q q _ l i n e ( dparams = l i s t ( mean = 37 .7 , sd = 1 . 2 ) ) +
4 geom_ab l ine ( s l o p e = 1 , c o l o r = " b l u e " ) +
5 x l ab ( "Model f o r maximal body t emp e r a t u r e " ) +
6 y l ab ( " Observed maximal body t emp e r a t u r e " ) +
7 g g t i t l e ( " qq−Plo t f o r Norm(37 .7 , 1 . 2 ) " )
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qq−Plot for Norm(37.7, 1.2)

The additional angle bisector drawn in blue shows that the standard qq line (based on the 1st and 3rd
quartiles) does not have to be identical to the angle bisector. Deviations from the bisector also indicate
deviations between the model and the data. Therefore it is recommended to additionally draw in the angle
bisector or to relate the points to the angle bisector, respectively.
An alternative plot is possible with the function qqplot from the "distr" package (Ruckdeschel et al.
(2006)). In this case the plotted straight line corresponds to the bisector.

1 qqp l o t ( ICUData$ t emp e r a t u r e [−398 ] , Norm (mean = 37 .7 , sd = 1 . 2 ) ,
2 x l ab = "Maximal body t emp e r a t u r e " ,
3 main = " qq−Plo t f o r Norm(37 .7 , 1 . 2 ) " )
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The data also seems to be in good agreement with the estimated model with respect to the qq-plot,
although some minor deviations can be seen. The deviations can further be estimated by specifying
(pointwise and simultaneous) confidence bands. Confidence intervals will be explained in more de-
tail in Section 5.3. A similar possibility is offered by the package "qqplotr" (Almeida et al. (2018)),
which provides additional functionality in the form of the functions stat_qq_point, stat_q_line,
and stat_q_band for the "ggplot2" package (Wickham (2009)). By using identity = TRUE we also
achieve an alignment to the angle bisector.

1 ggp l o t ( ICUData [−398 , ] , a e s ( sample = t emp e r a t u r e ) ) +
2 q q p l o t r : : s t a t _ qq_b and ( dparams = l i s t ( mean = 37 .7 , sd = 1 . 2 ) , i d e n t i t y = TRUE) +
3 q q p l o t r : : s t a t _ q q _ p o i n t ( dparams = l i s t ( mean = 37 .7 , sd = 1 . 2 ) ) +
4 q q p l o t r : : s t a t _ q q _ l i n e ( dparams = l i s t ( mean = 37 .7 , sd = 1 . 2 ) , i d e n t i t y = TRUE) +
5 x l ab ( "Model f o r maximal body t emp e r a t u r e " ) +
6 y l ab ( " Observed maixmal body t emp e r a t u r e " ) +
7 g g t i t l e ( " qq−Plo t f o r Norm(37 .7 , 1 . 2 ) " )
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qq−Plot for Norm(37.7, 1.2)

For us humans, it is difficult to assess whether the fluctuations we see are still within the expected stochas-
tic deviations. We can also visualize these random deviations from the theoretical model with the help of
simulated data. This also helps us to better assess the observed deviations. We compare the qq-plot above
with qq-plots of simulated normally distributed data. In the following, we generate standard-normally
distributed data with the function rnorm (the concrete parameters of the normal distribution are not rel-
evant here) and then display them in the form of qq-plots using qqnorm and qqline. In order to get an
impression of the fluctuations from sample to sample, we repeat the whole process nine times. For this
we use a so-called for loop. To display all plots in one window we also use the function par, which can
be used to customize a variety of graphics parameters. With the argument mfrow a plot window can be
divided into a certain number of rows and columns. In our case, we choose three rows and three columns,
which are then filled row by row.

1 pa r ( mfrow=c ( 3 , 3 ) )
2 f o r ( i i n 1 : 9 ) {
3 x ← rnorm (499 )
4 qqnorm ( x )
5 q q l i n e ( x )
6 }
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Accordingly, even with normally distributed data, we see certain deviations from the straight line which
are quite similar to the deviations in the case of the maximum body temperature. This confirms our
first impression that the maximum body temperature of ICU patients (excluding severely hypothermic
patients) can be described quite well by a normal distribution.

Note:
As already mentioned above, in the case of real and simulated real data the points will never all lie
exactly on the straight line. On the contrary, this would be an indication that the data is not real or
that the data has been falsified accordingly. Significant deviations from the straight line indicate that
the model does not fit the data (or vice versa). The points should therefore not form a clear “banana
shape” (possibly also one-sided or twisted).

In the case of normal distribution, we can alternatively use the median and the MAD and IQR as consis-
tent estimators for the mean and standard deviation. As we have already seen in Section 2.5.1, it is not
necessary to remove patient 398.
1 median ( ICUData$ t emp e r a t u r e )
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[1] 37.7

1 mad ( ICUData$ t emp e r a t u r e )

[1] 1.18608

1 sIQR ( ICUData$ t emp e r a t u r e )

[1] 1.111952

The results are very similar to the ML estimates.
Note:
Median, MAD, and IQR provide consistent estimates for the theoretical median, MAD, and IQR under
very general assumptions. In particular, it is not necessary to assume a certain parametric model.
Therefore, they are also called non-parametric estimators. Because of this general property and their
additional robustness, these estimators are useful for many applications.

Another estimating principle, which works well for simple probability models, is the so-called minimum-
distance estimation.
Definition 5.7 (Minimum-distance estimator). Let  = {P� | � ∈ Θ}, Θ ⊂ ℝk (k ∈ ℕ), be some
probability model. Furthermore, let x1,… , xn be realizations of independent and P� distributed random
variables X1,… , Xn and F̂n their empirical distribution. Then, we consider

D(�) = dist (P�, F̂n) (5.9)

where dist represents a distance between distributions. The minimum-distance estimator (abbreviated:
MD estimator) for � is the position of the minimum of D(�).

We give some additional explanations.
Remark 5.8. (a) MD estimators are usually consistent estimators.

(b) In the following, we will determine the Cramér-von-Mises-MD estimator (CvM-MD estimator for
short) and the Kolmogorov(-Smirnov) MD estimator (KS-MD estimator for short). The definitions of
the corresponding distances are based on the cumulative distribution functions. The Cramér-von-Mises
distance reads

distCvM(P�, F̂n) = ∫ |P�(x) − F̂n(x)|2Q(dx) (5.10)

where usually P� or F̂n is chosen for the distribution Q. In case of F̂n, the integral becomes a sum. The
Kolmogorov(-Smirnov) distance is

distKS(P�, F̂n) = maxx∈ℝ
|P�(x) − F̂n(x)| (5.11)

Both MD estimator are very robust against outliers and certain model deviations.
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We may apply function MDEstimator of package "distrMod" (Kohl and Ruckdeschel (2010)) for com-
puting MD estimators. In case of the CvM-MD and the KS-MD estimator the package additionally
provides functions CvMMDEstimator and KolmogorovMDEstimator. We again consider the maximum
body temperature of our ICU patients and first compute the CvM-MD estimator. As in case of the ML
estimator, we proceed in two steps: First we define the model and then compute the estimator. Without
patient 398 we get

1 Model ← NormLoca t ionSca leFami ly ( )
2 CvMMDEstimator ( ICUData$ t emp e r a t u r e [−398 ] , Model )

Evaluations of Minimum CvM distance estimate ( mu = model distr. ) :

--------------------------------------------------------------------

mean sd

37.67520679 1.13610915

( 0.06932949) ( 0.04461328)

The result is very similar to the ML estimator. We repeat the estimation and this time apply the KS-MD
estimator.

1 KolmogorovMDEstimator ( ICUData$ t emp e r a t u r e [−398 ] , Model )

Evaluations of Minimum Kolmogorov distance estimate :

------------------------------------------------------

estimate:

mean sd

37.679362 1.141183

Again, we obtain a very similar result. We repeat the estimation and this time do not omit patient 398.
The results show the robustness of the MD estimators in contrast to the ML estimator.

1 ## ML estimator

2 MLEstimator ( ICUData$ t empe r a t u r e , Model )

Evaluations of Maximum likelihood estimate:

-------------------------------------------

mean sd

37.66320000 1.73373751

( 0.07753510) ( 0.05482559)

1 ## CvM-MD estimator

2 CvMMDEstimator ( ICUData$ t empe r a t u r e , Model )

Evaluations of Minimum CvM distance estimate ( mu = model distr. ) :

--------------------------------------------------------------------

mean sd

37.67176542 1.13941964

( 0.06946194) ( 0.04469851)
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1 ## KS-MD estimator

2 KolmogorovMDEstimator ( ICUData$ t empe r a t u r e , Model )

Evaluations of Minimum Kolmogorov distance estimate :

------------------------------------------------------

estimate:

mean sd

37.676420 1.143365

Thus, in case of the MD estimators the results remain almost unchanged, whereas in case of the ML
estimator especially the estimate of the standard deviation clearly increases.

As a final class of estimators, we consider so-called optimal-robust asymptotically linear estimators;
in short: AL-estimators. In this case in addition to the parametric model  one considers a so-called
shrinking neighborhood around the assumed model distribution. In the vast majority of cases this is the
so-called contamination neighborhood, which is also known as Tukey’s gross-error model

Qn = (1 − rn)P� + rnHn rn =
r
√

n
(5.12)

Here r ∈ [0,∞) is the neighborhood radius and Hn is an arbitrary probability distribution. Qn is
therefore the probability distribution, which actually generated the observed data. Themajority ((1−")%,
" ∈ [0, 1]) of the data is from the assumed model distribution, but a small part of the data ("%) is
erroneous and was caused by an unknown error distributionHn. For a given sample size n, r is obtained
by r =√

n".
Remark 5.9. (a) The shrinking of the neighborhood with the sample size n ensures, that the deviations re-
main so small that they cannot or only with great difficulty can reliably be detected by statistical methods
(e.g. goodness-of-fit or outlier tests).
(b) The neighborhood not only ensures that the AL estimators are robust to a certain proportion of

outliers, but that they also provide reliable results in the case of other (more subtle) model deviations.

AL estimators minimize the maximum asymptotic MSE, which in this case can be written as

asMSE�( �, r) = E� | �|2 + r2
(

sup
P�

| �|

)2

Here, theAL estimatorsSn are described by their so-called influence function �. The influence function
indicates what influence an individual single observation has on the estimation result. It corresponds in
a certain sense to the derivative of the estimation function. By determining the influence curve, which
minimizes this maximum asymptotic MSE, one also finds the associated corresponding AL estimator.
One then calculates the estimator by a so-called 1-step construction

S(1)n = Sstart + 1
n

n
∑

i=1
 �(xi − Sstart) (5.13)

for which one needs a suitable initial value/estimator Sstart. This construction can also be repeated k
times (k ∈ ℕ) or repeated until the estimated value does not change significantly, where in the second

Download free eBooks at bookboon.com 141



Introduction to statistical data analysis with R 5 Estimation

step then S(1)n takes over the role of the starting estimator, etc. In our experience it is usually sufficient
to choose k = 3.

Note:
The starting estimators should ideally be very robust estimators; i.e., estimators that still provide
reliable results even with a high proportion of outliers. Suitable estimators are, median, MAD, IQR
or also CvM-MD estimators and KS-MD estimators.

The problem in practice, that the exact proportion of erroneous data is not known, can be solved by using
the so-called radius minimax estimator, in short: RMX estimators. These are AL estimators, which
are not optimal for a certain proportion " of deviations, but for a whole interval " ∈ ["1, "2]. For more
details on AL and RMX estimators, we refer to Rieder (1994), Kohl (2005), and Kohl et al. (2010). AL
and RMX estimators for the normal distribution are implemented in package "RobLox" (Kohl (2019)),
where median and MAD are used as starting estimators. We again consider our temperature data and
assume, based on the qq-plot, that between one (patient 398) and 5% of the observations are erroneous.
We calculate the corresponding RMX estimator using the 3-step construction.

1 r o b l o x ( ICUData$ t empe r a t u r e , e p s . l ow e r = 1 / 500 , e p s . u p p e r = 0 .05 , k = 3)

Evaluations of Optimally robust estimate:

-----------------------------------------

mean sd

37.64509778 1.14027423

( 0.05574489) ( 0.04156504)

Alternatively, we can apply function rmx of package "rmx" (Kohl (2022c)), where k = 3 is already the
default setting and hence needs not to be specified. The model is given in a similar way than in case
of function fitdistr of package "MASS" (Venables and Ripley (2002)) by using the short form of the
respective probability distribution.

1 r e s . rmx ← rmx ( ICUData$ t empe r a t u r e , model = " norm " ,
2 e p s . l ow e r = 1 / 500 , e p s . u p p e r = 0 . 05 )
3 r e s . rmx

RMX estimator for normal location and scale

mean sd

37.64289993 1.13951576

( 0.05609900) ( 0.04181884)

NOTE: asymptotic standard errors are shown

Call:

rmx(x = ICUData$temperature , model = "norm", eps.lower = 1/500 ,

eps.upper = 0.05)
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The result is very similar to the above results of the other robust estimation methods. A more detailed
summary of the results can be generated by means of the function summary.

1 summary ( r e s . rmx )

RMX estimator for normal location and scale

mean sd

37.64289993 1.13951576

( 0.05609900) ( 0.04181884)

NOTE: asymptotic standard errors are shown

Sample size = 500

Amount gross -errors = 0.2 - 5 %

FS -corrected radius = 0.488

Maximum asymptotic MSE = 3.6

Maximum asymptotic bias = 1.07

Asymptotic (co)variance:

mean sd

mean 1.57 0.000

sd 0.00 0.874

Call:

rmx(x = ICUData$temperature , model = "norm", eps.lower = 1/500 ,

eps.upper = 0.05)

The "rmx" package (Kohl (2022c)) also includes a set of diagnostic functions. For example, the functions
outlier and getOutliers can be used to output where the outlier areas are located and which data
points are to be regarded as outliers. These are by default data points which are smaller than the 0.01%
or greater than the 99.9% quantile of the estimated model.

1 o u t l i e r ( r e s . rmx )

Outlier region for normal location and scale

Parameter: mean = 37.6, sd = 1.14

Outlier region: (-Inf , 33.9) or (41.4, Inf)

Data in outlier region: 0.2 % + 0.2 % = 0.4 %

Prob. of outlier region: 0.1 % + 0.1 % = 0.2 %

Gross -errors for RMX = 0.2 - 5 %

1 g e t O u t l i e r s ( r e s . rmx )

$values

[1] 9.1 42.0
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$indices

[1] 398 397

Accordingly, we get two outliers. Beside the already several times conspicuous patient 398 with a maxi-
mum body temperature of 9.1◦C also patient 397 with a maximum body temperature of 42.0◦C is in the
outlier range. For the generation of pp-, qq- and density plot for model validation the functions ppPlot,
qqPlot and dPlot are provided. We merge the three plots to form a single figure using the function
grid.arrange function from the "gridExtra" package (Auguie (2017)).

1 gg1 ← ppP l o t ( r e s . rmx )
2 gg2 ← qqP l o t ( r e s . rmx )
3 gg3 ← dP l o t ( r e s . rmx )
4 g r i d . a r r a n g e ( gg1 , gg2 , gg3 , n co l = 1)
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pp−Plot for norm(mean = 37.6, sd = 1.14)
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qq−Plot for norm(mean = 37.6, sd = 1.14)
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Density−Plot for norm(mean = 37.6, sd = 1.14)

Empirical density with rug plot

We see a fairly good agreement between data and model, if we disregard patient 398.

Package "RobLox" (Kohl (2019)) contains only an implementation of the RMX estimators for the nor-
mal distribution, for other models function roptest from package "ROptEst" (Kohl and Ruckdeschel
(2019)) can be used. The "rmx" package (Kohl (2022c)) currently includes an implementation for the
normal and binomial distribution. Further models will be added in the future. Package "RobExtremes"
(Ruckdeschel et al. (2019)) contains optimized code for the calculation of RMX estimators for extreme
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value distributions such as theWeibull distribution. Both packages contain a folder with R scripts demon-
strating the use of themain functions; see https://github.com/cran/ROptEst/tree/master/inst/
scripts and https://github.com/cran/RobExtremes/tree/master/inst/scripts. These fold-
ers are also located on your computer after the installation of the packages. They are subfolders in the
directory of the package. The directory, where a package is installed can be determined by the function
path.package function;

1 p a t h . p a c k a g e ( " ROptEst " )

Package "rmx" includes a so-called vignette, in which the most important functions of the package are
introduced. It can be opened with the help of function vignette.

1 v i g n e t t e ( " rmx " )

Note:
There are a number of other important estimator classes such as generalized ML estimators (short: M
estimators) or rank estimators (short: R estimators). Another very important construction principle,
especially for more complex models, is the least squares estimation (short: KQ-estimation), which
goes back to Gauss and Legendre. The model is estimated by minimizing the sum of the squared
deviations of the observations from the model.

Another common estimation problem is to determine optimal thresholds (cut-offs). We have already
seen an example of this, namely the norm range. The normal range or reference range is an interval,
which usually contains the values of 95% of the examined healthy persons. In most cases, it is a two-sided
interval. In this case, 2.5% of the healthy individuals have values that are below or above this interval.
As seen before, this two-sided interval can be well approximated by the 2� interval in the case of the
normal (and several other) distributions; see Remark 4.16 (b). Usually, this interval is represented by
the corresponding quantiles (i.e., 2.5% and 97.5% quantiles). This can be based either on a probability
model, as in the example 4.20 (a), or the empirical quantiles of the collected data are used. Often also
one-sided intervals are needed. Examples include detection limits “limit of blank” (LOB), “limit of
detection” (LOD) and “(lower/upper) limit of quantitation/quantification” (LOQ, LLOQ, ULOQ)
(Armbruster and Pry (2008)). The detection limit LOB corresponds to a one-sided interval, the upper
limit of which is the corresponding 95% quantile of the measured blanks. In a normal distribution the
result is

LOB = AMBlanks + 1.645 × SDBlanks (5.14)
in which the constant 1.645 corresponds to the corresponding 95% quantile of the standard normal dis-
tribution

1 qnorm (0 . 95 )

[1] 1.644854
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If values below this limit are obtained, it must be assumed that it is a blank sample. The detection limit
LOD is obtained as

LOD = AMBlanks + 3.3 × SDBlanks (5.15)
in which
1 pnorm (3 . 3 )

[1] 0.9995166

This is the 99.95% quantile, which is used in this case. Alternatively, instead of blank samples, one can
also use samples with a low concentration and calculate LOD as

LOD = LOB + 1.645 × SDlow conc. samples (5.16)
If you obtain values above the LOD during a measurement, you can assume a positive signal. The
analyzed analyte is therefore contained in the sample. However, a reliable quantification of the amount
of the analyte investigated is only carried out for signal values above the (lower) quantification limit LOQ
or more precisely LLOQ. This is calculated for example as

(L)LOQ = AMBlanks + 10 × SDBlanks (5.17)
Instead of the factor 10, 5 or 6 are sometimes used here. In addition, there are also other approaches to
determine these detection limits; see for example Bernal (2014).

Another approach to determine cut-offs is based on considering the whole thing as a classification prob-
lem for two groups. Thus, one searches for a boundary so that both groups can be correctly classified
with the highest possible probability. We must also assume a monotonic relationship between the mea-
surement and the groups; i.e., low values indicate the presence of the first group (“negative”) and high
values indicate the presence of the second group (“positive”). This leads us to the terms sensitivity and
specificity. Sensitivity is the probability of a member of the positive group being classified as “positive”.
Specificity describes the probability of a member of the negative group being classified as “negative”. If
we want to maximize both probabilities, it is obvious to consider the sum of the two criteria. This leads
us to Youdens J statistics (Youden (1950))

Youdens J = Sensitivity + Specificity − 1 (5.18)
which is also called informedness (Powers (2011)), especially in computer science. Another equivalent
criterion is the arithmetic mean of the two criteria, which is also known as the balanced accuracy
(bACC) (Brodersen et al. (2010))

bACC = 0.5 × Sensitivity + 0.5 × Specificity (5.19)
One could also say that in this case both criteria are weighted equally. If sensitivity and specificity are not
equally important, one could express this by a corresponding weighted accuracy (wACC) (Brodersen
et al. (2010))

wACC = w × sensitivity + (1 −w) × specificity (5.20)
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withw ∈ [0, 1]. Corresponding calculations can be done for examplewith the help of function optCutOff
from package "MKclass" (Kohl (2020a)), in which in addition to the accuracy measures mentioned
above, all measures that can be calculated with function perfMeasures can be applied.

We consider the ICU data set to determine a cut-off for bilirubin which can be used to distinguish between
patients with and without liver failure. For the calculations we round the bilirubin values to one decimal,
which realistically corresponds to the accuracy of the corresponding assay.

1 B i l i ← round ( ICUData$ b i l i r u b i n , 1 )

We suspect a one-sided reference range; i.e., patients without liver failure (group “negative”) tend to
have low bilirubin levels whereas patients with liver failure (group “positive”) tend to have high bilirubin
levels. We first determine the empirical 95% quantile for the patients without liver failure and compute the
sensitivity and specificity of this upper limit for predicting liver failure using the function perfMeasures
from package "MKclass" (Kohl (2020a)).

1 q u a n t i l e ( B i l i [ ICUData$ l i v e r . f a i l u r e == 0 ] , p rob s = 0 . 95 )

95%

49.615

1 pe r fMea su r e s ( p r ed = B i l i , t r u t h = ICUData$ l i v e r . f a i l u r e ,
2 namePos = 1 , c u t o f f = 49 .615 , measu res = c ( "SENS" , "SPEC" ) )

Performance Measure(s)

Measure Value

1 sensitivity (SENS) 0.75

2 specificity (SPEC) 0.95

Of course, in this case, the specificity is equal to 95%, sincewe used the empirical 95% quantile of patients
without liver failure as the cutoff. So, in a sense, this approach gives us control over the specificity,
whereas the sensitivity is unknown and has to be calculated in a second step.
Alternatively, we can also assume that the values of patients without liver failure follow a log-normal
distribution and proceed analogously to the example 4.20 (a). We calculate the log values and determine
their mean and standard deviation. Then we determine the 95% quantile of the corresponding log-normal
distribution and calculate sensitivity and specificity.

1 mean ( l og ( B i l i [ ICUData$ l i v e r . f a i l u r e == 0 ] ) )

[1] 2.77395

1 sd ( l og ( B i l i [ ICUData$ l i v e r . f a i l u r e == 0 ] ) )
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[1] 0.6038337

1 qlnorm (0 .95 , meanlog = 2 .774 , s d l og = 0 .604 )

[1] 43.27139

1 pe r fMea su r e s ( p r ed = B i l i , t r u t h = ICUData$ l i v e r . f a i l u r e ,
2 namePos = 1 , c u t o f f = 43 .27 , measu res = c ( "SENS" , "SPEC" ) )

Performance Measure(s)

Measure Value

1 sensitivity (SENS) 0.7500000

2 specificity (SPEC) 0.9354167

The result is similar to the empirical calculation. In the next step we determine the optimal cut-off,
which maximizes the Youden J statistic and the balanced accuracy. We use functions optCutoff and
perfMeasures from package "MKclass" (Kohl (2020a)).

1 o p tCu t o f f ( p r ed = B i l i , t r u t h = ICUData$ l i v e r . f a i l u r e , namePos = 1)

Optimal Cut -off YJS

28.4000000 0.7395833

1 o p tCu t o f f ( p r ed = B i l i , t r u t h = ICUData$ l i v e r . f a i l u r e ,
2 namePos = 1 , pe r fMeasu r e = "BACC" )

Optimal Cut -off BACC

28.4000000 0.8697917

1 pe r fMea su r e s ( p r ed = B i l i , t r u t h = ICUData$ l i v e r . f a i l u r e ,
2 namePos = 1 , c u t o f f = 28 .4 , measu res = c ( "SENS" , "SPEC" ) )

Performance Measure(s)

Measure Value

1 sensitivity (SENS) 0.9000000

2 specificity (SPEC) 0.8395833

We obtain a slightly higher sensitivity than in the case of the calculated reference ranges, but at the
expense of a somewhat lower specificity.
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Note:
The determination of the cut-off and the application of the cut-off should ideally not be performed on
the same data set. Otherwise, there is a risk of bias (“resubstitution bias”) in the estimation of sensi-
tivity and specificity. If this cannot be avoided, the use of a resampling procedure is recommended,
such as bootstrap or cross-validation to minimize this bias.

We calculate the optimal cut-off using 1000 bootstrap replications. Due to the very small proportion of
patients with liver failure, we use a stratified version of bootstrap. We again use functions optCutoff
and perfMeasures from package "MKclass" (Kohl (2020a)).

1 B ← 1000
2 n0 ← sum ( ICUData$ l i v e r . f a i l u r e == 0)
3 i nd0 ← which ( ICUData$ l i v e r . f a i l u r e == 0)
4 n1 ← sum ( ICUData$ l i v e r . f a i l u r e == 1)
5 i nd1 ← which ( ICUData$ l i v e r . f a i l u r e == 1)
6 c u t o f f s ← numer ic (B)
7 f o r ( i i n 1 :B){
8 s e l e c t i o n 0 ← sample ( ind0 , n0 , r e p l a c e = TRUE)
9 s e l e c t i o n 1 ← sample ( ind1 , n1 , r e p l a c e = TRUE)
10 BS .da t a ← ICUData [ c ( s e l e c t i o n 0 , s e l e c t i o n 1 ) , ]
11 c u t o f f s [ i ] ← o p tCu t o f f ( p r ed = round ( BS .da t a $ b i l i r u b i n , 1 ) ,
12 t r u t h = BS .da t a $ l i v e r . f a i l u r e ,
13 namePos = 1 ) [ 1 ]
14 }
15 summary ( c u t o f f s )

Min. 1st Qu. Median Mean 3rd Qu. Max.

17.70 28.40 31.60 37.71 53.30 104.70

We obtain a mean optimal cut-off, which is somewhat higher than in the case of the calculation on the
full data set.

1 pe r fMea su r e s ( p r ed = B i l i , t r u t h = ICUData$ l i v e r . f a i l u r e ,
2 namePos = 1 , c u t o f f = mean ( c u t o f f s ) ,
3 measures = c ( "SENS" , "SPEC" ) )

Performance Measure(s)

Measure Value

1 sensitivity (SENS) 0.7500

2 specificity (SPEC) 0.9125

Depending onwhether the focus is more on sensitivity or specificity, the corresponding accuracymeasure
can be adjusted by using weights. We choose a weighting of 3 to 1 in the following and refrain from using
the safeguarding by bootstrap.
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1 ## More emphasis on sensitivity.

2 o p tCu t o f f ( p r ed = B i l i , t r u t h = ICUData$ l i v e r . f a i l u r e ,
3 namePos = 1 , pe r fMeasu r e = "WACC" , wACC = 0 . 75 )

Optimal Cut -off WACC

17.7000000 0.9005208

1 pe r fMea su r e s ( p r ed = B i l i , t r u t h = ICUData$ l i v e r . f a i l u r e ,
2 namePos = 1 , c u t o f f = 17 .7 , measu res = c ( "SENS" , "SPEC" ) )

Performance Measure(s)

Measure Value

1 sensitivity (SENS) 1.0000000

2 specificity (SPEC) 0.6020833

1 ## More weight on specificity

2 o p tCu t o f f ( p r ed = B i l i , t r u t h = ICUData$ l i v e r . f a i l u r e ,
3 namePos = 1 , pe r fMeasu r e = "WACC" , wACC = 0 . 25 )

Optimal Cut -off WACC

53.3000000 0.9078125

1 pe r fMea su r e s ( p r ed = B i l i , t r u t h = ICUData$ l i v e r . f a i l u r e ,
2 namePos = 1 , c u t o f f = 53 .3 , measu res = c ( "SENS" , "SPEC" ) )

Performance Measure(s)

Measure Value

1 sensitivity (SENS) 0.7500000

2 specificity (SPEC) 0.9604167

We obtain modified optimal cut-offs, which lead to a higher estimated sensitivity and higher estimated
specificity, respectively. An increase in one criterion necessarily leads to a reduction in the other crite-
rion, since the target criterion is the maximum of the weighted sum of sensitivity and specificity. The
corresponding classification function is also called a decision stump (“decision stump”) (Iba and Langley
(1992)) and can be obtained using, for example, function decisionStump of package "MKclass" (Kohl
(2020a)).

1 stump ← dec i s i onS tump ( p red = B i l i , t r u t h = ICUData$ l i v e r . f a i l u r e ,
2 namePos = 1)
3 stump

Call:

decisionStump(pred = Bili , truth = ICUData$liver.failure , namePos = 1)

Download free eBooks at bookboon.com 151



Introduction to statistical data analysis with R 5 Estimation

Cut -off:

Optimal Cut -off

28.4

Performance:

YJS

0.7396

We can then use it to calculate predictions for new data.
1 p r e d i c t ( stump , newdata = c (4 .3 , 10 .1 , 17 .4 , 28 .4 , 28 .5 , 71 .0 , 93 . 1 ) )

[1] 0 0 0 0 1 1 1

Levels: 0 1

Note:
There are many other measures of accuracy that could be used for the calculations above. In package
"MKclass" (Kohl (2020a)) there are currently 80 such measures implemented. All of these accuracy
measures require dichotomization, which can also be seen critically (Harrell (2014, chapter 10)) and
one should only use these cut-offs for rough guidance. In most cases, it is advisable to consider
continuous classification functions. Such functions can be estimated using accuracy scores such as,
for example, the AUC (“Area Under the receiver operating characteristic Curve”) (Hanley andMcNeil
(1982)) or the Brier Score (Brier (1950)).

We consider bilirubin to be a continuous classification function for the prediction of liver failure and
calculate the AUC and the Brier score. In the case of the Brier score, the data must be transformed to
the interval [0, 1]. We use function perfScores from package "MKclass" (Kohl (2020a)) for this.
1 p e r f S c o r e s ( p red = B i l i , t r u t h = ICUData$ l i v e r . f a i l u r e , namePos = 1 ,
2 s c o r e s = "AUC" )

Performance Score(s)

Score Value

1 area under curve (AUC) 0.9372917

1 p e r f S c o r e s ( p red = B i l i , t r u t h = ICUData$ l i v e r . f a i l u r e , namePos = 1 ,
2 s c o r e s = c ( "AUC" , "BS" ) , t r a n s f o rm = TRUE)

Performance Score(s)

Score Value

1 area under curve (AUC) 0.93729167

2 Brier score (BS) 0.02300764
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An AUC of greater than 0.5 or a Brier score of less than 0.25 indicates that bilirubin contains information
to assess liver failure. An AUC of 1.0 or a Brier Score of 0.0 represents an error-free classification. The
above calculations confirm that bilirubin can be used to support the diagnosis of liver failure in intensive
care patients, where the probability of liver failure increases with increasing bilirubin levels.

5.3 Con�dence Intervals

In the previous section, we have learned about several estimating procedures and we now know that we
should use unbiased (or at least consistent) and efficient estimators. However, these are only theoretical
properties, which in practice can not tell us, how close our point estimator actually is to the considered
unknown parameter. A possibility to further safeguard the point estimator, are so-called confidence
intervals.
Definition 5.10 (Confidence interval). Let  = {P� | � ∈ Θ}, Θ ⊂ ℝk (k ∈ ℕ), be some probability
model. Furthermore, let x1,… , xn be realizations of independent and P� distributed random variables
X1,… , Xn. Then, the interval estimator

Î(x1,… , xn) = [Su(x1,… , xn), So(x1,… , xn)] (5.21)

is called a (1 − �)-confidence interval, if

P (� ∈ Î) ≥ 1 − �

for � ∈ (0, 1). Here, Su and So are estimators for the lower and upper bound of the interval.

We give some additional explanations.
Remark 5.11. (a) The definition also allows for one-sided confidence intervals. In this case, one bound-
ary of the interval is free and only Su or So is needed.

(b) It is said: A confidence interval covers the true unknown parameter with a probability of 1 − �.
This should express, that in 95% of the cases, in which some data is used to compute confidence intervals,
these intervals will include the true unknown parameter. The statement, that the true unknown parameter
lies in the computed confidence interval with 95% probability strictly speaking is wrong. Because after
determining the confidence interval, the true unknown parameter either lies in the interval or not (the
parameter is no random variable).
(b) We take a more detailed look at the components of a confidence interval. More concretely, they

usually are of the following form

Î(x1,… , xn) = [Sn(x1,… , xn) − k1�Sn , Sn(x1,… , xn) + k2�Sn] (5.22)

The components are:

• A point estimator Sn of the true unknown parameter �.

• The standard deviation of the point estimator �Sn .
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• Two constants k1, k2 ∈ (0,∞) usually depending on �, n and the distribution of Sn (depends on
P�).

Moreover, the following notions are used:

Con�dence level: the chosen coverage probability 1 − � for the true unknown parameter �.

Basis: point estimator of the true unknown parameter �, often the center of the interval.

Con�dence bounds: lower and upper bound of the interval.

Maximum estimate error: maximum distance between point estimator and the confidence bounds.

We give some examples of confidence intervals.
Example 5.12. (a) We consider the normal distribution model  = { (�, �2) |� ∈ ℝ}, where we
assume �2 ∈ (0,∞) to be known. As we have learned in Section 5.2, the arithmetic mean is an unbiased
and efficient estimator of �. We assume that the observations x1,… , xn are realizations of independent
and identical distributed random variables X1,… , Xn with Xi ∼ (�, �2) (i = 1,… , n) and obtain

AM (x1,… , xn) ∼
(

�, 1
n
�2
)

(5.23)

It follows, �Sn = 1
√

n
�, which is also called the standard error (SE) of the arithmetic mean (SEM).

Because of the symmetry of the normal distribution, we get k1 = k2 and have to choose k1 = k2 = z1−�∕2,
the (1−�∕2) quantile of the standard normal distribution. Consequentially, the (1−�) confidence interval
reads

AM (x1,… , xn) ∓ z1−�∕2
�
√

n
(5.24)

In practice, in most cases � is also unknown and must be estimated, too. As we want to capture the
true unknown value of �, the unbiased sample variance S̃ (i.e. standardization 1

n−1 ) is an appropriate
candidate for the estimation, where

(n − 1)S̃
�

∼ Chisq (n − 1) (5.25)
That is, the additional estimation of � leads us away from the normal distribution towards the t distribution
with n − 1 degrees of freedom (see also Remark 4.28 (b)). Thus, we get as confidence interval

AM (x1,… , xn) ∓ tn−1;1−�∕2

√

S̃(x1,… , xn)
√

n
(5.26)

where tn−1;1−�∕2 is the (1 − �∕2) quantile of the t distribution with n − 1 degrees of freedom.
(b) If we conversely consider the probability model  = { (�, �2) | � ∈ (0,∞}, where we more

realistically assume � to be unknown, we obtain the following asymmetric (1 − �) confidence interval
for �2

[

(n − 1)S̃
�2n−1;1−�∕2

,
(n − 1)S̃
�2n−1;�∕2

]

(5.27)

Here, �2n−1;1−�∕2 and �2n−1;�∕2 are the (1 − �∕2) and the �∕2 quantile of the �2 distribution with n − 1
degrees of freedom, respectively.
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Note:
The above confidence intervals are not only of interest for the normal distribution model, but may also
be used as approximations for other probability models. The reason for it is the central limit theorem,
which states that the distribution of the arithmetic mean of quite arbitrary independent and identical
distributed random variables converges with increasing sample size n towards a normal distribution.

In addition to the point estimates for the maximum body temperature of our ICU patients (cf. Section 5.2),
we will now determine 95% confidence intervals (i.e. � = 0.05). The confidence interval of the mean � in
case of an unknown standard deviation � can be determined by function meanCI of package "MKinfer"
(Kohl (2022b)).

1 meanCI ( ICUData$ t emp e r a t u r e [−398 ] )

Exact confidence interval(s)

95 percent confidence interval:

2.5 % 97.5 %

mean 37.61725 37.82363

sample estimates:

mean sd

37.720441 1.173187

additional information:

SE of mean

0.05251908

The reported interval should be chosen in dependence of the accuracy of the temperature measurement,
e.g. [37.61, 37.83] or [37.60, 37.85] or [37.6, 37.9] might be appropriate. Each interval covers the true
unknown mean with at least 95% probability. The confidence interval of the arithmetic mean can also be
computed by means of function t.test. This function can be used for computing t tests, which will be
introduced in Chapter 6. However, at this point we only take a look at the confidence interval (conf.int)
and ignore the remaining results.

1 t . t e s t ( ICUData$ t emp e r a t u r e [−398 ] ) $ c o n f . i n t

[1] 37.61725 37.82363

attr(,"conf.level")

[1] 0.95

As the sample size is quite large in our example, we could, in sense of the central limit theorem, use
the quantile of the standard normal distribution instead of the quantile of the t-distribution with 499 − 1
degrees of freedom. We compare the two quantiles
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1 q t (1 −0.05 / 2 , d f = 499−1 )

[1] 1.964739

1 qnorm (1 −0.05 / 2 )

[1] 1.959964

and get a difference of less than 0.005. Consequentially, the confidence bounds of the approximative
interval are very similar and the differences probably lie below the measurement accuracy.

Based on ML estimators, we can determine a similar approximative confidence interval. We apply func-
tion fitdistr of package "MASS" (Venables and Ripley (2002)) combined with function confint.

1 ## ML estimator

2 ML ← f i t d i s t r ( ICUData$ t emp e r a t u r e [−398 ] , den s fun = " normal " )
3 ## Approximate confidence interval.

4 c o n f i n t (ML)

2.5 % 97.5 %

mean 37.617609 37.823273

sd 1.099298 1.244725

We obtain both an approximate confidence interval for the mean � as well as for the standard deviation
�. We can also determine these intervals using function MLEstimator from package "distrMod" (Kohl
and Ruckdeschel (2010)) and function confint.

1 ## Model

2 Model ← NormLoca t ionSca leFami ly ( )
3 ## ML estimator

4 ML2 ← MLEstimator ( ICUData$ t emp e r a t u r e [−398 ] , Model )
5 ## Approximate confidence interval

6 c o n f i n t (ML2)

A[n] asymptotic (LAN -based) confidence interval:

2.5 % 97.5 %

mean 37.617609 37.823273

sd 1.099298 1.244725

We compare the approximative confidence interval for the standard deviation, which is symmetric around
the ML estimator for the standard deviation, with the asymmetric interval, which we obtain using the �2
distribution and functions sdCI and normCI from package "MKinfer" (Kohl (2022b)).

1 ## standard deviation only

2 sdCI ( ICUData$ t emp e r a t u r e [−398 ] )
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Exact confidence interval(s)

95 percent confidence interval:

2.5 % 97.5 %

sd 1.104636 1.250879

sample estimates:

mean sd

37.720441 1.173187

additional information:

SE of mean

0.05251908

1 ## mean value and standard deviation

2 normCI ( ICUData$ t emp e r a t u r e [−398 ] )

Exact confidence interval(s)

95 percent confidence intervals:

2.5 % 97.5 %

mean 37.617255 37.823627

sd 1.104636 1.250879

sample estimates:

mean sd

37.720441 1.173187

additional information:

SE of mean

0.05251908

The asymmetric confidence interval is slightly different, but the differences are only in the range of
permilles.

Note:
If the sample size n is not too small, one can use the approximative confidence intervals emerging from
the central limit theorem. Figure 5.2 shows the ratio between the 95% quantile of the t distribution
with increasing degrees of freedom and the 95% quantile of the standard normal distribution. From a
sample size of about 25 onwards, the difference between the quantiles and thus between the maximum
estimate errors is below 5%.

In addition to the approximative intervals based on the normal distribution, there is also a very general
data-based approach to calculate confidence intervals, called bootstrap. In classical bootstrapping in
its simplest form, n (= sample size) observations are drawn from the sample with replacement. This
random process is repeated B times (B ∈ ℕ) and for each of these bootstrap samples the corresponding
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Figure 5.2: Ratio between 95% quantiles of t and standard normal distribution.

estimators are calculated. Descriptively spoken, the sample takes the place of the population and the
bootstrap samples take the place of the original sample. If the original sample is representative, then
so are the bootstrap samples due to random selection. Each bootstrap sample therefore corresponds to
a possible representative sample, that could have been drawn from the population. From the bootstrap
samples we consequently obtain many possible estimation results for the population. These estimation
results give us a picture of the variability of the estimation results (variance of the estimator) and we
can then obtain (without or with few special model assumptions!) a confidence interval for the estimator
and for the searched parameter. Bootstrapping is therefore also referred to as a non-parametric method;
which means that we do not necessarily need a concrete parametric model for the confidence interval.

Note:
In the case of n = 20 and B = 2000, the probability of obtaining two or more equal samples is
less than 5% (Section 8.1 in Chernick and LaBudde (2011)). The recommended number of bootstrap
repetitions start at a few hundred repetitions (B = 399 or B = 599) and end at values of B = 10000
or even B = 100000. For R functions that use bootstrap or other simulation techniques, one often
finds default values of B = 999 or B = 9999. In the case of confidence intervals, values of B = 999
or greater are recommended. If the calculation time is low or does not matter, B = 9999 should give
very good and stable results in most of the cases.

The corresponding functionality is implemented in the recommended package "boot" (Canty and Ripley
(2021)). Function boot.ci can compute five different types of bootstrap confidence intervals, namely
"norm", "basic", "stud", "perc" and "bca". The simplest of the intervals is the percentile interval
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("perc"). Here, the confidence interval consists of the empiric quantiles (�∕2 and (1−�∕2) of the boot-
strap estimates. The BCa method is a corrected and adjusted variant (bias corrected and accelerated) of
the percentile method, which provides the best results in many cases. The method "norm" is based on the
formula (5.24) in which mean and standard deviation are calculated from the bootstrap estimates. In the
case of themethod "basic" the normal approximation (5.24) is used, this time for the bootstrap estimates
centered at the mean of the original sample. Finally, the "stud" method uses the bootstrap estimates
which are centered at the mean of the original sample and standardized with the standard deviation of the
estimator (this is also known as studentizing). We could also call it a bootstrapped z-score; which means
that one has to know the standard deviation (or variance) of the estimator and has to calculate it for each
bootstrap sample. The method "stud" is therefore also based on the normal approximation. Due to the
additional standardization (at least in theory) a reduction of the error is achieved (order of magnitude
of the error O(n−1) instead of O(n−1∕2) as in the case of type "basic"). For more details on bootstrap
confidence intervals, we refer to chapter 5 of Davison and Hinkley (1997) and chapter 3 of Chernick and
LaBudde (2011).
Functions normCI, meanCI and sdCI from package "MKinfer" (Kohl (2022b)) contain simplified inter-
faces to the functions of package "boot" (Canty and Ripley (2021)).
1 normCI ( ICUData$ t emp e r a t u r e [−398 ] , boo t = TRUE)

Bootstrap confidence interval(s)

$mean

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 9999 bootstrap replicates

CALL :

boot.ci(boot.out = boot.out , conf = 1 - alpha , type = bootci.type)

Intervals :

Level Normal Basic Studentized

95% (37.62 , 37.82 ) (37.62 , 37.82 ) (37.62 , 37.82 )

Level Percentile BCa

95% (37.62 , 37.82 ) (37.62 , 37.82 )

Calculations and Intervals on Original Scale

$`standard deviation `

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 9999 bootstrap replicates

CALL :

boot.ci(boot.out = boot.out , conf = 1 - alpha , type = bootci.type)

Intervals :

Level Normal Basic Studentized

95% ( 1.096, 1.253 ) ( 1.095 , 1.254 ) ( 1.100, 1.260 )
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Level Percentile BCa

95% ( 1.092, 1.251 ) ( 1.100 , 1.258 )

Calculations and Intervals on Original Scale

sample estimates:

mean sd

37.720441 1.173187

The results are very similar to the previous results.
Note:
For small to moderate sample sizes n ≤ 50, one must assume, that asymptotic confidence intervals
based on the central limit theorem must be regarded as rough approximations. Bootstrapping works
very well even for small sample sizes down to n = 10 or even somewhat smaller. However, one
should also be aware here that Bootstrap confidence intervals for small to moderate numbers of cases
(10 ≤ n ≤ 50) and skewed distributions tend to be somewhat too short. In this case Chernick and
LaBudde (2011) in section 3.7 recommend to use type "stud".

In the following example we discuss the Bernoulli model.
Example 5.13. We consider the probability model  = {Bernoulli(p) | p ∈ (0, 1)}. As we have learned
in Section 5.2, the relative frequency p̂ is the ML estimator of p and is unbiased and efficient. As the
Bernoulli distribution is a discrete distribution, the distribution of p̂ is also discrete and quantiles of
discrete distribution are not necessarily unique. Consequentially, there is a whole series of proposals for
“exact” confidence intervals for the probability p; for example the Clopper-Pearson or the Agresti-Coull
interval. I omit the explicit specification of the formulas.
An application of the central limit theorem yields the following approximative confidence interval for p

(

p̂ ∓ 1
2n

)

∓ z1−�∕2

√

p̂(1 − p̂)
n

(5.28)

The correction term 1
2n is called continuity correction and improves the approximation. Furthermore,

z1−�∕2 is the (1 − �∕2) quantile of the standard normal distribution. There exist several rules of thumb
to check whether the aymptotic interval is applicable. One of them is

np̂ > 5 and n(1 − p̂) > 5 (5.29)
i.e., the more p̂ approaches 0 or 1, the larger the sample size has to be.
If we consider drawing without replacement and the underlying population is small having N ∈ ℕ
members, it is recommended, to apply the following slightly modified confidence interval

(

p̂ ∓ 1
2n

)

∓ z1−�∕2

√

p̂(1 − p̂)
n

N − n
N − 1

(5.30)

The additional factor N−n
N−1 , which we have already met in Remark 4.8 (c), is called finite-population

correction and represents the difference between drawing with and without replacement.
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We consider the prevalence of liver failure on the ICU and additionally safeguard the estimation by a
confidence interval. There are several packages including functions for computing “exact” confidence
intervals. We will apply function binomCI of package "MKinfer" (Kohl (2022b)). We compute the
Wilson, the Clopper-Pearson and the Agresti-Coull interval. For this, we need the number of patients
with liver failure as well as the total number of patients.

1 ## Frequency of liver failure

2 t a b l e ( ICUData$ l i v e r . f a i l u r e )

0 1

480 20

1 ## Wilson interval

2 binomCI ( x = 20 , n = 500)

wilson confidence interval

95 percent confidence interval:

2.5 % 97.5 %

prob 0.0260408 0.0609736

sample estimate:

prob

0.04

additional information:

standard error of prob

0.008911592

1 ## Clopper-Pearson interval

2 binomCI ( x = 20 , n = 500 , method = " c l oppe r−pe a r s on " )

clopper -pearson confidence interval

95 percent confidence interval:

2.5 % 97.5 %

prob 0.02460131 0.06110261

sample estimate:

prob

0.04

1 ## Agresti-Coull interval

2 binomCI ( x = 20 , n = 500 , method = " a g r e s t i− c o u l l " )
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agresti -coull confidence interval

95 percent confidence interval:

2.5 % 97.5 %

prob 0.02569479 0.0613196

sample estimate:

prob

0.0435072

additional information:

standard error of prob

0.009088128

We get minor differences between the intervals, in particular, the Agresti-Coull interval is not based
on the relative frequency. The asymptotic interval with and without continuity correction we can also
calculate with the help of the function binomCI.

1 ## without continuity correction

2 binomCI ( x = 20 , n = 500 , method = " wald " )

wald confidence interval

95 percent confidence interval:

2.5 % 97.5 %

prob 0.02282374 0.05717626

sample estimate:

prob

0.04

additional information:

standard error of prob

0.008763561

1 ## with continuity correction

2 binomCI ( x = 20 , n = 500 , method = "wald−cc " )

wald -cc confidence interval

95 percent confidence interval:

2.5 % 97.5 %

prob 0.02182374 0.05817626

sample estimate:

prob
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0.04

additional information:

standard error of prob

0.008763561

Finally, the function binomCI can also be used to calculate bootstrap confidence intervals.
1 binomCI ( x = 20 , n = 500 , method = " boo t " )

boot confidence interval

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 9999 bootstrap replicates

CALL :

boot.ci(boot.out = boot.out , conf = 1 - alpha , type = bootci.type)

Intervals :

Level Normal Basic Studentized

95% ( 0.0230 , 0.0572 ) ( 0.0220 , 0.0560 ) ( 0.0249 , 0.0605 )

Level Percentile BCa

95% ( 0.024, 0.058 ) ( 0.024 , 0.058 )

Calculations and Intervals on Original Scale

sample estimate:

prob

0.04

additional information:

standard error of prob bootstrap standard error of prob

0.008763561 0.008711646

We can also create an asymptotic confidence interval using the function MLEstimator from the package
"distrMod" (Kohl and Ruckdeschel (2010)) and the function confint. We define the Bernoulli model
using the function BinomFamily and the parameter value size = 1.
1 ## Bernoulli model

2 Model ← BinomFamily ( s i z e = 1)
3 ## ML Estimator

4 MLp ← MLEstimator ( ICUData$ l i v e r . f a i l u r e , Model )
5 MLp

Evaluations of Maximum likelihood estimate:

-------------------------------------------

0.040000000

(0.008763561)
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1 ## confidence interval

2 c o n f i n t (MLp)

A[n] asymptotic (LAN -based) confidence interval:

2.5 % 97.5 %

[1,] 0.02282374 0.05717626

The result corresponds to the asymptotic confidence interval abovewithout continuity correction. Roughly
summarized, we can assume a prevalence of liver failure on the ICU in the range from 2.2% to 6.1% with
relatively high certainty.

Note:
As there is often more than one way to determine a confidence interval of a certain parameter, it is
recommended to specify not only the interval but also the type of the interval in practice. Only by
doing this, a reader can reproduce the analysis and its results.

A very interesting option to describe the location and scale of data are median and MAD. On the one
hand, both estimators are very robust, on the other hand, it is not necessary to assume a specific parametric
family.
Example 5.14. Let x(1), x(2),… , x(n) be the increasingly sorted observations. Then, the (1−�) confidence
interval of the median reads

[

x(k), x(n−k+1)
] (5.31)

where k ∈ ℕ has to be determined, such that the following inequality holds

1 − 2
k−1
∑

i=1

(

n
i

)

0.5n ≥ 1 − � (5.32)

This approach can be transferred to the MAD by considering it as the median of |x1 −M|,… , |xn −M|

withM = median (x1,… , xn). In case of the normal distribution, the MAD is usually standardized by
1.4826 to yield a consistent estimator of the standard deviation; see equation (2.3).
We consider the maximum body temperature of our ICU patients and determine 95% confidence intervals
for median and MAD. For this, we apply function medianCI of package "MKinfer" (Kohl (2022b)). In
case of the MAD, we choose the version that is standardized with 1.4826.
1 ## Exact confidence interval for the median.

2 medianCI ( ICUData$ t emp e r a t u r e )

exact confidence interval

95 percent confidence interval:

2.5 % 97.5 %

median 37.5 37.8

sample estimate:

median

37.7
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1 ## Exact confidence interval for the MAD

2 madCI ( ICUData$ t emp e r a t u r e )

exact confidence interval

95 percent confidence interval:

2.5 % 97.5 %

MAD 1.03782 1.33434

sample estimate:

MAD

1.18608

Since the sample size in our example is quite large, we may instead turn to the asymptotic confidence
interval. We obtain

1 ## Asymptotic confidence interval for the median.

2 medianCI ( ICUData$ t empe r a t u r e , method = " a s ymp t o t i c " )

asymptotic confidence interval

95 percent confidence interval:

2.5 % 97.5 %

median 37.5 37.8

sample estimate:

median

37.7

1 ## Asymptotic confidence interval for the MAD

2 madCI ( ICUData$ t empe r a t u r e , method = " a s ymp t o t i c " )

asymptotic confidence interval

95 percent confidence interval:

2.5 % 97.5 %

MAD 1.03782 1.33434

sample estimate:

MAD

1.18608

We obtain identical results as in case of the exact intervals. As an alternative to the asymptotic intervals
we can again use bootstrap confidence intervals, which we also calculate with functions medianCI and
madCI from package "MKinfer" (Kohl (2022b)).
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1 ## bootstrap confidence interval for the median.

2 medianCI ( ICUData$ t empe r a t u r e , method = " boo t " )

bootstrap confidence interval

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 9999 bootstrap replicates

CALL :

boot.ci(boot.out = boot.out , conf = 1 - alpha , type = bootci.type)

Intervals :

Level Normal Basic

95% (37.55 , 37.91 ) (37.60 , 37.90 )

Level Percentile BCa

95% (37.5 , 37.8 ) (37.5, 37.8 )

Calculations and Intervals on Original Scale

sample estimate:

median

37.7

1 ## bootstrap confidence interval for the MAD.

2 madCI ( ICUData$ t empe r a t u r e , method = " boo t " )

bootstrap confidence interval

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 9999 bootstrap replicates

CALL :

boot.ci(boot.out = boot.out , conf = 1 - alpha , type = bootci.type)

Intervals :

Level Normal Basic

95% ( 1.083, 1.377 ) ( 1.038 , 1.334 )

Level Percentile BCa

95% ( 1.038, 1.334 ) ( 1.038 , 1.186 )

Calculations and Intervals on Original Scale

sample estimate:

MAD

1.18608

The bootstrap intervals are also very similar to the exact and asymptotic intervals, which is not surprising
given the large sample size.
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Overall, the intervals are somewhat longer than in the case of the arithmetic mean and the (sample)
standard deviation. This is the price we have to pay for the non-parametric nature of these estimation
procedures and their robustness.

In the following, we take a look at the MD estimators. Here, the computation of confidence intervals is
rather difficult, as the (exact and asymptotic) distribution of these estimators is quite hard to determine. In
case of the CvM-MD estimator, we can compute an asymptotic confidence interval by means of function
MDEstimator of package "distrMod" (Kohl and Ruckdeschel (2010)) and function confint. First, we
again consider the maximum body temperature of our ICU patients.

1 ## Model

2 Model ← NormLoca t ionSca leFami ly ( )
3 ## CvM-MD estimator including variance.

4 MD ← CvMMDEstimator ( ICUData$ t empe r a t u r e , Model )
5 ## 95% confidence interval

6 c o n f i n t (MD)

A[n] asymptotic (LAN -based) confidence interval:

2.5 % 97.5 %

mean 37.535623 37.807908

sd 1.051812 1.227027

The confidence intervals are slightly longer than in case of the ML estimator, but we did not have to
exclude patient 398 due to the robustness of the CvM-MD estimator.

In a similar fashion, we can also compute the confidence interval for the prevalence of liver failure on
the ICU.

1 ## Model

2 Model ← BinomFamily ( s i z e = 1)
3 ## CvM-MD estimator incl. variance.

4 MDp ← CvMMDEstimator ( ICUData$ l i v e r . f a i l u r e , Model )
5 ## 95% confidence interval

6 c o n f i n t (MDp)

A[n] asymptotic (LAN -based) confidence interval:

2.5 % 97.5 %

prob 0.02282334 0.05717567

The results are almost identical to the ML estimator. In the case of MD estimators, one can use bootstrap
confidence intervals as well. However, we are not aware of any function that does this directly. We use
the functions boot and boot.ci from the package "boot" (Canty and Ripley (2021)). We show this for
the KS-MD estimator, for which this is of particular interest, since neither an exact nor an asymptotic
confidence interval is known. First, we need a function which calculates the estimate and returns it as
a scalar (number). The function has two parameters. The first parameter represents the numeric vector
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containing the complete data. The second parameter represents the indices of the entries of the numeric
vector, which were selected for the respective bootstrap sample.

1 ## x: vector of observations

2 ## i: vector of indices of bootstrap sample.

3 KSMDEst ← f u n c t i o n ( x , i ) {
4 e s t im a t e ( KolmogorovMDEstimator ( x [ i ] , ParamFamily = NormLoca t ionSca leFami ly ( ) ) )
5 }

Using this function, we first compute the KS-MD estimator for 999 bootstrap samples. The calculations
take several minutes. We then use these estimates to determine the bootstrap confidence intervals.

1 ## bootstrap estimates

2 b o o t . o u t ← boo t ( ICUData$ t empe r a t u r e , s t a t i s t i c = KSMDEst , R = 999)
3 ## bootstrap confidence intervals

4 b o o t . c i ( b o o t . o u t , i ndex = 1)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 999 bootstrap replicates

CALL :

boot.ci(boot.out = boot.out , index = 1)

Intervals :

Level Normal Basic

95% (37.58 , 37.79 ) (37.58 , 37.79 )

Level Percentile BCa

95% (37.56 , 37.78 ) (37.57 , 37.79 )

Calculations and Intervals on Original Scale

1 b o o t . c i ( b o o t . o u t , i ndex = 2)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 999 bootstrap replicates

CALL :

boot.ci(boot.out = boot.out , index = 2)

Intervals :

Level Normal Basic

95% ( 1.050, 1.252 ) ( 1.054 , 1.265 )

Level Percentile BCa

95% ( 1.021, 1.233 ) ( 1.037 , 1.245 )

Calculations and Intervals on Original Scale

We obtain very similar results to the other estimators.
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Finally, let us apply the RMX estimators to the ICU data. We first compute the RMX estimator for the
temperature data using function roblox from package "RobLox" (Kohl (2019)) and the same settings
as in Section 5.2. After that we can use function confint to calculate the corresponding asymptotic
confidence interval.

1 ALest ← r o b l o x ( ICUData$ t empe r a t u r e , e p s . l ow e r = 1 / 500 ,
2 e p s . u p p e r = 0 .05 , k = 3)
3 d i s t rMod : : c o n f i n t ( ALest )

A[n] asymptotic (LAN -based) confidence interval:

2.5 % 97.5 %

mean 37.535840 37.75436

sd 1.058808 1.22174

The confidence interval above ignores a possible bias that is inevitable when considering the described
contamination neighborhoods around the parametric model. We can also calculate confidence intervals
that take the maximum (asymptotic) bias into account.

1 d i s t rMod : : c o n f i n t ( ALest , s ymme t r i cB i a s ( ) )

A[n] asymptotic (LAN -based), uniform (bias -aware)

confidence interval:

for symmetric Bias

2.5 % 97.5 %

mean 37.478399 37.81180

sd 1.015979 1.26457

We can see that the confidence intervals have become somewhat longer, so more conservative. Alterna-
tively, we can also use the rmx function from the package "rmx" (Kohl (2022c)). Again, we can use the
function confint to output the corresponding confidence intervals.

1 RMXest ← rmx ( ICUData$ t empe r a t u r e , model = " norm " ,
2 e p s . l ow e r = 1 / 500 , e p s . u p p e r = 0 . 05 )
3 c o n f i n t ( RMXest )

Asymptotic (LAN -based) confidence interval

95 percent confidence intervals:

2.5 % 97.5 %

mean 37.532948 37.752852

sd 1.057552 1.221479

RMX estimates:

mean sd

37.642900 1.139516
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1 c o n f i n t ( RMXest , method = " a s . b i a s " )

Asymptotic (LAN -based), uniform (bias -aware) confidence interval

95 percent confidence intervals:

2.5 % 97.5 %

mean 37.472648 37.813151

sd 1.012602 1.266429

RMX estimates:

mean sd

37.642900 1.139516

The possibility of bootstrap confidence intervals is integrated in the package "rmx".

1 c o n f i n t ( RMXest , method = " boo t " )

Bootstrap confidence interval

$mean

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 9999 bootstrap replicates

CALL :

boot.ci(boot.out = boot.out , index = c(1, 3))

Intervals :

Level Normal Basic Studentized

95% (37.47 , 37.67 ) (37.47 , 37.67 ) (37.46 , 37.67 )

Level Percentile BCa

95% (37.61 , 37.82 ) (37.53 , 37.67 )

Calculations and Intervals on Original Scale

Warning : BCa Intervals used Extreme Quantiles

Some BCa intervals may be unstable

$sd

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 9999 bootstrap replicates

CALL :

boot.ci(boot.out = boot.out , index = c(2, 4))

Intervals :

Level Normal Basic Studentized

95% ( 1.020, 1.187 ) ( 1.021 , 1.188 ) ( 1.016, 1.197 )

Level Percentile BCa
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95% ( 1.091, 1.258 ) ( 1.027 , 1.187 )

Calculations and Intervals on Original Scale

Some BCa intervals may be unstable

RMX estimates:

mean sd

37.642900 1.139516

We can also compute bootstrap confidence intervals by using functions boot and boot.ci from the
package "boot" (Canty and Ripley (2021)). The following function performs the necessary calculations
for the bootstrap samples, where we not only get the estimator, but also the asymptotic variance of the
estimator. The return value of the function is therefore a vector of length four, whose first two entries
are the estimated values for mean and SD and whose third and fourth entries are the asymptotic variance
for these two estimates. The function has the same parameters as the function we defined above for the
KS-MD estimator.

1 ## x: vector of observations

2 ## i: vector of indices of bootstrap sample.

3 RMXEst ← f u n c t i o n ( x , i ) {
4 r e s ← r o b l o x ( x [ i ] , e p s . l ow e r = 1 / 500 , e p s . u p p e r = 0 .05 , k = 3)
5 c ( e s t im a t e ( r e s ) , d i a g ( a s v a r ( r e s ) ) )
6 }

We determine the bootstrap confidence intervals. In the case of the studentized interval, the asymptotic
variance is used for the calculation.

1 ## bootstrap estimates

2 b o o t . o u t ← boo t ( ICUData$ t empe r a t u r e , s t a t i s t i c = RMXEst , R = 999)
3 ## bootstrap confidence interval for the mean value.

4 b o o t . c i ( b o o t . o u t , i ndex = c ( 1 , 3 ) )

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 999 bootstrap replicates

CALL :

boot.ci(boot.out = boot.out , index = c(1, 3))

Intervals :

Level Normal Basic Studentized

95% (37.53 , 37.76 ) (37.54 , 37.76 ) (37.54 , 37.76 )

Level Percentile BCa

95% (37.53 , 37.75 ) (37.53 , 37.75 )

Calculations and Intervals on Original Scale

1 ## bootstrap confidence interval for the standard deviation

2 b o o t . c i ( b o o t . o u t , i ndex = c ( 2 , 4 ) )
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BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 999 bootstrap replicates

CALL :

boot.ci(boot.out = boot.out , index = c(2, 4))

Intervals :

Level Normal Basic Studentized

95% ( 1.061, 1.226 ) ( 1.059 , 1.230 ) ( 1.065, 1.238 )

Level Percentile BCa

95% ( 1.050, 1.221 ) ( 1.061 , 1.227 )

Calculations and Intervals on Original Scale

The results are very similar to the asymptotic interval without considering the bias.
Note:
Beside the introduced options, there are many more possibilities to compute confidence intervals in R.
In particular, confidence intervals are usually determined during the computation of statistical tests,
which will be introduced in Chapter 6.

To illustrate the statistical procedures presented in this chapter, wewill in the following repeat the steps for
estimating the parameters, validating the models and calculating the corresponding confidence intervals
using an example. For this purpose, we use the SAPS-II score of patients who were discharged home.
We assume that we can describe the data by a gamma distribution. We first create a corresponding data
subset to simplify the individual steps.

1 ICUData.home ← ICUData [ ICUData$ outcome == "home" , ]

As estimators, we use the ML, the CvM-MD, and the RMX estimator. In the case of the RMX estimator,
we use function roptest from package "ROptEst" (Kohl and Ruckdeschel (2019)) and assume 0% to
5% errors, as is usually the case for routine data.

1 Model ← GammaFamily ( )
2 MLest ← MLEstimator ( ICUData.home$SAPS.II , Model )
3 MLest

Evaluations of Maximum likelihood estimate:

-------------------------------------------

scale shape

5.5804692 6.9961941

(0.6131542) (0.7414555)

1 MDest ← CvMMDEstimator ( ICUData.home$SAPS.II , Model )
2 MDest
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Evaluations of Minimum CvM distance estimate ( mu = model distr. ) :

--------------------------------------------------------------------

scale shape

6.0324283 6.4628936

(0.8239082) (0.8509984)

1 RMXest ← r o p t e s t ( ICUData.home$SAPS.II , Model ,
2 e p s . l ow e r = 0 , e p s . u p p e r = 0 .05 , s t e p s = 3)
3 RMXest

Evaluations of 3-step estimate:

-------------------------------

scale shape

5.9019056 6.6572947

(0.7183910) (0.7803873)

We use pp- and qq-plots to validate the estimated models. We start with the ML estimator.

1 gg1 ← ggp l o t ( ICUData.home , a e s ( sample = SAPS. I I ) ) +
2 q q p l o t r : : s t a t _ pp_b and ( dparams = l i s t ( s c a l e = 5 .58 , shape = 7 . 0 ) ,
3 d i s t r i b u t i o n = "gamma" ) +
4 q q p l o t r : : s t a t _ p p _ p o i n t ( dparams = l i s t ( s c a l e = 5 .58 , shape = 7 . 0 ) ,
5 d i s t r i b u t i o n = "gamma" ) +
6 q q p l o t r : : s t a t _ p p _ l i n e ( ) +
7 x l ab ( " Cumula t ive p r o b a b i l i t y o f t h e model " ) +
8 y l ab ( " Observed cumu l a t i v e p r o b a b i l i t y " ) +
9 g g t i t l e ( " pp−Plo t : ML E s t im a t o r " )
10 gg2 ← ggp l o t ( ICUData.home , a e s ( sample = SAPS. I I ) ) +
11 q q p l o t r : : s t a t _ qq_b and ( dparams = l i s t ( s c a l e = 5 .58 , shape = 7 . 0 ) ,
12 d i s t r i b u t i o n = "gamma" , i d e n t i t y = TRUE) +
13 q q p l o t r : : s t a t _ q q _ p o i n t ( dparams = l i s t ( s c a l e = 5 .58 , shape = 7 . 0 ) ,
14 d i s t r i b u t i o n = "gamma" ) +
15 q q p l o t r : : s t a t _ q q _ l i n e ( dparams = l i s t ( s c a l e = 5 .58 , shape = 7 . 0 ) ,
16 d i s t r i b u t i o n = "gamma" , i d e n t i t y = TRUE) +
17 x l ab ( "Model f o r SAPS−II " ) +
18 y l ab ( " Observed SAPS−II Sco r e s " ) +
19 g g t i t l e ( " qq−Plo t : ML E s t im a t o r " )
20 g r i d . a r r a n g e ( gg1 , gg2 , nrow = 1)
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qq−Plot: ML Estimator

We obtain a good agreement between data and model. We next examine the CvM-MD estimator.

1 gg1 ← ggp l o t ( ICUData.home , a e s ( sample = SAPS. I I ) ) +
2 q q p l o t r : : s t a t _ pp_b and ( dparams = l i s t ( s c a l e = 6 .03 , shape = 6 . 46 ) ,
3 d i s t r i b u t i o n = "gamma" ) +
4 q q p l o t r : : s t a t _ p p _ p o i n t ( dparams = l i s t ( s c a l e = 6 .03 , shape = 6 . 46 ) ,
5 d i s t r i b u t i o n = "gamma" ) +
6 q q p l o t r : : s t a t _ p p _ l i n e ( ) +
7 x l ab ( " Cumula t ive p r o b a b i l i t y o f t h e model " ) +
8 y l ab ( " Observed cumu l a t i v e p r o b a b i l i t y " ) +
9 g g t i t l e ( " pp−Plo t : CvM−MD Es t im a t o r " )
10 gg2 ← ggp l o t ( ICUData.home , a e s ( sample = SAPS. I I ) ) +
11 q q p l o t r : : s t a t _ qq_b and ( dparams = l i s t ( s c a l e = 6 .03 , shape = 6 . 46 ) ,
12 d i s t r i b u t i o n = "gamma" , i d e n t i t y = TRUE) +
13 q q p l o t r : : s t a t _ q q _ p o i n t ( dparams = l i s t ( s c a l e = 6 .03 , shape = 6 . 46 ) ,
14 d i s t r i b u t i o n = "gamma" ) +
15 q q p l o t r : : s t a t _ q q _ l i n e ( dparams = l i s t ( s c a l e = 6 .03 , shape = 6 . 46 ) ,
16 d i s t r i b u t i o n = "gamma" , i d e n t i t y = TRUE) +
17 x l ab ( "Model f o r SAPS−II " ) +
18 y l ab ( " Observed SAPS−II Sco r e s " ) +
19 g g t i t l e ( " qq−Plo t : CvM−MD Es t im a t o r " )
20 g r i d . a r r a n g e ( gg1 , gg2 , nrow = 1)
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qq−Plot: CvM−MD Estimator

Again, we see a good fit between the data and the model. We consider finally the RMX estimator.

1 gg1 ← ggp l o t ( ICUData.home , a e s ( sample = SAPS. I I ) ) +
2 q q p l o t r : : s t a t _ pp_b and ( dparams = l i s t ( s c a l e = 5 .90 , shape = 6 . 66 ) ,
3 d i s t r i b u t i o n = "gamma" ) +
4 q q p l o t r : : s t a t _ p p _ p o i n t ( dparams = l i s t ( s c a l e = 5 .90 , shape = 6 . 66 ) ,
5 d i s t r i b u t i o n = "gamma" ) +
6 q q p l o t r : : s t a t _ p p _ l i n e ( ) +
7 x l ab ( " Cumula t ive p r o b a b i l i t y o f t h e model " ) +
8 y l ab ( " Observed cumu l a t i v e p r o b a b i l i t y " ) +
9 g g t i t l e ( " pp−Plo t : RMX Es t im a t o r " )
10 gg2 ← ggp l o t ( ICUData.home , a e s ( sample = SAPS. I I ) ) +
11 q q p l o t r : : s t a t _ qq_b and ( dparams = l i s t ( s c a l e = 5 .90 , shape = 6 . 66 ) ,
12 d i s t r i b u t i o n = "gamma" , i d e n t i t y = TRUE) +
13 q q p l o t r : : s t a t _ q q _ p o i n t ( dparams = l i s t ( s c a l e = 5 .90 , shape = 6 . 66 ) ,
14 d i s t r i b u t i o n = "gamma" ) +
15 q q p l o t r : : s t a t _ q q _ l i n e ( dparams = l i s t ( s c a l e = 5 .90 , shape = 6 . 66 ) ,
16 d i s t r i b u t i o n = "gamma" , i d e n t i t y = TRUE) +
17 x l ab ( "Model f o r SAPS−II " ) +
18 y l ab ( " Observed SAPS−II Sco r e s " ) +
19 g g t i t l e ( " qq−Plo t : RMX Es t im a t o r " )
20 g r i d . a r r a n g e ( gg1 , gg2 , nrow = 1)
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Also in the case of the RMX estimator, we see a good agreement between the estimated model and the
data. Overall, we see only minor differences between the three estimators. In particular, since we see no
differences between the ML estimator and the two robust estimators, we can interpret this as a sign that
the data do not contain any noticeable deviations from the assumed model. We plot the densities of the
estimated models.

1 ggp l o t ( ICUData.home , a e s ( x=SAPS. I I ) ) +
2 geom_his togram ( ae s ( y= . . d e n s i t y . . ) , b i nw id t h = 5 , f i l l = " d a r kg r ey " ) +
3 geom_dens i t y ( c o l o r = " o range " ) + y l ab ( " D i ch t e " ) +
4 s t a t _ f u n c t i o n ( fun = dgamma , a r g s = l i s t ( s c a l e = 5 .58 , shape = 7 . 0 ) ,
5 c o l o r = " d a r k r e d " , lwd = 1 . 5 ) +
6 s t a t _ f u n c t i o n ( fun = dgamma , a r g s = l i s t ( s c a l e = 6 .03 , shape = 6 . 46 ) ,
7 c o l o r = " d a r k b l u e " , lwd = 1 . 5 ) +
8 s t a t _ f u n c t i o n ( fun = dgamma , a r g s = l i s t ( s c a l e = 5 .90 , shape = 6 . 66 ) ,
9 c o l o r = " d a r kg r e en " , lwd = 1 . 5 ) +
10 a n n o t a t e ( " t e x t " , x = 70 , y = 0 .035 , c o l = " d a r k r e d " ,
11 l a b e l = "ML Es t im a t o r " ) +
12 a n n o t a t e ( " t e x t " , x = 70 , y = 0 .0325 , c o l = " d a r k b l u e " ,
13 l a b e l = "CvM−MD Es t im a t o r " ) +
14 a n n o t a t e ( " t e x t " , x = 70 , y = 0 .030 , c o l = " d a r kg r e en " ,
15 l a b e l = "RMX Es t im a t o r " ) +
16 g g t i t l e ( " Comparison of E s t ima t e d Models " )
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Again, there is a high degree of similarity between the estimated models. We calculate the asymptotic
confidence intervals for the three estimators.

1 d i s t rMod : : c o n f i n t ( MLest )

A[n] asymptotic (LAN -based) confidence interval:

2.5 % 97.5 %

scale 4.378709 6.782229

shape 5.542968 8.449420

1 d i s t rMod : : c o n f i n t (MDest )

A[n] asymptotic (LAN -based) confidence interval:

2.5 % 97.5 %

scale 4.417598 7.647259

shape 4.794967 8.130820

1 d i s t rMod : : c o n f i n t ( RMXest )

A[n] asymptotic (LAN -based) confidence interval:

2.5 % 97.5 %

scale 4.493885 7.309926

shape 5.127764 8.186826

The confidence intervals overlap clearly. We compute the corresponding bootstrap confidence intervals
for ML and CvM-MD estimator. In the case of the RMX estimator, we omit the calculations due to
the high computational time. However, we give the corresponding R code for it. We first define the
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functions with which we can determine the estimators and the (asymptotic) variances of the estimators
for the bootstrap samples.

1 ## x: vector of observations

2 ## i: vector of indices of bootstrap sample.

3 MLEst ← f u n c t i o n ( x , i ) {
4 r e s ← MLEstimator ( x [ i ] , ParamFamily = GammaFamily ( ) )
5 c ( e s t im a t e ( r e s ) , d i a g ( a s v a r ( r e s ) ) )
6 }
7 MDEst ← f u n c t i o n ( x , i ) {
8 r e s ← CvMMDEstimator ( x [ i ] , ParamFamily = GammaFamily ( ) )
9 c ( e s t im a t e ( r e s ) , d i a g ( a s v a r ( r e s ) ) )
10 }
11 RMXEst ← f u n c t i o n ( x , i ) {
12 r e s ← r o p t e s t ( x [ i ] , ParamFamily = GammaFamily ( ) ,
13 e p s . l ow e r = 0 , e p s . u p p e r = 0 .05 , s t e p s = 3)
14 c ( e s t im a t e ( r e s ) , d i a g ( a s v a r ( r e s ) ) )
15 }

Since the calculations will take some time, we want to accelerate them by parallelization. This is also
possible with the function boot. First, we determine with the help of the function detectCores from
package "parallel" (R Core Team (2022a)) the number of available CPU cores. We then use all but
one core for the calculation.

1 n r . c p u s ← d e t e c t C o r e s ( )−1

We begin with the calculations for the ML estimator.

1 ## bootstrap estimates

2 b o o t . o u t ← boo t ( ICUData.home$SAPS.II , s t a t i s t i c = MLEst , R = 999 ,
3 p a r a l l e l = " mu l t i c o r e " , ncpus = n r . c p u s )
4 ## bootstrap confidence interval for scale

5 b o o t . c i ( b o o t . o u t , i ndex = c ( 1 , 3 ) )

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 999 bootstrap replicates

CALL :

boot.ci(boot.out = boot.out , index = c(1, 3))

Intervals :

Level Normal Basic Studentized

95% ( 4.522, 6.688 ) ( 4.477 , 6.646 ) ( 4.661, 6.900 )

Level Percentile BCa

95% ( 4.515, 6.684 ) ( 4.633 , 6.846 )

Calculations and Intervals on Original Scale
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1 ## bootstrap confidence interval for shape

2 b o o t . c i ( b o o t . o u t , i ndex = c ( 2 , 4 ) )

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 999 bootstrap replicates

CALL :

boot.ci(boot.out = boot.out , index = c(2, 4))

Intervals :

Level Normal Basic Studentized

95% ( 5.563, 8.232 ) ( 5.423 , 8.068 ) ( 5.717, 8.268 )

Level Percentile BCa

95% ( 5.924, 8.570 ) ( 5.768 , 8.439 )

Calculations and Intervals on Original Scale

We get confidence intervals similar to the asymptotic intervals. We perform the corresponding calcula-
tions for the CvM-MD estimator.
1 ## bootstrap estimates

2 b o o t . o u t ← boo t ( ICUData.home$SAPS.II , s t a t i s t i c = MDEst , R = 999 ,
3 p a r a l l e l = " mu l t i c o r e " , ncpus = n r . c p u s )
4 ## bootstrap confidence interval for scale

5 b o o t . c i ( b o o t . o u t , i ndex = c ( 1 , 3 ) )

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 999 bootstrap replicates

CALL :

boot.ci(boot.out = boot.out , index = c(1, 3))

Intervals :

Level Normal Basic Studentized

95% ( 4.540, 7.590 ) ( 4.521 , 7.554 ) ( 4.829, 8.076 )

Level Percentile BCa

95% ( 4.510, 7.544 ) ( 4.621 , 7.723 )

Calculations and Intervals on Original Scale

1 ## bootstrap confidence interval for shape

2 b o o t . c i ( b o o t . o u t , i ndex = c ( 2 , 4 ) )

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 999 bootstrap replicates

CALL :

boot.ci(boot.out = boot.out , index = c(2, 4))

Intervals :
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Level Normal Basic Studentized

95% ( 4.728, 7.929 ) ( 4.625 , 7.699 ) ( 5.038, 7.999 )

Level Percentile BCa

95% ( 5.227, 8.301 ) ( 5.136 , 8.182 )

Calculations and Intervals on Original Scale

Once again, we obtain results that deviate only slightly from the asymptotic results. Finally, we give the
R code for the calculations of the bootstrap confidence intervals for the RMX estimator. However, as
already mentioned, we omit the computations because of the very high computation time. We assume
that we would also get results that do not differ strongly from the asymptotic results.

1 ## bootstrap estimates

2 b o o t . o u t ← boo t ( ICUData.home$SAPS.II , s t a t i s t i c = RMXEst , R = 999 ,
3 p a r a l l e l = " mu l t i c o r e " , ncpus = n r . c p u s )
4 ## bootstrap confidence interval for scale

5 b o o t . c i ( b o o t . o u t , i ndex = c ( 1 , 3 ) )
6 ## bootstrap confidence interval for shape

7 b o o t . c i ( b o o t . o u t , i ndex = c ( 2 , 4 ) )

Accordingly, we have found three models that can be used to describe the available data well. Which of
these three models is ultimately best, would have to be further investigated by using new, independent
data.

In addition to validating point estimates as in the above case, confidence intervals can also be used for
sample size planning (cf. Section 5.1). We want to demonstrate this in the following example with a
simple case.
Example 5.15. We consider the question how many persons polling institutes should ask in opinion
polls to get reliable prognoses. Assuming a large population as in case of national elections, we can
confidently neglect the finite-sample correction and can apply the asymptotic confidence interval given
in Example 5.13. As we are interested in the deviation from the estimated value, i.e. the maximum
estimate error, we have to take a closer look at the following expression

z1−�∕2

√

p̂(1 − p̂)
n

(5.33)

Apparently, the estimate error varies with the confidence level 1 − �, the estimated probability p̂ and the
sample size n. We assume a 95% confidence interval; that is, we get for z1−�∕2 = z0.975
1 qnorm (0 . 975 )

[1] 1.959964

Next, we take a closer look at the standard deviation√p(1 − p) of the Bernoulli distribution.
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1 ## Values for p

2 p ← seq ( from = 0 .01 , t o = 0 .99 , l e n g t h = 100)
3 ## standard deviation

4 SD ← s q r t ( p∗ (1−p ) )
5 ## Graphical representation

6 DF ← d a t a . f r am e ( p , SD)
7 ggp l o t (DF , a e s ( x = p , y = SD ) ) + geom_l ine ( ) +
8 y l ab ( e x p r e s s i o n ( s q r t ( p∗ (1−p ) ) ) ) +
9 x l ab ( " p " ) + g g t i t l e ( " S t a nd a r d d e v i a t i o n o f B e r n o u l l i ( p ) " )
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Standard deviation of Bernoulli(p)

From this plot we can see that the investigated term is largest for p = 0.5 and decreases for smaller or
larger probabilities. In the case of p = 0.5 we get the maximum estimation error. In case of the 95%
confidence interval this leads to

1.96 × 0.5
√

n
= 0.975

√

n
= 97.5

√

n
%. (5.34)

We plot the maximum estimate error as a function of the sample size.

1 ## sample size

2 n ← seq ( 60 , 10000 , by = 20)
3 ## Maximum estimation error

4 maxError ← 97 . 5 / s q r t ( n )
5 ## Graphical representation

6 DF ← d a t a . f r am e ( n , maxError )
7 ggp l o t (DF , a e s ( x = n , y = maxError ) ) + geom_l ine ( ) + y l ab ( " P e r c e n t [%] " ) +
8 x l ab ( " Sample s i z e " ) + g g t i t l e ( "Maximum e s t i m a t i o n e r r o r " )
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Typically, 1000 people are surveyed opinion polls. The maximum estimation error in this case is at most
about 3.1%. We could now calculate a number of cases by specifying the desired maximum estimation
error by setting it equal to the expression (5.34), and solving the resulting equation for n.

√

n = 0.975
max. estimation error ⇐⇒ n =

( 0.975
max. estimation error

)2
(5.35)

We then round the result up to the next integer number yielding our sample size. We can also calculate
the sample size directly using function ssize.propCI from package "MKpower" (Kohl (2020c)). The
continuity correction can also be taken into account as well as sample size for different exact intervals
can be calculated. Instead of the maximum estimation error, the desired length of the confidence interval
has to be specified for this function.

1 ## without continuity correction

2 s s i z e . p r o pC I (0 .5 , wid th = 0 .062 , method = " wald " )

Sample size calculation by method of wald

n = 999.3389

prop = 0.5

width = 0.062

conf.level = 0.95

NOTE: Two -sided confidence interval

1 ## with continuity correction

2 s s i z e . p r o pC I (0 .5 , wid th = 0 .062 , method = "wald−cc " )

Sample size calculation by method of wald -cc
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n = 1031.345

prop = 0.5

width = 0.062

conf.level = 0.95

NOTE: Two -sided confidence interval

1 ## Clopper-Pearson

2 s s i z e . p r o pC I (0 .5 , wid th = 0 .062 , method = " c l oppe r−pe a r s on " )

Sample size calculation by method of clopper -pearson

n = 1032

prop = 0.5

width = 0.062

conf.level = 0.95

NOTE: Two -sided confidence interval

1 ## Agresti-Coull

2 s s i z e . p r o pC I (0 .5 , wid th = 0 .062 , method = " a g r e s t i− c o u l l " )

Sample size calculation by method of agresti -coull

n = 995.4975

prop = 0.5

width = 0.062

conf.level = 0.95

NOTE: Two -sided confidence interval

Before important elections, pollsters survey up to 50.000 people, which in any case leads to a maximum
estimation error of less than 0.5%.

1 ## without continuity correction

2 s s i z e . p r o pC I (0 .5 , wid th = 0 .0088 , method = " wald " )

Sample size calculation by method of wald

n = 49605.61

prop = 0.5

width = 0.0088

conf.level = 0.95

NOTE: Two -sided confidence interval
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1 ## with continuity correction

2 s s i z e . p r o pC I (0 .5 , wid th = 0 .0088 , method = "wald−cc " )

Sample size calculation by method of wald -cc

n = 49832.63

prop = 0.5

width = 0.0088

conf.level = 0.95

NOTE: Two -sided confidence interval

These considerations and calculations are not only important for pollsters, but also play an important role
in other fields such as epidemiology or medical epidemiology or medical statistics. Here, for example,
it is a matter of estimating the prevalences, incidences or lethality of diseases or the success rates of
treatments.

5.4 Exercises

Always briefly describe and explain the results. Use the ICU dataset for exercises 5–18 and always select
appropriate functions for the computations.

1. Construct a dataset consisting of exactly five positive numbers, such that the median is equal to 5
and the arithmetic mean is equal to 7. In a second step, modify the dataset, such that the median
is unchanged, but the arithmetic mean is larger than the third quartile.

2. How must a dataset look like, such that the standard deviation is equal to 0? In which situation is
the standard deviation maximal? Use simple datasets to think about the questions.

3. One can study bone resorption by means of TRAP (tartrate resistant acid phosphatase), which
can be measured in one’s blood. In a trial of 31 young women, the arithmetic mean of TRAP
was equal to 13.2 U/l (Units per liter). Assume a normal distribution model for TRAP, where the
standard deviation is known to be � = 6.5 U/l. Specify a 95% confidence interval for the mean
� of the women, who are represented by the trial. How does the interval change, if the standard
deviation is not known, but was estimated as 6.5 U/l by means of the sample standard deviation
(standardization 1

n−1 )? That is, compare the results of the formulas (5.24) and (5.26).
4. Assume 6 successes on 20 attempts. Can you use the approximative confidence interval for the

probability of success p? Check the rule of thumb (5.29). Compare the Clopper-Pearson interval
and the asymptotic confidence interval including continuity correction.

5. Estimate the probability that an ICU patient is male. To do this, add a binary variable to the data
set that has the value 1 if the patient is a male; e.g., by.

1 ICUData$man ← a s . i n t e g e r ( ICUData$ sex == "male " )
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Use the Bernoulli model  = {Bernoulli(p) | p ∈ (0, 1)} and compute the ML, the CvM-MD,
and the AL estimator for p. For the AL estimator, assume 2% of erroneous data (apply function
roptest of package "ROptEst" (Kohl and Ruckdeschel (2019)) with argument eps = 0.02).
Determine the associated asymptotic confidence intervals as well as bootstrap confidence intervals.
Compare the asymptotic and bootstrap confidence intervals with the Clopper-Pearson interval.

6. Assume that the log bilirubin values of ICU patients can be described by a normal distribution.

1 ICUData$ l o g B i l i ← l og10 ( ICUData$ b i l i r u b i n )

Calculate the ML estimator and compare the result with median and MAD as well as the RMX
estimator (apply function roblox of package "RobLox" (Kohl (2019))). For the RMX estimator,
assume 1− 5% of erroneous data. Also determine the associated confidence intervals in each case
applying bootstrap. Plot the data in the form of a histogram and add the three normal distribution
densities with the estimated parameters. Validate the three models additionally with pp- and qq-
plots.

7. Consider only patients with a length of stay greater than one day (LOS > 1).

1 ICUdata.LOS2 ← ICUdata [ ICUdata $LOS > 1 , ]

Assume that the maximum body temperature (column temperature) of these ICU patients can
be described by a normal distribution. Calculate the ML estimator and compare the the result with
median and MAD as well as the RMX estimator (apply function roblox of package "RobLox"
(Kohl (2019))). For the RMX estimator assume 1 − 5% of erroneous data. Also determine the
corresponding confidence intervals using bootstrap. Plot the data in the form of a histogram and
add the three normal distribution densities with the estimated parameters. Validate the threemodels
additionally with pp- and qq-plots.

8. Consider only patients with a length of stay of exactly one day (LOS = 1) and also remove the
outlier with the body temperature of 9.1◦C .

1 ICUData.LOS1 ← ICUData [ ICUData$LOS == 1 , ]
2 ICUData.LOS1 ← ICUData.LOS1 [ ICUData.LOS1$ t emp e r a t u r e > 10 , ]

Assume the maximum body temperature (column temperature) of these ICU patients can be
described by a normal distribution. Calculate the ML estimator and compare the result with me-
dian and MAD as well as the RMX estimator (apply function roblox of package "RobLox" (Kohl
(2019))). For the RMX estimator, assume 0 − 5% of erroneous data. Also determine the corre-
sponding confidence intervals using bootstrap. Plot the data in the form of a histogram and add
the three normal distribution densities with the estimated parameters. Validate the three models
additionally with pp- and qq-plots.
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9. Consider only patients with a length of stay greater than one day (LOS > 1). Assume the logarith-
mized maximum heart rates (column heart rate) of these ICU patients can be described by a
normal distribution.

1 ICUData.LOS2 ← ICUData [ ICUData$LOS > 1 , ]
2 ICUData.LOS2$logHR ← l og10 ( ICUData.LOS2$ h e a r t . r a t e )

Calculate the ML estimator and compare the result with median and MAD as well as the RMX
estimator (apply function roblox of package "RobLox" (Kohl (2019))). For the RMX estimator,
assume 0 − 5% of erroneous data. Also determine the corresponding confidence intervals using
bootstrap. Plot the data in the form of a histogram, and add the three normal distribution densities
with the the estimated parameters. Validate the three models additionally with pp- and qq-plots.

10. Consider only patients with a length of stay of exactly one day (LOS = 1). Assume logarithmized
maximum heart rates (column heart rate) of these ICU patients can be described by a normal
distribution.

1 ICUData.LOS1 ← ICUData [ ICUData$LOS == 1 , ]
2 ICUData.LOS1$logHR ← l og10 ( ICUData.LOS1$ h e a r t . r a t e )

Calculate the ML estimator and compare the result with median and MAD as well as the RMX
estimator (apply function roblox of package "RobLox" (Kohl (2019))). For the RMX estimator,
assume 0 − 5% of erroneous data. Also determine the corresponding confidence intervals using
bootstrap. Plot the data in the form of a histogram, and add the three normal distribution densities
with the the estimated parameters. Validate the three models additionally with pp- and qq-plots.

11. Consider only the patients with liver failure. Assume log bilirubin values (column bilirubin) of
these ICU patients can be described by a normal distribution.

1 ICUData.LF ← ICUData [ ICUData$ l i v e r . f a i l u r e == 1 , ]
2 ICUData.LF$ l o g B i l i ← l og10 ( ICUData.LF$ b i l i r u b i n )

Calculate the ML estimator and compare the result to the median and MAD as well as the RMX
estimator (apply function roblox of package "RobLox" (Kohl (2019))). For the RMX estimator,
assume 0 − 10% of erroneous data. Also determine the corresponding confidence intervals using
bootstrap. Plot the data in the form of a histogram and add the three normal distribution densities
with the estimated parameters. Validate the three models additionally with pp- and qq-plots.

12. Assume that the length of stay (LOS) of ICU patients can be described by a Gamma distribution.
Calculate the ML, the CvM-MD, and the RMX estimator (apply function roptest of package
"ROptEst" (Kohl and Ruckdeschel (2019)) and their asymptotic confidence intervals. For the
RMX estimator, assume 1 − 5% of erroneous data. The RMX estimator will take some time to
compute. Plot the data in the form of a histogram and add the three Gamma distribution densities
with the estimated parameters. Validate the three models additionally with pp- and qq-plots.
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13. Consider only patients with neurologic surgery (surgery = �neuro�).

1 ICUData .neuro ← ICUData [ ICUData$ s u r g e r y == " neuro " , ]

Consider length of stay (column LOS) of these ICU patients and assume that it can be described by
a Gamma distribution. Determine the ML, the CvM-MD, and the RMX estimator (apply function
roptest of package "ROptEst" (Kohl and Ruckdeschel (2019)) and their asymptotic confidence
intervals. For the RMX estimator assume 1 − 5% of erroneous data. The calculation of the RMX
estimator will take some time. Plot the data in the form of a histogram and add the three Gamma
distribution densities with the estimated parameters. Validate the three models additionally with
pp- and qq-plots.

14. Select only patients with surgery = �gastrointestinal� – a gastrointestinal tract surgery.

1 ICUDa t a . g a s t r o ← ICUData [ ICUData$ s u r g e r y == " g a s t r o i n t e s t i n a l " , ]

Consider the length of stay (column LOS) of these ICU patients and assume that it can be can be
described by a Gamma distribution. Determine the ML, the CvM-MD, and the the RMX esti-
mator (apply function roptest of package "ROptEst" (Kohl and Ruckdeschel (2019)) and their
asymptotic confidence intervals. For the RMX estimator assume 1 − 5% of erroneous data. The
calculation of the RMX estimator will take some time. Plot the data in the form of a histogram
and add the three Gamma distribution densities with the estimated parameters. Validate the three
models additionally with pp- and qq-plots.

15. Consider only patients with cardiothoracic surgery (surgery = �cardiothoracic�).

1 ICUDa t a . c a r d i o ← ICUData [ ICUData$ s u r g e r y == " c a r d i o t h o r a c i c " , ]

Consider the length of stay (column LOS) of these ICU patients and assume that it can be described
by a gamma distribution. Determine the ML, the CvM-MD, and the RMX estimator (apply func-
tion roptest of package "ROptEst" (Kohl and Ruckdeschel (2019)) and their asymptotic confi-
dence intervals. For the RMX estimator assume 1 − 5% of erroneous data. The calculation of the
RMX estimator will take some time. Plot the data in the form of a histogram and add the three
Gamma distribution densities with the estimated parameters. Validate the three models addition-
ally with pp- and qq-plots.

16. Examine the age of ICU patients in more detail. Assume you can describe the age by a Weibull
distribution. Determine the ML, CvM-MD and the RMX estimator (apply function roptest of
package "ROptEst" (Kohl and Ruckdeschel (2019)) and their asymptotic confidence intervals.
You will need package "RobExtremes" (Ruckdeschel et al. (2019)) for this. For the RMX estima-
tor, assume 1 − 5% of erroneous data. The calculation of the RMX estimator will take some time.
Plot the data in the form of a histogram and add the three Weibull distribution densities with the
estimated parameters. Validate the three models additionally with pp- and qq-plots.
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17. Consider patients with a length of stay greater than one day (LOS > 1).
1 ICUdata.LOS2 ← ICUdata [ ICUdata $LOS > 1 , ]

Examine the maximum SAPS-II score (column SAPS.II) of these ICU patients and assume that
this can be described by a Weibull distribution. Determine the ML-, the CvM-MD and the RMX
estimators (apply function roptest of package "ROptEst" (Kohl and Ruckdeschel (2019)) and
their asymptotic confidence intervals. You will need package "RobExtremes" (Ruckdeschel et al.
(2019)) for this. For the RMX estimator, assume 1 − 5% of erroneous data. The calculation
of the RMX estimator will take some time. Plot the data in the form of a histogram and add
the three Weibull distribution densities with the estimated parameters. Validate the three models
additionally with pp- and qq-plots.

18. Consider patients with a length of stay of one day (LOS = 1).
1 ICUdata.LOS1 ← ICUdata [ ICUdata $LOS == 1 , ]

Examine the maximum SAPS-II score (column SAPS.II) of these ICU patients and assume that
this can be described by a Weibull distribution. Determine the ML-, the CvM-MD and the RMX
estimators (apply function roptest of package "ROptEst" (Kohl and Ruckdeschel (2019)) and
their asymptotic confidence intervals. You will need package "RobExtremes" (Ruckdeschel et al.
(2019)) for this. For the RMX estimator, assume 1 − 5% of erroneous data. The calculation
of the RMX estimator will take some time. Plot the data in the form of a histogram and add
the three Weibull distribution densities with the estimated parameters. Validate the three models
additionally with pp- and qq-plots.

19. Load https://github.com/stamats/COVID-19/blob/master/COVID-19.Rmd and https:

//github.com/stamats/COVID-19/blob/master/Bevoelkerung2019.RData and save both
files in a common directory. Using RStudio, generate the html file to the R Markdown file and
read it. Attention: You need to install additional R packages for this!
Use recent figures for Germany and use them to recalculate the number of unreported cases (as
well as 95% confidence interval).

20. In the European Union, a disease is said to be rare when the incidence is less than 1 in 2000 persons.
The incidence rate per year of sarcoidosis is about 5-60 cases per 100.000. We assume that this is
a symmetrical 95% confidence interval for the incidence rate. The expected value (midpoint of the
interval) is 32.5 cases per 100.000 inhabitants. The length of the confidence interval is 55 cases per
100.000 population. Determine the sample size of how many subjects would have to be included
in a study to confirm this asymptotic confidence interval. Use the same values for calculating the
number of cases using the Clopper-Pearson and Agresti-Coull interval.

21. View https://clinicaltrials.gov/ct2/show/study/NCT03976804, a recent study on the
prevalence of lung cancer. There are 500 high-risk patients to be studied for prevalence of lung
cancer. In various other prevalence studies in Europe, a prevalence of 2% has been determined.
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The prevalence is expected to be more than 2%. What is the minimum prevalence in this study, so
that the lower limit of the associated (two-sided) 95% confidence interval is greater than 2%; so
that one can assume a significant result and therefore a success of the study? Answer this question
using function ssize.propCI from "MKpower" package (Kohl (2020c)). Try combinations of
prevalences and lengths of the confidence interval, so that the lower limit of the corresponding
95% confidence interval is greater than 2% and at the same time results in a number of cases of
roughly 500.

22. Examine the relationship between survival (i.e. outcome ≠ �died�) and the SAPS-II score, by
looking for an optimal cut-off for survival. First, define a new variable.

1 ICUData$ d i ed ← a s . i n t e g e r ( ICUData$outcome == " d i ed " )

We assume that the probability of dying is monotone increasing with increasing SAPS-II score.
Use Youdens J statistics and back up your results using a stratified Bootstrap. Calculate sensitivity
and specificity for the calculated optimal cut-off. Also determine the AUC and Brier score for the
SAPS-II score.

23. Examine the relationship between survival (i.e. outcome ≠ �died�) and maximum heart rate, by
looking for an optimal cut-off for survival. First, define a new variable.

1 ICUData$ d i ed ← a s . i n t e g e r ( ICUData$outcome == " d i ed " )

We assume that the probability of dying is monotone increasing with increasing maximum heart
rate. Use Youdens J statistics and back up your results using a stratified Bootstrap. Calculate
sensitivity and specificity for the calculated optimal cut-off. Also determine the AUC and Brier
score for the SAPS-II score.

24. You want to study the probability of trash in a production process and for this purpose draw a
representative sample of the produced parts. You estimate the unknown probability of trash and
determine the corresponding 95% confidence interval. You repeat this procedure every month for
five months, where each month you draw a new independent sample. Then, the probability that all
five intervals cover the true unknown parameter is smaller than 95%. How large is this probability
exactly? How likely is it, that at least four of the five confidence intervals will cover the true
unknown parameter?
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6 Statistical Tests

In this chapter we introduce statistical tests. In detail, it covers the following topics:
• Hypotheses
• Test decisions, power, sensitivity, type I and type II error
• Order for the correct conduct of a test
• Calculation of sample size and power analysis
• 1-sample binomial test (exact and asymptotic)
• 1-sample multinomial test
• 2-sample binomial test (asymptotic)
• Fisher’s exact test, �2 test, Cramér’s V test
• McNemar �2-test
• Cochran-Mantel-Haenszel �2-test
• t-test: 1-sample, paired, 2-sample, Welch, Hsu
• Wilcoxon signed rank test, Wilcoxon rank sum test / Mann-Whitney U test.
• F-test, Ansari-Bradley test
• One-way ANOVA, Kruskal-Wallis test
• One-way ANOVA with repeated measures, Friedman test, Quade test
• Testing correlations (Pearson, Spearman, Kendall)
• Testing for normality: Shapiro-Wilk test, Lilliefors (Kolmogorov-Smirnov) test, Cramér-vonMises

test, Shapiro-Francia test
• Bootstrap and Permutation tests
• Post hoc tests
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The R code for this chapter is in the file Testen.Rmd, which you can download from my GitHub account
(Link: https://github.com/stamats/ISDR/blob/main/Tests.Rmd). Right-click on Raw. Then
you can save the target as.... Save the R Markdown files in the same folder as the data which will
be used in the respective chapters.
We first install the packages needed in this chapter.

1 i n s t a l l . p a c k a g e s ( c ( " co i n " , " e x a c tRankTe s t s " , " ggpubr " , " d a t a r i um " ) )

Make sure that you have already installed the packages of the previous Chapter 2–5. We load all packages
required in this chapter.

1 l i b r a r y ( DescTools )
2 l i b r a r y ( g gp l o t 2 )
3 l i b r a r y ( g g s c i )
4 l i b r a r y ( g r i d E x t r a )
5 l i b r a r y ( MKinfer )
6 l i b r a r y ( co i n )
7 l i b r a r y ( e x a c tRankTe s t s )
8 l i b r a r y ( ggpubr )
9 l i b r a r y ( d a t a r i um )

As explained in Section 2.4, running library repeatedly is not problematic.

6.1 Introduction

Empirical investigations and studies usually start with a new idea, a conjecture about a certain often open
problem. This conjecture is usually postulated on the basis of empirical observations and/or subject-
specific theoretical considerations. It facilitates the verification of an assumption, if it may be formulated
in a precise and quantifiable way. In this case, one speaks of a hypothesis. First, one should collect all
available information about the problem and elaborate the theoretical background to verify whether the
hypothesis is generally plausible. Frequently, one hereby already realizes that the hypothesis can not be
true, which saves work (and money).

In many fields, direct proofs of hypotheses are not possible and they can not be verified directly by a
single experiment. At this point, statistics comes into play. We collect representative and relevant data
for the problem and subject the data to a statistical analysis, where the results can be ensured by so-called
statistical tests. In the following example, the general approach is described by means of a dice game.
Example 6.1. We consider a dice game, where it is important to throw “6”. After some time of playing,
we realize that our dice only rarely gives “6”. Therefore, we conjecture

the frequency of “6” is too small
or more generally,

the frequency of “6” is incorrect.
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In particular, this implies that not all sides of the dice occur with identical probability; that is, the dice is
not fair. The precise and quantifiable formulation of the conjecture leads to the hypothesis:

The probability p of “6” is not equal to 1
6
; abbreviated: p ≠ 1

6

In general, an answer by means of statistical tests is only possible, if there are mutually exclusive cases.
For the dice either

our hypothesis is true, i.e. p ≠ 1
6

or
our hypothesis is not true, i.e. p = 1

6

In the present case, one collects information (evidence) for the hypothesis by throwing the dice n times
and by counting the number of “6”. The open questions we can answer by means of statistical tests are:

1. How often should we throw the dice?
2. How many “6” do we need to decide in favor or against the hypothesis?

As the previous example shows, the origin of statistical tests are two mutually exclusive hypotheses.
These are usually denoted as follows:
Null hypothesis H0: Hypothesis that shall be falsified.
Alternative (hypothesis) H1: Hypothesis that shall be confirmed (research hypothesis).
We transfer this notion to our dice example.
Example 6.2. We again consider the dice game, where it is important to throw “6”. Here, we obtain

Null hypothesisH0: p = 1
6 versus AlternativeH1: p ≠ 1

6

Since the alternative includes the cases p < 1
6
and p > 1

6
, it is also called a two-sided hypothesis. Of

course, also the one-sided cases
• H0 ∶ p =

1
6 versusH1 ∶ p <

1
6

• H0 ∶ p ≥
1
6 versusH1 ∶ p <

1
6

would be possible.

Note:
The decision whether to consider a one-sided or two-sided alternative, must always be made before
conducting the test. In medicine, for instance, one-sided alternatives emerge only rarely. In fact, often
an improvement is solely of interest, but a worsening would have far reaching consequences, thus for
ethical reasons and for the safety of the patients a two-sided alternative has to be chosen.
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In the framework of inferential statistics we assume (representative) samples of larger populations. All
values we compute, depend on the concrete sample and are subject to uncontrollable random variations.
In view of the decisions that are made based on statistical results, one has to conclude that wrong deci-
sions can never completely avoided. It is inevitable, that we make a wrong decision with a (hopefully
small) positive probability. If we transfer this situation to statistical testing, we get the situation shown
in Table 6.1.

H0 is true H1 is true

Decision forH0
correct decision type II error
1 − � (sensitivity) �

Decision forH1
type I error correct decision

� (signifikance level) 1 − � (power, specificity)

Table 6.1: Decision situation in case of statistical tests.

Thus, the possible wrong decisions are:
Type I error: Probability of rejectingH0 although it is true.
Type II error: Probability of not rejectionH0 although it is false.
We describe the errors and their consequences in more detail by means of an example.
Example 6.3. We consider the following situation in medicine: There is an effective and safe therapy,
that is in use for many years – a so-called gold standard. Now, somebody is convinced, that their new
therapeutic approach is even more effective.
In this case, it would be a type I error, if one decides against the gold standard and in favor of the new
therapy, although the new approach is not better or perhaps even worse. As a consequence, the patients
are withheld from a more effective therapy and in cases, where the therapy has adverse effects, it would
even harm patients.
In contrast, a type II error would be that one keeps the gold standard, although the new approach is
actually better. That is, one has missed a chance for an improvement. However, the patients still get an
effective and safe therapy.
In this medical application, the type I error would be the more serious wrong decision.

We briefly summarize the essential facts about the two errors, where we start with the type I error.

Type I error:

• It is inevitable, but controllable.
• The error probability � must be set before conducting the test!
• � forms the basis for determining the acceptance respectively, rejection region ofH0.
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• In principle, �may be arbitrarily chosen. The standard choice is � = 0.05, sometimes also � = 0.01
or smaller is used, but very (very) rarely � > 0.05.

• Dependent on � the acceptance ofH1 is also called statistically significant (� = 0.05), statistically
very significant (� = 0.01), or statistically extremely or highly significant (� = 0.001).

Type II error:

• It is difficult to determine/estimate.
• In general, it holds: The larger �, the smaller �; that is, a small � and a small � are two competing

aims.
• Furthermore, it holds: The larger the sample size n, the smaller is �. In practice, this is the only

way to control � and implies the need for a detailed sample size calculation and power analysis.
• However, for sample size calculations a certain prior knowledge about the effect size, the variation

of the applied estimators, the type I error and the intended power is required.
• Standard assumptions for sample size calculations are � = 0.05, 0.01 and 1 − � = 0.8, 0.9.

The following list contains the necessary steps for conducting a statistical test. In the framework of a
clinical trial, one strictly has to follow the given order, as it ensures that nobody can influence the result
of the test after the start of the trial.

1. Definition of the hypothesesH0 andH1 (one-/two-sided?)
2. Fixing of the type I error (significance level)
3. Selection of an appropriate test T
4. Sample size calculation and power analysis (selection of �-error resp. power 1−�, expected effect,

expected variance, etc.)
5. Determination of rejection (K�) and acceptance (K̄�) region ofH0

6. Conduct of the experiments and generation of relevant data x1,… , xn

7. Calculation of the test statistics t = T (x1,… , xn)

8. Decision forH1 (t ∈ K�) orH0 (t ∈ K̄�)

In practice, the test decision is usually based on the so-called p value. By this is meant the following
(conditional) probability
1-sided test: p = P (T ≥ t |H0) resp. p = P (T ≤ t |H0)

2-sided test: p = 2min{P (T ≥ t |H0), P (T ≤ t |H0)}, with symmetry to 0: p = P (|T | ≥ |t| |H0)
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Accordingly, the probability is calculated that the value of the test statistic T takes more extreme values
than the observed test statistic t under the assumption, that H0 is correct. Thus, if p is small, it is un-
likely that the data at hand have been generated under the null hypothesis and we decide in favor of the
alternative. More precisely, one decides as follows:
If p ≤ �: rejection ofH0

If p > �: acceptance ofH0, i.e. rejection ofH1

Remark 6.4. (a) The p value is not the probability of H0. This probability does not exist, because H0

is either true or false. Moreover, p is also not the type I error; i.e., the probability to reject the null
hypothesisH0 even though it is correct.

(b) It is incorrect to speak of highly or highest significant dependent of the p value. The strength of
the significance does not directly depend on the magnitude of the p-value, but on whether the p-value
falls below a certain predefined significance threshold �. If, for example a level of � = 5% was selected,
then even if p < 0.01 or p < 0.001 it is “only” a significant result and not a highly or highest significant
result.
(c) It is also crucial to recognize that statistical significance is not synonymous with relevance. Es-

pecially with very large samples, even the smallest differences can be significant, without that any con-
sequences can be derived from them. It is therefore important to always keep an eye on the size of the
observed effect and its variance in addition to significance. Confidence intervals are very well suited for
this purpose.

In the following example, we demonstrate using the 2-sample t-test, which is also called Student t-test
after the pseudonym of its inventor, how to perform a statistical test in practice.
Example 6.5. Let us assume a (well-defined) population including two (well characterized and disjoint)
groups, that we want to compare. We are interested in the expectation (location parameter) of a certain
attribute X. We additionally assume that the attribute is normally distributed (at least approximately)
and that it has identical variances for both groups; that is, it holds for group I: X1 ∼ Norm (�1, �2) and
for group II: X2 ∼ Norm (�2, �2). We conduct steps 1-8, as listed above, to compare the expectations of
the two groups by means of a statistical test:

1. We consider the following hypotheses
H0 ∶ �1 = �2 versusH1 ∶ �1 ≠ �2

That is, the alternative is two-sided.
2. We choose the standard type I error (significance level): � = 0.05
3. Since we assume a normal distribution for both groups and want to estimate the mean, where the

variance is also unknown and has to be estimated, it leads to a t distribution. Consequentially,
we select the two-sample t test. Let x1,… , xn1 be the observations of group I and y1,… , yn2 the
observations of group II, then the test statistics reads

T (x1,… , xn1 ; y1,… , yn2) =
√

n1n2
n1 + n2

AM (x1,… , xn1) − AM (y1,… , yn2)
SD (x1,… , xn1 ; y1,… , yn2)

(6.1)
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where

SD (x1,… , xn1 ; y1,… , yn2) =

√

(n1 − 1)S̃(x1,… , xn1) + (n2 − 1)S̃(y1,… , yn2)
n1 + n2 − 2

(6.2)

and S̃ is the sample variance with standardization 1
n−1 .

4. For sample sice calculation and power analysis we additionally need the (expected) effect size
� = |�1 − �2|, the (expected) variance �2 and the wanted power 1 − �.
The influence of the effect size on the sample size is displayed in Figure 6.1, where we consider the
standard setup � = 0.2 and assume � = 1 without restriction. The computations were performed
by applying function power.t.test. As we see, the required sample size clearly decreases with
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Figure 6.1: Sample size dependent on effect size.

increasing effect size; that is, the larger the effect, the smaller the sample size or we can also put it
the other way round: with very large samples we may even verify small (irrelevant) effects.
Figure 6.2 shows the dependence of the sample size on the variance, where we assumed an ef-
fect size of 1 without restriction. The computations were again performed by means of function
power.t.test. Thus, the larger the variance, the larger the sample size has to be chosen. In
particular, the (expected) ratio �

�
is of crucial importance, which is also called the (expected) stan-

dardized effect. Other often used terms for this are Cohens d or also SMD (standardized mean
difference).
We perform the case number calculation with � = 1, � = 1, � = 0.05 and 1 − � = 0.8

1 p o w e r . t . t e s t ( d e l t a = 1 , sd = 1 , s i g . l e v e l = 0 .05 , power = 0 . 8 )
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Figure 6.2: Sample size dependent on variance.

Two -sample t test power calculation

n = 16.71477

delta = 1

sd = 1

sig.level = 0.05

power = 0.8

alternative = two.sided

NOTE: n is number in *each* group

Under these assumptions, a case number of 17 per group is sufficient to produce the expected dif-
ference with a power of 80% and an type I error of 5%. In studies, the number of cases is often
adjusted upward to compensate for possible dropouts. We use a case number of n = 20. With com-
plete data this leads to a power of approx 87%, as the following calculation with power.t.test

shows.

1 p o w e r . t . t e s t ( n = 20 , d e l t a = 1 , sd = 1 , s i g . l e v e l = 0 . 05 )

Two -sample t test power calculation

n = 20

delta = 1
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sd = 1

sig.level = 0.05

power = 0.8689528

alternative = two.sided

NOTE: n is number in *each* group

5. If we assume the null hypothesisH0 is true, the test statistic T follows a t distributionwith n1+n2−2
degrees of freedom. This fact we can use to determine the acceptance region K̄� ofH0. Because
of the symmetry of the situation, we obtain K̄� = [−c, c], where it must hold

P (−c ≤ T ≤ c |H0) = 1 − � (6.3)

i.e. c is the (1− �∕2) quantile of the tn1+n2−2 distribution. c is also called critical value of the test.
Under the assumption n1 = n2 = 20, we get

1 q t (0 .975 , d f = 38)

[1] 2.024394

6. We conduct the experiment and generate random numbers by means of function rnorm. More
precisely, we use X1 ∼ Norm (0.5, 1) for group 1 and X2 ∼ Norm (1.5, 1) for group 2.

1 ## random numbers for demonstration

2 X1 ← rnorm ( n = 20 , mean = 0 .5 , sd = 1)
3 X2 ← rnorm ( n = 20 , mean = 1 .5 , sd = 1)

7. We compute the test statistic by means of function t.test.

1 t . t e s t (X1 , X2 , v a r . e q u a l = TRUE) $ s t a t i s t i c

t

-2.822995

In two-sided testing, the absolute value is to be compared with the critical value. If it is smaller,
we decide forH0; if not, we decide forH1. In the present case we therefore decide forH1 and we
could thus confirm our claim.

8. We can alternatively calculate the p-value, the probability, that the above calculated or a more
extreme value of the test statistic occurs assuming thatH0 is true. This extreme value can occur in
the two-sided test either below or above. Due to the symmetry of the t-distribution it is sufficient
to calculate one of the two probabilities and to double it.
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1 2∗ p t ( abs ( t . t e s t (X1 , X2 , v a r . e q u a l = TRUE) $ s t a t i s t i c ) , d f = 38 ,
2 l o w e r . t a i l = FALSE)

t

0.00753125

With the help of the function t.test we get the same result a little easier
1 t . t e s t (X1 , X2 , v a r . e q u a l = TRUE) $ p . v a l u e

[1] 0.00753125

The p-value is consequently smaller than the specified significance level 0.05 and we can speak of
a significant result. The p-value is even smaller than 0.01. In such cases, many scientific publica-
tions refer to the difference as highly significant. Strictly speaking, this is not correct, since this
designation does not refer to the p-value, but the significance level.

The complete output of function t.test reads
1 t . t e s t (X1 , X2 , v a r . e q u a l = TRUE)

Two Sample t-test

data: X1 and X2

t = -2.823, df = 38, p-value = 0.007531

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-1.3859110 -0.2283271

sample estimates:

mean of x mean of y

0.6416238 1.4487428

The printed 95% confidence interval is an interval for �1 − �2 and thus represents the expected
effect. One can also use it for the test decision. In the present case the null hypothesis is represented
by �1 − �2 = 0. Since the reference value 0 does not lie in the 95% confidence interval, the
null hypothesis is to be rejected at the significance level of 5%. More generally speaking, if the
corresponding reference value for the null hypothesis does not lie in the 1− � confidence interval,
then the null hypothesis can be rejected at the � significance level.
Because the interval reflects the expected effect, it shows even more than the p-value and gives us
an impression of the relevance of the results. In the best case, based on the available data, there
would be an effect of up to about −1.38. But also an effect of only about −0.23 would not be
possible based on the available data. This aspect, that no significant difference is found, will be
examined again in exercise 1 in Section 6.4.
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Note:
For some years now, “hunting” for significance (“p-hacking”) has been viewed in scientific research
as very problematic. It has on the one hand, led to the assumption that many, if not most, results are
false positives (Ioannidis (2005), Colquhoun (2014)). On the other hand, it has also had the positive
effect of more interest and examination of the strengths and weaknesses of statistical testing (Cohen
(1994), Sterne and Davey Smith (2001), Head et al. (2015), Wasserstein and Lazar (2016), Amrhein
et al. (2017)). Moreover, as a result, confidence intervals have justifiably gained in importance (Rigby
(1999), du Prel et al. (2009), Ranstam (2012), Sedgwick (2013)).

For sample size calculation and power analysis there are a number of functions in R, which mostly start
with “power.”. Besides power.t.test, there are functions power.prop.test and power.anova.test
in base package "stats" (R Core Team (2022a)). In addition, there are a number of extension packages,
which provide functions for sample size calculations and power analysis for various tests and models.

Note:
It is common practice, to check the assumptions of statistical tests in pre-tests. This includes the
verification of distributional assumptions, especially the normal distribution, or the assumption of
equal variances (homogeneity of variances). In addition to the methodological problems that several
interdependent questions are tested on the same data set and that the sequence of steps that is necessary
to keep the type I error under control, pre-tests often have a lower power than the main test, which
reflects the scientific question and is the basis for case and was the basis for sample size calculation.
Thus, in the case of small numbers of cases deviations are only detected with a low probability (many
false negative results). On the other hand, with large case numbers, the pre-tests will detect small,
often irrelevant deviations for the main test. Rasch et al. (2011) show by the example of the t-test that
the practice of pre-tests does not pay off. On the one hand, this leads to unknown type I and type II
errors. On the other hand, their simulation study did neither show a gain in (empirical) power nor a
reduction of the (empirical) type I error. Therefore, they recommend not to perform any pre-tests and
to use the Welch t-test instead of the Student t-test. Moreover, from their point of view the Wilcoxon-
Mann-Whitney test should only be used for ordinal data. These tests are discussed in more detail in
Section 6.3.

In the following two sections, I will briefly introduce a number of statistical tests briefly.

6.2 Nominal variables

This section is primarily concerned with statistical tests for nominal variables. Of course, these tests can
also be used for ordinal variables by ignoring the information of the order. In this section the tests shown
in Figure 6.3 are discussed in more detail. In the following we will work our way through the diagram
step by step. We start again with the simplest model namely the Bernoulli model, which is used in the
case of binary variables, and we want to perform statistical tests for the investigation of the probability
of success. We assume that only data from one sample are available and we want to test the probability
for the presence of 1. For the comparison of the relative frequency with a given value, we can use the
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1

Number of
samples/groups?

Categorical Data

2

> 2

Binary Data
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binomial test
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binomial test
(paired or unpaired)

1

Number of
samples/groups?

2
1-sample

multinomial test

Dependent/paired
samples/groups?

no

McNemar test

yes

Fisher‘s exact test,
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Post hoc tests
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2 x 2 tables 
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p < α p < α

Figure 6.3: Baumdiagramm zur Auswahl des geeignetsten Tests im Fall nomialer Merkmale.

1-sample binomial test, which is described in the function binom.test. In the case of the confidence
intervals (cf. Example 5.13) we can use an approximation with the help of the normal distribution (with
and without continuity correction). This is available in the form of the function prop.test. We use
the data set of ICU patients and examine the prevalence for liver failure. We would like to investigate
whether we can assume a prevalence of less than 5%;

H0 ∶ p >= 0.05 versus H1 ∶ p < 0.05

We assume a significance level of 0.05 and use both the exact and the asymptotic test, so the binom.test
and prop.test functions. We specify the alternative using alternative = "less".

1 ICUData ← r e a d . c s v ( f i l e = " ICUData .csv " , f i l e E n c o d i n g = " u t f 8 " ,
2 s t r i n g sA s F a c t o r s = TRUE)
3 t a b l e ( ICUData$ l i v e r . f a i l u r e )

0 1

480 20

1 ## exact test

2 b i n om . t e s t ( 20 , 500 , p = 0 .05 , a l t e r n a t i v e = " l e s s " )

Exact binomial test
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data: 20 and 500

number of successes = 20, number of trials = 500, p-value = 0.1789

alternative hypothesis: true probability of success is less than 0.05

95 percent confidence interval:

0.00000000 0.05759556

sample estimates:

probability of success

0.04

1 ## asymptotic test with continuity correction

2 p r o p . t e s t ( 20 , 500 , p = 0 .05 , a l t e r n a t i v e = " l e s s " )

1-sample proportions test with continuity correction

data: 20 out of 500, null probability 0.05

X-squared = 0.85263 , df = 1, p-value = 0.1779

alternative hypothesis: true p is less than 0.05

95 percent confidence interval:

0.00000000 0.05822552

sample estimates:

p

0.04

1 ## asymptotic test without continuity correction

2 p r o p . t e s t ( 20 , 500 , p = 0 .05 , a l t e r n a t i v e = " l e s s " , c o r r e c t = FALSE)

1-sample proportions test without continuity correction

data: 20 out of 500, null probability 0.05

X-squared = 1.0526 , df = 1, p-value = 0.1525

alternative hypothesis: true p is less than 0.05

95 percent confidence interval:

0.00000000 0.05706325

sample estimates:

p

0.04

In all three cases we get very similar results, which is primarily due to the high sample size, although
the asymptotic test is significantly better due to the continuity correction. We also see that by testing
one-sided we also get corresponding one-sided confidence intervals. In all three cases the p-value is
greater than 0.05, so we must retain the null hypothesis; the prevalence of liver failure could also be
greater than or equal to 5%. As we can see from the confidence intervals, on the basis of the available
data, a prevalence of up to approximately 5.8% would also be possible. Since we can also derive the
test decision from the corresponding confidence interval, we can alternatively use the function binomCI
from the package package "MKinfer" (Kohl (2022b)) and thus obtain exact, asymptotic or bootstrap
confidence intervals; for example
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1 binomCI (20 , 500 , method = " boo t " , a l t e r n a t i v e = " l e s s " )

boot confidence interval

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 9999 bootstrap replicates

CALL :

boot.ci(boot.out = boot.out , conf = 1 - alpha , type = bootci.type)

Intervals :

Level Normal Basic Studentized

95% ( 0.0000 , 0.0544 ) ( 0.0000 , 0.0540 ) ( 0.0000 , 0.0572 )

Level Percentile BCa

95% ( 0.000, 0.054 ) ( 0.000 , 0.054 )

Calculations and Intervals on Original Scale

sample estimate:

prob

0.04

additional information:

standard error of prob bootstrap standard error of prob

0.008763561 0.008761857

All calculated bootstrap confidence intervals intersect the probability range given by the Null hypothesis
of [0.05, 1]. Thus the null hypothesis on the significance level of 5% cannot be rejected.

With this example we can also nicely demonstrate “p-hacking”. If one had assumed a prevalence of 6%
instead of 5%, then the result would be significant (6% is outside the confidence intervals); for example

1 ## exact test

2 b i n om . t e s t ( 20 , 500 , p = 0 .06 , a l t e r n a t i v e = " l e s s " )

Exact binomial test

data: 20 and 500

number of successes = 20, number of trials = 500, p-value =

0.03129

alternative hypothesis: true probability of success is less than 0.06

95 percent confidence interval:

0.00000000 0.05759556

sample estimates:

probability of success

0.04
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In clinical trials, the problem that assumptions or even the entire statistical analysis are changed after
the data are available is approached by the requirement that each study should be entered into a corre-
sponding registry before it is conducted. All major scientific journals require this when the results of the
study are submitted for publication. At least in the case of the so-called primary hypotheses, on which
the success or failure of a study are determined, expected results and the statistical methods have to be
specified in detail in the study protocol. In many other areas of research this additional protection does
not exist, which is why it is never really certain that the statistical analysis has not been adapted to the
available data in order to produce significant results, which is then equated with the success of the study.

If a sample has more than two characteristic values, this can be examined more closely with the help of
a multinomial test. For this purpose the function multinomial.test from the package "EMT" (Menzel
(2021)) can be used. In the case of the 1-sample test, it is necessary to specify for each possible category
its expected probability. Since the computation of the exact multinomial test is very complex, we do not
give an example.

If two or more groups are to be compared with respect to a binary characteristic, it is important whether
the groups are dependent on each other or not. First of all, we assume that there are two independent
groups. In this case, we can compare the data in the form of a 2 × 2 contingency table (table 6.2). A first

0 1 Row sum
Group 1 a b a + b
Group 2 c d c + d
Col. sum a + c b + d a + b + c + d

Table 6.2: Example of a 2 × 2 contingency table

possible test in this situation is the asymptotic 2-sample binomial test, which is also implemented in the
function prop.test. We compare the prevalence of liver failure in women and men.

1 ## 2x2 contingency table

2 c o n t . t a b l e ← t a b l e ( ICUData$ sex , ICUData$ l i v e r . f a i l u r e )
3 c o n t . t a b l e

0 1

female 168 7

male 312 13

1 p r o p . t e s t ( c ( 7 , 13 ) , c ( 175 , 325 ) )

2-sample test for equality of proportions without continuity

correction
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data: c(7, 13) out of c(175, 325)

X-squared = 0, df = 1, p-value = 1

alternative hypothesis: two.sided

95 percent confidence interval:

-0.03601123 0.03601123

sample estimates:

prop 1 prop 2

0.04 0.04

Accordingly, we do not obtain significantly different prevalences for women and men. For the asymptotic
calculation we can also use function binomDiffCI from package "MKinfer" (Kohl (2022b)).

1 binomDif fCI ( a = 7 , b = 13 , c = 168 , d = 312)

wilson confidence interval (independent proportions)

95 percent confidence interval:

2.5 % 97.5 %

difference of independent proportions -0.03407428 0.04349435

sample estimate:

difference of proportions

0

additional information:

proportion of group 1 proportion of group 2

0.04 0.04

Since the confidence interval of the difference contains zero, that means that there are no significantly
different prevalences for women and men. Bootstrap confidence intervals can also be calculated with this
function.

1 binomDif fCI ( a = 7 , b = 13 , c = 168 , d = 312 , method = " boo t " )

boot confidence interval (independent proportions)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 9999 bootstrap replicates

CALL :

boot.ci(boot.out = boot.out , conf = 1 - alpha , type = bootci.type)

Intervals :

Level Normal Basic Studentized

95% ( -0.0361 , 0.0361 ) (-0.0378 , 0.0347 ) ( -0.0334, 0.0407 )

Level Percentile BCa
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95% ( -0.0347 , 0.0378 ) (-0.0356 , 0.0360 )

Calculations and Intervals on Original Scale

sample estimate:

difference of proportions

0

additional information:

proportion of group 1 proportion of group 2

0.04 0.04

Again, there are no significant differences. An alternative way of looking at contingency tables leads to
hypergeometric distributions and Fisher’s exact test. It is implemented in the function fisher.test.
Another asymptotic possibility of the analysis is a �2-test, which can be performed using the function
chisq.test. In case of the �2-test the counting frequencies in the cells should not be too small. De-
pending on the source, the minimum count varies between 1 and 5 per cell of the contingency table. We
apply the two tests to the above situation.

1 ## Fisher's exact test

2 f i s h e r . t e s t ( c o n t . t a b l e )

Fisher 's Exact Test for Count Data

data: cont.table

p-value = 1

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval:

0.3625184 3.0194493

sample estimates:

odds ratio

1

1 ## chi∧ 2 test

2 c h i s q . t e s t ( c o n t . t a b l e )

Pearson 's Chi -squared test

data: cont.table

X-squared = 0, df = 1, p-value = 1

Again, there is no significance in either case. In the case of the Fisher’s exact test, this means that the
odds ratio for liver failure is not significantly different from 1. Hence, neither for women nor for men a
significantly increased risk can be assumed. In the case of the �2 test, we can conclude that there is no
significant (stochastic) dependence between sex and the prevalence of liver failure.
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A very interesting package with a lot of statistical tests is package "coin" (Hothorn et al. (2006)). It
contains exact, asymptotic and approximate (based onMonte Carlo simulations) tests. An approximative
�2 test can be computed with the function chisq_test.

1 c h i s q _ t e s t ( c o n t . t a b l e , d i s t r i b u t i o n = " app rox ima t e " )

Approximative Pearson Chi -Squared Test

data: Var2 by Var1 (female , male)

chi -squared = 0, p-value = 1

Also with this approximative test method based on simulations, we do not obtain a significant (stochastic)
dependence. All applied methods agree that the null hypothesis is to be maintained.
The different possibilities we have introduced to study 2 × 2-contingency tables are based on different
hypotheses that are not equivalent. In the first asymptotic approaches. the probabilities are compared
directly,

H0 ∶ p1 − p2 = 0 versus H1 ∶ p1 − p2 ≠ 0

in which p1 and p2 represent the true probabilities of the two groups. This is the easiest to interpret and
also clearly shows, which group has a lower or higher probability.
In the case of Fisher’s exact test, the result gives information about the chance (odds) or the chance
ratio (OR = odds ratio)

H0 ∶ OR = 1 versus H1 ∶ OR ≠ 1

that means if p1 = p2 resp p1 − p2 = 0, then also p1
1−p1

= p2
1−p2

and

OR =
p1
1−p1
p2
1−p2

= 1

Unfortunately, without knowing p1 or p2, it is not possible to calculate the relative risk p1
p2

or p2 resp. p1
based on the odds ratio.
In the case of the �2 test, the hypotheses are based on the �2 statistic, which compares the observed
counts with the expected counts (see equation (2.6))

H0 ∶ �2 = 0 versus H1 ∶ �2 > 0

Accordingly, there is a relation to the contingency coefficients in Definition 2.9. With the help of the
function CramerV from the package "DescTools" (Andri et mult. al. (2022)) can be used to calculate
a confidence interval. We choose method = "fisheradj" because the calculation with the standard
method in this example causes problems.

1 CramerV ( x = c o n t . t a b l e , c o n f . l e v e l = 0 .95 , method = " f i s h e r a d j " )

Download free eBooks at bookboon.com 207



Introduction to statistical data analysis with R 6 Statistical Tests

Cramer V lwr.ci upr.ci

0.00000000 0.00000000 0.08769059

The confidence interval contains zero, from which we can conclude that the contingency coefficient is
not significantly different from zero.
Fisher’s exact test and the �2 test can also be applied to r × s contingency tables. For large values of r
and s Fisher’s exact test becomes computationally intensive and it may be necessary to set the argument
workspace to a higher value or to use p-values which are obtained by simulation. We investigate the
relationship between the type of surgery and the outcome. In this case it would be necessary to clearly
increase the workspace of Fisher’s exact test. We therefore use simulated p-values instead.

1 c o n t . t a b l e ← t a b l e ( ICUData$ su rge ry , ICUData$ outcome )
2 c o n t . t a b l e

died home other hospital secondary care/rehab

cardiothoracic 10 42 13 158

gastrointestinal 18 51 7 3

neuro 7 6 22 11

other 32 52 26 11

trauma 2 19 4 6

1 ## Fisher's exact test

2 f i s h e r . t e s t ( c o n t . t a b l e , s i m u l a t e . p . v a l u e = TRUE, B = 1e5 )

Fisher 's Exact Test for Count Data with simulated p-value (based

on 1e+05 replicates)

data: cont.table

p-value = 1e-05

alternative hypothesis: two.sided

1 ## chi∧ 2 test

2 c h i s q . t e s t ( c o n t . t a b l e )

Pearson 's Chi -squared test

data: cont.table

X-squared = 259.48 , df = 12, p-value < 2.2e-16

1 c h i s q _ t e s t ( c o n t . t a b l e , d i s t r i b u t i o n = " app rox ima t e " )

Approximative Pearson Chi -Squared Test
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data: Var2 by

Var1 (cardiothoracic , gastrointestinal , neuro , other , trauma)

chi -squared = 259.48 , p-value < 1e-04

1 CramerV ( x = c o n t . t a b l e , c o n f . l e v e l = 0 . 95 )

Cramer V lwr.ci upr.ci

0.4159155 0.3557842 0.4581223

We obtain a significant association of moderate strength between the type of surgery and the outcome.
By dichotomization, one could extract a 2 × 2 contingency tables from the contingency table and further
investigate the associations with downstream tests (post hoc tests).
There are also a number of alternative tests of contingency tables; for more details see Campbell (2007).

In the case where two dependent groups are present, McNemar’s test can be applied. It is a �2-test,
which can be calculated with the help of the function mcnemar.test. Since in the ICU data set does
not contain dependent measurements (e.g. before – after), we use the data from the function example for
demonstration. These are data on approval of the president’s performance in two consecutive successive
polls, each surveying 1600 Americans of voting age.

1 Per fo rmance ← ma t r i x ( c ( 794 , 86 , 150 , 570 ) , nrow = 2 ,
2 dimnames = l i s t ( " F i r s t " = c ( " Approve " , " D i sapp rove " ) ,
3 " Second " = c ( " Approve " , " D i s app rove " ) ) )
4 Per fo rmance

Second

First Approve Disapprove

Approve 794 150

Disapprove 86 570

We perform the McNemar test.

1 mcnema r . t e s t ( Pe r fo rmance )

McNemar 's Chi -squared test with continuity correction

data: Performance

McNemar 's chi -squared = 16.818 , df = 1, p-value = 4.115e-05

The significant result shows that the performance of the president changed significantly between the two
surveys. An exact, asymptotic, and approximate McNemar test can also be performed using the function
mh_test from the package "coin" (Hothorn et al. (2006)).

1 mh_ te s t ( a s . t a b l e ( Pe r fo rmance ) , d i s t r i b u t i o n = " e x a c t " )
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Exact Marginal Homogeneity Test

data: response by

conditions (First , Second)

stratified by block

chi -squared = 17.356 , p-value = 3.716e-05

1 mh_ te s t ( a s . t a b l e ( Pe r fo rmance ) )

Asymptotic Marginal Homogeneity Test

data: response by

conditions (First , Second)

stratified by block

chi -squared = 17.356 , df = 1, p-value = 3.099e-05

1 mh_ te s t ( a s . t a b l e ( Pe r fo rmance ) , d i s t r i b u t i o n = " app rox ima t e " )

Approximative Marginal Homogeneity Test

data: response by

conditions (First , Second)

stratified by block

chi -squared = 17.356 , p-value < 1e-04

All three tests agree and also indicate a significant change in agreement. This situation can also be
analyzed with the function binomDiffCI from the package "MKinfer" (Kohl (2022b)).

1 binomDif fCI ( a = 794 , b = 150 , c = 86 , d = 570 , p a i r e d = TRUE)

wilson -cc confidence interval (paired data)

95 percent confidence interval:

2.5 % 97.5 %

difference of proportions (paired data) 0.02123042 0.05870387

sample estimate:

difference of proportions

0.04

additional information:

proportion of group 1 proportion of group 2

0.59 0.55
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The advantage here is that a statement about the direction and magnitude of the change can be made.
The result is therefore a significant change (decrease) of the agreement by more than 2.1%. Instead of
the asymptotic confidence intervals, bootstrap intervals can be calculated.
1 binomDif fCI ( a = 794 , b = 150 , c = 86 , d = 570 , p a i r e d = TRUE, method = " boo t " )

boot confidence interval (paired data)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 9999 bootstrap replicates

CALL :

boot.ci(boot.out = boot.out , conf = 1 - alpha , type = bootci.type)

Intervals :

Level Normal Basic Studentized

95% ( 0.0213 , 0.0586 ) ( 0.0212 , 0.0587 ) ( 0.0214 , 0.0587 )

Level Percentile BCa

95% ( 0.0213 , 0.0587 ) ( 0.0212 , 0.0581 )

Calculations and Intervals on Original Scale

sample estimate:

difference of proportions

0.04

additional information:

proportion of group 1 proportion of group 2

0.59 0.55

Accordingly, all calculated Boostrap confidence intervals yield very similar results and confirm a signif-
icant change (decrease) in agreement by at least 2.1%.

For more than two dependent groups, the Cochran-Mantel-Haenszel �2 test can be applied, which is
implemented in the function mantelhaen.test. We again use data from the examples on the function
for demonstration. It is the data of rabbits injected with streptococci, which are either immediately or
after 1.5 h treated with penicillin.
1 Rabb i t s ← a r r a y ( c ( 0 , 0 , 6 , 5 ,
2 3 , 0 , 3 , 6 ,
3 6 , 2 , 0 , 4 ,
4 5 , 6 , 1 , 0 ,
5 2 , 5 , 0 , 0 ) , dim = c ( 2 , 2 , 5 ) ,
6 dimnames = l i s t ( Delay = c ( "None " , " 1 . 5h " ) ,
7 Response = c ( " Cured " , " Died " ) ,
8 P e n i c i l l i n . L e v e l = c ( " 1 / 8 " , " 1 / 4 " , " 1 / 2 " ,
9 " 1 " , " 4 " ) ) )
10 Rabb i t s
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, , Penicillin.Level = 1/8

Response

Delay Cured Died

None 0 6

1.5h 0 5

, , Penicillin.Level = 1/4

Response

Delay Cured Died

None 3 3

1.5h 0 6

, , Penicillin.Level = 1/2

Response

Delay Cured Died

None 6 0

1.5h 2 4

, , Penicillin.Level = 1

Response

Delay Cured Died

None 5 1

1.5h 6 0

, , Penicillin.Level = 4

Response

Delay Cured Died

None 2 0

1.5h 5 0

Besides the asymptotic test, there is also an exact conditional test.
1 ma n t e l h a e n . t e s t ( R abb i t s )

Mantel -Haenszel chi -squared test with continuity correction

data: Rabbits

Mantel -Haenszel X-squared = 3.9286 , df = 1, p-value = 0.04747

alternative hypothesis: true common odds ratio is not equal to 1

95 percent confidence interval:

1.026713 47.725133

sample estimates:

common odds ratio

7
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1 ma n t e l h a e n . t e s t ( Rabb i t s , e x a c t = TRUE)

Exact conditional test of independence in 2 x 2 x k tables

data: Rabbits

S = 16, p-value = 0.03994

alternative hypothesis: true common odds ratio is not equal to 1

95 percent confidence interval:

1.077401 529.837399

sample estimates:

common odds ratio

10.36102

In both cases, we obtain an odds ratio that is significantly different from 1. The risk of death is signif-
icantly increased with the delay of 1.5 h in the treatment with penicillin. We can also use the function
cmh_test from the package "coin"(Hothorn et al. (2006)) and obtain an asymptotic, exact, and approx-
imative Cochran-Mantel-Haenszel test.

1 cmh_ t e s t ( a s . t a b l e ( Rabb i t s ) )

Asymptotic Generalized Cochran -Mantel -Haenszel Test

data: Response by

Delay (None , 1.5h)

stratified by Penicillin.Level

chi -squared = 5.6571 , df = 1, p-value = 0.01738

1 cmh_ t e s t ( a s . t a b l e ( Rabb i t s ) , d i s t r i b u t i o n = " e x a c t " )

Exact Generalized Cochran -Mantel -Haenszel Test

data: Response by

Delay (None , 1.5h)

stratified by Penicillin.Level

chi -squared = 5.6571 , p-value = 0.03994

1 cmh_ t e s t ( a s . t a b l e ( Rabb i t s ) , d i s t r i b u t i o n = " app rox ima t e " )

Approximative Generalized Cochran -Mantel -Haenszel Test

data: Response by

Delay (None , 1.5h)

stratified by Penicillin.Level

chi -squared = 5.6571 , p-value = 0.0376
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The results of the tests again indicate that immediate treatment with penicillin leads to better treatment
success. Here, both a small (OR = 1.03 resp. OR = 1.08) and probably clinically less relevant as well
as an enormous (OR = 47.7 resp. OR = 529.8) difference is possible. Again, similar to the case of inde-
pendent groups, downstream tests ((post hoc tests) could be used to further investigate the associations
by, for example, applying the corresponding tests to selected 2 × 2 contingency tables. This could also
be used, for example, to investigate the dependence on the penicillin dose in more detail.

6.3 Ordinal and quantitative variables

In this section, I will first discuss the tests shown in Figure 6.4 in more detail. The dendrogram should
also serve as an orientation to select the most appropriate test.

yes no

1-sample t-test

1

Normal distribution?
(number of obs.?,

outliers?)

Number of
samples/groups?

Number of
samples/groups?

Dependent/paired
samples/groups?

Dependent/paired
samples/groups?

Wilcoxon 
signed rank test
(theory: sym. cont. distr. 

practice: ordinal data)

Dependent
samples/groups?

Dependent
samples/groups?

1

2 > 22> 2

2-sample 
paired t-test

yes

no no
no no

Equal variances? Equal variances?

2-sample 
(classical) t-test

yes no

2-sample 
Welch t-test

Wilcoxon 
signed rank test
(theory: sym. cont. distr. 

practice: ordinal data)

yes

Wilcoxon rank sum test /
Mann-Whitney U-test

(theory: distr. of equal shape 
practice: ordinal data)

yes

Repeated measures 
or mixed-effects 
1-way ANOVA

(classical) 
1-way ANOVA

yes no

Welch 
1-way ANOVA

Kruskal-Wallis H-test
(theory: distr. of equal shape 

practice: ordinal data)

Friedman or
Quade test

(at least ordinal data)

yes

p < α p < α p < α p < α p < α

Post hoc tests
e.g. pairwise (classical) t-tests 

(with p value adjustment)

Post hoc tests
e.g. pairwise Welch t-tests 
(with p value adjustment)

Post hoc tests
e.g. pairwise paired t-tests 
(with p value adjustment)

Post hoc tests
e.g. pairwise Mann-Whitney U-tests 

(with p value adjustment)

Post hoc tests
e.g. pairwise Wilcoxon signed rank tests 

(with p value adjustment)

Figure 6.4: tree diagram for selecting the most appropriate test in the case of ordinal or quantitative
characteristics

In the following, we will work our way through the diagram step by step. The first question to ask when
selecting an appropriate test is, whether the characteristic to be examined follows a normal distribution
at least approximately. If yes, this argues for the t-test (left half of the tree), but only if no outliers are
expected. If outliers are to be expected, it is better to choose a rank test (right half of the tree), which has a
certain robustness against outliers due to the transition to ranks. If the planned number of cases per group
is very small (clearly smaller than 10), one must, to a certain extent, “believe” in a normal distribution,
since in this case the non-parametric rank tests may not be significant at all, not even if the groups are
perfectly separated. The larger the number of cases, the less deviations from the normal distribution are

Download free eBooks at bookboon.com 214



Introduction to statistical data analysis with R 6 Statistical Tests

relevant (due to the central limit theorem). With a planned number of cases of 50 or more, the normal
approximation of the distribution of the arithmetic mean is so good, that even larger deviations from the
normal distribution (not outliers!) are no problem for the application of t-tests.

We start with the left side of the tree and probably the most commonly used statistical test, the t-test
and its variants. In the simplest case a single sample whose values are realizations of independent and
Norm (�, �2)-distributed random variables. One studies the unknown location parameter �, where the
variance �2 is unknown and thus also has to be estimated. Possible null hypotheses are for instance
� = �0 or � ≤ �0, where �0 ∈ ℝ is known and must be specified before performing the test. The
corresponding test is called one-sample t test and can be computed by function t.test.
We use our ICU dataset, which is in more detail explained in Section 2.3. As we have seen in the
previous sections, the maximum body temperature of ICU patients can be quite well described by a
normal distribution. We investigate the hypothesis, whether the average ICU patient has an increased
body temperature during their stay on the ICU, i.e.

H0 ∶ � ≤ 37.5 versusH1 ∶ � > 37.5

We apply the one-sample t test, where we omit patient 398. We can specify the one-sided alternative
by argument alternative = 'greater' of function t.test. By argument mu = 37.5, we define the
value, which we want to use for comparison.

1 t . t e s t ( ICUData$ t emp e r a t u r e [−398 ] , mu = 37 .5 , a l t e r n a t i v e = " g r e a t e r " )

One Sample t-test

data: ICUData$temperature [ -398]

t = 4.1973 , df = 498, p-value = 1.599e-05

alternative hypothesis: true mean is greater than 37.5

95 percent confidence interval:

37.63389 Inf

sample estimates:

mean of x

37.72044

Based on a significance level of 5%, we can assume that in mean ICU patients have an increased body
temperature during their stay on the ICU. The p value clearly increases (factor 1000 (!)), if we add patient
398, but the test still favors the alternative.

1 t . t e s t ( ICUData$ t empe r a t u r e , mu = 37 .5 , a l t e r n a t i v e = " g r e a t e r " )

One Sample t-test

data: ICUData$temperature

t = 2.1027 , df = 499, p-value = 0.01799
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alternative hypothesis: true mean is greater than 37.5

95 percent confidence interval:

37.5353 Inf

sample estimates:

mean of x

37.6632

The left endpoint of the confidence interval has shifted to the left by approx. 0.1 and is now only slightly
above 37.5. Although we obtain a significant result in both cases, this does not say anything about the
clinical relevance. Since the mean value may be only minimally greater than 37.5◦C, the clinical rele-
vance is likely to be only small.
Because omitting patients in a clinical trial is not permitted under normal circumstances and data ma-
nipulation is quickly suspected in other contexts as well, in this case an appropriate 1-sample rank test
might be recommendable. In the 1-sample case, it is the Wilcoxon signed rank test, which is used to
examine the location of the data. In the case of symmetry, the location corresponds to the median, which
in this case also coincides with the arithmetic mean.

1 w i l c o x . t e s t ( ICUData$ t empe r a t u r e , mu = 37 .5 , a l t e r n a t i v e = " g r e a t e r " ,
2 c o n f . i n t = TRUE)

Wilcoxon signed rank test with continuity correction

data: ICUData$temperature

V = 69173, p-value = 0.0002349

alternative hypothesis: true location is greater than 37.5

95 percent confidence interval:

37.59999 Inf

sample estimates:

(pseudo)median

37.69991

This appears to be the asymptotic variant of the test with an additional continuity correction. Here no
confidence interval is calculated by default, but additionally conf.int = TRUEmust be set. We remove
the outlier (patient 398) and test again.

1 w i l c o x . t e s t ( ICUData$ t emp e r a t u r e [−398 ] , mu = 37 .5 , a l t e r n a t i v e = " g r e a t e r " ,
2 c o n f . i n t = TRUE)

Wilcoxon signed rank test with continuity correction

data: ICUData$temperature [ -398]

V = 69173, p-value = 0.0001671

alternative hypothesis: true location is greater than 37.5

95 percent confidence interval:

37.60003 Inf
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sample estimates:

(pseudo)median

37.69997

We see that this changes the result only very little, whereby we get a significant result in both cases; i.e.,
we can say that due to the (at least approximately) symmetrical situation, the median of the maximum
body temperature is significantly greater than 37.5◦C. However, the clinical relevance of the result re-
mains questionable.

Two so-called connected or paired samples are present when we get two values of the same characteristic
from one person at different points in time. We thus obtain pairs of values (xi, yi), which we define as
realizations of independent and identically distributed random variables (Xi, Yi) (i = 1,… , n, n ∈ ℕ).
Furthermore it holds: Di = Xi − Yi ∼ (�, �2), where the unknown location parameter � is of interest
and additionally the variance �2 is unknown. Possible null hypotheses are for example � = �0 or � ≤ �0
for a given �0 ∈ ℝ. The test is called paired t-test and can be computed applying function t.test with
argument paired = TRUE. The paired t-test just corresponds to the 1-sample t-test for the difference of
pairs of values. The same is true for the 2-sample rank test for paired samples. The test is equivalent
to the Wilcoxon signed rank test. Since in the ICU data set no repeated measurements and therefore no
paired data is included, we use the sleep dataset from the package "datasets" (R Core Team (2022a)),
which we can load using the data function. The subjects were treated with two different sleep drugs and
the question is whether the sleep time differs with and without medication.

1 d a t a ( s l e e p )
2 t . t e s t ( s l e e p $ e x t r a [ 1 : 1 0 ] , mu = 0)

One Sample t-test

data: sleep$extra [1:10]

t = 1.3257 , df = 9, p-value = 0.2176

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

-0.5297804 2.0297804

sample estimates:

mean of x

0.75

1 t . t e s t ( s l e e p $ e x t r a [ 1 1 : 2 0 ] , mu = 0)

One Sample t-test

data: sleep$extra [11:20]

t = 3.6799 , df = 9, p-value = 0.005076

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:
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0.8976775 3.7623225

sample estimates:

mean of x

2.33

Apparently, only the second drug significantly increases sleep time compared to the control. The increase
is at least 0.90 h. We now compare the two drugs (data pairs).

1 t . t e s t ( s l e e p $ e x t r a [ 1 : 1 0 ] , s l e e p $ e x t r a [ 1 1 : 2 0 ] , p a i r e d = TRUE)

Paired t-test

data: sleep$extra [1:10] and sleep$extra [11:20]

t = -4.0621, df = 9, p-value = 0.002833

alternative hypothesis: true mean difference is not equal to 0

95 percent confidence interval:

-2.4598858 -0.7001142

sample estimates:

mean difference

-1.58

The second drug is significantly better than the first drug and leads to a sleep extension of at least 0.70 h.
If we consider the difference between the two drugs and perform the 1-sample t-test, we indeed obtain
the identical result.

1 t . t e s t ( s l e e p $ e x t r a [ 1 : 1 0 ] − s l eep $ e x t r a [ 1 1 : 2 0 ] )

One Sample t-test

data: sleep$extra [1:10] - sleep$extra [11:20]

t = -4.0621, df = 9, p-value = 0.002833

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

-2.4598858 -0.7001142

sample estimates:

mean of x

-1.58

We can also alternatively use the Wilcoxon signed rank test in this situation.

1 w i l c o x . t e s t ( s l e e p $ e x t r a [ 1 : 1 0 ] , s l e e p $ e x t r a [ 1 1 : 2 0 ] , p a i r e d = TRUE,
2 c o n f . i n t = TRUE)

Wilcoxon signed rank test with continuity correction
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data: sleep$extra [1:10] and sleep$extra [11:20]

V = 0, p-value = 0.009091

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

-2.949921 -1.050018

sample estimates:

(pseudo)median

-1.400031

Again, we get a significant result, but also a number of warnings that are suppressed here in the book.
The trigger for the warnings are bindings in the data set; i.e., there is at least one pair of values consisting
of two identical values. Since for the Wilcoxon signed rank test one assumes a continuous distribution,
this should not happen and it is unclear, whether the p-value and the confidence interval are erroneous.
An exact variant of the paired test, which yields correct results even in the presence of ties, is provided
by function wilcoxsign_test of package "coin"(Hothorn et al. (2006)). Unfortunately, the function
does not have an option for also computing the respective confidence interval. Alternatively one can use
function wilcox.exact from package "exactRankTests" (Hothorn and Hornik (2022)), which is no
longer actively developed, but still provides reliable results.

1 w i l c o x . e x a c t ( s l e e p $ e x t r a [ 1 : 1 0 ] , s l e e p $ e x t r a [ 1 1 : 2 0 ] , p a i r e d = TRUE,
2 c o n f . i n t = TRUE)

Exact Wilcoxon signed rank test

data: sleep$extra [1:10] and sleep$extra [11:20]

V = 0, p-value = 0.003906

alternative hypothesis: true mu is not equal to 0

95 percent confidence interval:

-3.00 -1.05

sample estimates:

(pseudo)median

-1.45

The values have changed slightly. There is still a significant change and a location shift (in case of sym-
metry: difference of the medians) of at least 1.05 h.

In the next step, we consider the situation where two unconnected (independent) samples of lengths
n1 and n2 from  (�1, �2) and  (�2, �2) are present, where the unknown location parameters and at
the same time the variance �2 (identical for both samples!) are unknown. This so-called (classical) 2-
sample t-test or Student t-test was discussed in detail in Example 6.5. It can be tested with the help of
the function t.test and the argument var.equal = TRUE.
If additionally the variances of the two groups are different, this will lead to the so-called Behrens-
Fisher problem, which can be solved approximately with the Welch t-test or with the Hsu t-test. Fur-
ther approximations can be found with the help of permutations or bootstrap. The Welch t-test can
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also be computed using function t.test, the Hsu t-test for example can be determined with function
hsu.t.test from package "MKinfer" (Kohl (2022b)). The corresponding permutation and bootstrap
test are available for example in the functions perm.t.test and boot.t.test of package "MKinfer"
(Kohl (2022b)). It is also possible to use these functions to calculate the corresponding 1-sample and
Student t-test via permutations and bootstrap, respectively.

In the following, we want to investigate, whether the maximum body temperature of females (�1) and
males (�2) is significantly different. As we consider two independent groups and as we may assume a
normal distribution for both groups, we can apply the two-sample t test. It is an open questions, if we
may assume equal variances or not. We compute the variances of females and males.

1 ## females

2 sd ( ICUData$ t emp e r a t u r e [ ICUData$ sex == " fema le " ] )

[1] 1.258335

1 ## males

2 sd ( ICUData$ t emp e r a t u r e [ ICUData$ sex == "male " ] )

[1] 1.946092

The results of both groups are clearly different. However, we did not take care of the male patient 398.
Hence, we recompute the standard deviations of males, where we omit patient 398.

1 ## males without patient 398

2 sd ( ICUData$ t emp e r a t u r e [−398 ] [ ICUData$ sex [−398 ] == "male " ] )

[1] 1.123373

Again, the value of this patient has a strong impact on the result. We will once include patient 398 and
once omit patient 398 in our computations. In both cases, we choose the more conservative approach and
apply the Welch t-test, where the separation of the sexes is done by means of the following R formula:
temperature ∼ sex.

1 ## with patient 398

2 t . t e s t ( t emp e r a t u r e ∼ sex , d a t a = ICUData )

Welch Two Sample t-test

data: temperature by sex

t = -0.37638, df = 481.71 , p-value = 0.7068

alternative hypothesis: true difference in means between group female

and group male is not equal to 0

95 percent confidence interval:

-0.3368620 0.2285543
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sample estimates:

mean in group female mean in group male

37.62800 37.68215

1 ## without patient 398

2 t . t e s t ( t emp e r a t u r e ∼ sex , d a t a = ICUData [−398 , ] )

Welch Two Sample t-test

data: temperature by sex

t = -1.2514, df = 323.73 , p-value = 0.2117

alternative hypothesis: true difference in means between group female

and group male is not equal to 0

95 percent confidence interval:

-0.36618695 0.08144621

sample estimates:

mean in group female mean in group male

37.62800 37.77037

The body temperature of women is slightly lower on average. The results of the test (with and without
patient 398), however, support the hypothesis that these are only random fluctuations. We can/must con-
sequently assume that the maximum body temperature of men and women does not differ on average (null
hypothesis). For comparison we calculate the Hsu t-test and the respective permutation and bootstrap
Welch t-tests.
1 h s u . t . t e s t ( t emp e r a t u r e ∼ sex , d a t a = ICUData [−398 , ] )

Hsu Two Sample t-test

data: temperature by sex

t = -1.2514, df = 174, p-value = 0.2125

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-0.3669119 0.0821712

sample estimates:

mean of x mean of y SD of x SD of y

37.628000 37.770370 1.258335 1.123373

1 p e r m . t . t e s t ( t emp e r a t u r e ∼ sex , d a t a = ICUData [−398 , ] )

Permutation Welch Two Sample t-test

data: temperature by sex

(Monte -Carlo) permutation p-value = 0.1992

95 percent (Monte -Carlo) permutation percentile confidence interval:

-0.34902989 0.07432804
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Results without permutation:

t = -1.2514, df = 323.73 , p-value = 0.2117

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-0.36618695 0.08144621

sample estimates:

mean in group female mean in group male

37.62800 37.77037

1 b o o t . t . t e s t ( t emp e r a t u r e ∼ sex , d a t a = ICUData [−398 , ] )

Bootstrapped Welch Two Sample t-test

data: temperature by sex

bootstrapped p-value = 0.209

95 percent bootstrap percentile confidence interval:

-0.3686133 0.0814806

Results without bootstrap:

t = -1.2514, df = 323.73 , p-value = 0.2117

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-0.36618695 0.08144621

sample estimates:

mean in group female mean in group male

37.62800 37.77037

Accordingly, we obtain very similar results in all cases. We plot the result of the Welch t-test with the
help of the package "ggplot2" (Wickham (2009)). One should always make sure that the graph really
reflects the test. We therefore plot mean values in combination with the corresponding 95% confidence
intervals. For this we first prepare a data.frame with the mean values and the upper and lower bounds
of the confidence intervals. We use the function tapply to split the data according to sex and apply the
respective function to it.

1 AM ← t a p p l y ( ICUData$ t emp e r a t u r e [−398 ] , ICUData$ sex [−398 ] , mean )
2 CI ← t a p p l y ( ICUData$ t emp e r a t u r e [−398 ] , ICUData$ sex [−398 ] , meanCI )
3 n ← t a p p l y ( ICUData$ t emp e r a t u r e [−398 ] , ICUData$ sex [−398 ] , l e n g t h )
4 DF ← d a t a . f r am e (AM = AM,
5 C I . l o = c ( CI$male $ c o n f . i n t [ 1 ] ,
6 CI$ fema le $ c o n f . i n t [ 1 ] ) ,
7 CI .up = c ( CI$male $ c o n f . i n t [ 2 ] ,
8 CI$ fema le $ c o n f . i n t [ 2 ] ) ,
9 sex = c ( " male " , " f ema le " ) ,
10 n = n )
11 DF$ sex ← f a c t o r (DF$ sex , l e v e l s = c ( " f ema le " , " male " ) )
12 DF
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AM CI.lo CI.up sex n

female 37.62800 37.64759 37.89315 male 175

male 37.77037 37.44026 37.81574 female 324

We plot the result, choosing the NEJM palette from the package "ggsci" (Xiao (2018)) and add addi-
tional text to the graph using the functions geom_text and annotate.
1 ggp l o t (DF , a e s ( x = sex , y = AM, c o l o r = sex ) ) +
2 s c a l e _ c o l o r _ n e jm ( ) + geom_poin t ( ) + geom_hl ine ( y i n t e r c e p t = 37 . 5 ) +
3 geom_e r r o rba r ( a e s ( ymin = CI . l o , ymax = CI .up ) , wid th = 0 . 2 ) +
4 geom_tex t ( a e s ( y = c (37 .3 , 37 . 3 ) , l a b e l = p a s t e ( " n =" , n ) ) ) +
5 a n n o t a t e ( geom = " t e x t " , x = 1 .5 , y = 37 .95 ,
6 l a b e l = "Welch t− t e s t , p−value = 0 .211 " ) +
7 y l ab ( "Maximum body t emp e r a t u r e [ ◦C] " ) + yl im (37 .0 , 38 . 0 )

n = 175n = 324

Welch t−test, p−value = 0.211
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Note:
In practice, it is better to abandon the methodically questionable testing of the presence of equal
variances and use the Welch t-test in most – if not all – cases (already in the planning phase!). The
power of the Welch t-test is only marginally lower than the power of the Student t-test and conversely
protects from an increase of the type I error, if unequal variances are present (Ruxton (2006), Rasch
et al. (2011)).

If there are outliers or we cannot assume a normal distribution and at the same time the number of cases
is small (not too small!) to moderate, then we should switch to the Wilcoxon rank sum test, which is
also known as the Mann-Whitney U-test. We will abbreviate it by WMW-test. Strictly speaking, this
test is applicable for two continuous distributions of the same shape. This implies in particular that the
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variances of the two distributions should be the same as in case of the Student t-test. Empirical results,
however, show that a slight violation of variance homogeneity does not affect the WMW-test. Due to
the fact that the implementation of the test involves the transition to ranks, it is also considered to be
adequate for ordinal data in spite of the above mentioned conditions. The test is available in function
wilcox.test. In addition, the test is implemented in function wilcox_test from package "coin"

(Hothorn et al. (2006)) and function wilcox.exact from package "exactRankTests" (Hothorn and
Hornik (2022)).

We further compare the maximum body temperature of men and women.

1 ## without patient 398

2 w i l c o x . t e s t ( t emp e r a t u r e ∼ sex , d a t a = ICUData [−398 , ] ,
3 c o n f . i n t = TRUE)

Wilcoxon rank sum test with continuity correction

data: temperature by sex

W = 26212, p-value = 0.1643

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

-0.39995318 0.09997909

sample estimates:

difference in location

-0.199997

1 ## with patient 398

2 w i l c o x . t e s t ( t emp e r a t u r e ∼ sex , d a t a = ICUData , c o n f . i n t = TRUE)

Wilcoxon rank sum test with continuity correction

data: temperature by sex

W = 26388, p-value = 0.1833

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

-0.39997835 0.09992453

sample estimates:

difference in location

-0.1000091

1 w i l c o x _ t e s t ( t emp e r a t u r e ∼ sex , d a t a = ICUData , c o n f . i n t = TRUE,
2 d i s t r i b u t i o n = " app rox ima t e " )

Approximative Wilcoxon -Mann -Whitney Test

data: temperature by sex (female , male)
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Z = -1.3309, p-value = 0.1845

alternative hypothesis: true mu is not equal to 0

95 percent confidence interval:

-0.4 0.1

sample estimates:

difference in location

-0.1

1 w i l c o x . e x a c t ( t emp e r a t u r e ∼ sex , d a t a = ICUData , c o n f . i n t = TRUE)

Asymptotic Wilcoxon rank sum test

data: temperature by sex

W = 26388, p-value = 0.1832

alternative hypothesis: true mu is not equal to 0

95 percent confidence interval:

-0.39993283 0.09995573

sample estimates:

difference in location

-0.1000092

The results are in agreement with the Welch t-test, although the effect of patient 398 is clearly lower than
in the 1-sample case. We want to present the results in the best agreement with the test result as possible.
TheWMW-test is based on theHodges-Lehmann estimator (HL-estimator). It is the median of all pair-
wise differences. In the case of the Wilcoxon signed rank test (1-sample case) one speaks of the pseudo
median, which can be computed as the median of the mean of all pairwise sums. The pseudomedian is
identical to the median under symmetry. Since we want to display the two groups side by side and the dis-
tribution of the data is almost symmetrical, we choose the median, respectivley box and whisker plots for
the representation. For the addition of the test result we use the function stat_compare_means from the
package "ggpubr" (Kassambara (2020)) in combinations with functions from the package "ggplot2"
(Wickham (2009)).

1 ggp l o t ( d a t a = ICUData , a e s ( x = f a c t o r ( sex , l e v e l s = c ( " f ema le " , " male " ) ) ,
2 y = t empe r a t u r e ,
3 f i l l = f a c t o r ( sex , l e v e l s = c ( " f ema le " , " male " ) ) ) ) +
4 geom_hl ine ( y i n t e r c e p t = 37 . 5 ) + s c a l e _ f i l l _ n e j m ( name = " sex " ) +
5 geom_boxplo t ( ) + s t a t _compa re_means ( l a b e l . y = 42 .4 , l a b e l . x = 1 . 35 ) +
6 y l ab ( "Maximum body t emp e r a t u r e [ ?C] " ) + yl im (32 , 42 . 5 ) +
7 a n n o t a t e ( geom = " t e x t " , x = c ( 1 , 2 ) , y = c (32 .7 , 32 . 7 ) ,
8 l a b e l = c ( " n = 175 " , " n = 325 " ) , c o l o r = pa l_ne jm ( ) ( 2 ) ) +
9 x l ab ( " sex " )
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Wilcoxon, p = 0.16

n = 175 n = 325
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As in most cases, creating a meaningful graph of the results requires some work. For example, in the
definition of the factor we explicitly set the order of the levels.

Of course, there are studies in which we want to compare more than two groups with each other. We
start by assuming k independent groups, which we want to examine with respect to one normally dis-
tributed characteristic. The goal is to find out whether there are differences in the mean. This is called a
1-way ANOVA, where ANOVA stands for “ANalysis Of VArience”. As in the case of the 2-sample t-test
and equal variances one speaks of the classical 1-way ANOVA and calls it a Welch-1-way ANOVA, if
the variances are allowed to be different. Both variants are implemented in the function oneway.test.
The rank-based counterpart of the 1-way ANOVA is theKruskal-Wallis test, which is sometimes called
non-parametric 1-way ANOVA. The addition of non-parametric indicates that no specific distribution
assumption, especially no normal distribution, is required. By the transition to ranks this analysis again
offers a certain robustness against outliers. The test can be performed in R with the help of the function
kruskal.test.

We investigate the maximum body temperature of our ICU patients with respect to their outcome. In
case of the one-way ANOVA, we compare the results with and without patient 398 as well as with and
without assuming equal variances. That is, we four times have to apply function oneway.test.

1 ## with patient 398, classical

2 o n ewa y . t e s t ( t emp e r a t u r e ∼ outcome , d a t a = ICUData , v a r . e q u a l = TRUE)

One -way analysis of means
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data: temperature and outcome

F = 1.9572 , num df = 3, denom df = 496, p-value = 0.1195

1 ## with patient 398, Welch

2 o n ewa y . t e s t ( t emp e r a t u r e ∼ outcome , d a t a = ICUData )

One -way analysis of means (not assuming equal variances)

data: temperature and outcome

F = 4.5435 , num df = 3.00, denom df = 182.28 , p-value = 0.004262

1 ## without patient 398, classical

2 o n ewa y . t e s t ( t emp e r a t u r e ∼ outcome , d a t a = ICUData [−398 , ] , v a r . e q u a l = TRUE)

One -way analysis of means

data: temperature and outcome

F = 5.2203 , num df = 3, denom df = 495, p-value = 0.001481

1 ## without patient 398, Welch

2 o n ewa y . t e s t ( t emp e r a t u r e ∼ outcome , d a t a = ICUData [−398 , ] )

One -way analysis of means (not assuming equal variances)

data: temperature and outcome

F = 5.3574 , num df = 3.00, denom df = 189.68 , p-value = 0.001458

Assuming equal variances and at the same time including patient 398, leads to no significant differences
between the groups. In the three other cases, the mean of at least one group is significantly different from
the others; that is, we can expect that the influence of outliers is largest in case of the classical one-way
ANOVA.
We apply the Kruskal-Wallis test by means of function kruskal.test, where we compute the results
with and without patient 398.
1 ## with patient 398

2 k r u s k a l . t e s t ( t emp e r a t u r e ∼ outcome , d a t a = ICUData )

Kruskal -Wallis rank sum test

data: temperature by outcome

Kruskal -Wallis chi -squared = 15.259 , df = 3, p-value = 0.001608

1 ## without patient 398

2 k r u s k a l . t e s t ( t emp e r a t u r e ∼ outcome , d a t a = ICUData [−398 , ] )
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Kruskal -Wallis rank sum test

data: temperature by outcome

Kruskal -Wallis chi -squared = 15.869 , df = 3, p-value = 0.001206

As with the other rank tests, it is once again confirmed that these procedures react only slightly to single
outliers. The package "coin" (Hothorn et al. (2006)) contains the functions kruskal_test, which
among other things includes an approximative version of the Kruskal-Wallis test.

1 k r u s k a l _ t e s t ( t emp e r a t u r e ∼ outcome , d a t a = ICUData ,
2 d i s t r i b u t i o n = " app rox ima t e " )

Approximative Kruskal -Wallis Test

data: temperature by

outcome (died , home , other hospital , secondary care/rehab)

chi -squared = 15.259 , p-value = 0.0016

Overall, we can assume a significant difference between the outcome groups. Since we are dealing with
more than two groups, the following questions remain: which groups differ from each other, how exactly
does this difference look like and how big are the differences at all (effect sizes).

We assume that we are comparing the means, or more generally the location parameters, of more than
two groups by means of a variant of 1-way ANOVA and the test yielded a significant result; i.e., the cal-
culated p-value is smaller than the specified significance level. In this situation usually, in a second step,
so-called post hoc tests in combination with calculations of the effect sizes and graphical representations
are applied to highlight the differences between the groups. In the case of 1-way ANOVA there are a
number of possibilities of post hoc tests. In my opinion the most obvious and simplest possibility is the
calculation of pairwise t-tests. This is possible with the help of function pairwise.t.test. Accord-
ingly, in the case of the Kruskal-Wallis test it is straight forward to compute pairwise WMW-tests, which
can be done with function pairwise.wilcox.test. Since in this analysis several tests are performed
simultaneously, one should additionally use corrections for the significance level or the p-values, to keep
the type I error under control. The situation is also known as multiple testing, which I will discuss in
more detail in Chapter 7. In R, the correction of (Bonferroni-) Holm is applied by default (Holm (1979)).

We compare the result groups pairwise with respect to the maximum body temperature using both func-
tion pairwise.t.test as well as function pairwise.wilcox.test. In the case of the t-tests we as-
sume unequal variances (Welch t-test) and exclude patient 398 from the calculations.

1 ## pairwise Welch t-tests without patient 398

2 p a i r w i s e . t . t e s t ( ICUData$ t emp e r a t u r e [−398 ] , ICUData$ outcome [−398 ] ,
3 p o o l . s d = FALSE)
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Pairwise comparisons using t tests with non -pooled SD

data: ICUData$temperature [ -398] and ICUData$outcome [-398]

died home other hospital

home 0.0410 - -

other hospital 1.0000 0.0459 -

secondary care/rehab 1.0000 0.0036 1.0000

P value adjustment method: holm

1 ## pairwise Wilcoxon-Mann-Whitney U tests

2 p a i r w i s e . w i l c o x . t e s t ( ICUData$ t empe r a t u r e , ICUData$outcome )

Pairwise comparisons using Wilcoxon rank sum test

with continuity correction

data: ICUData$temperature and ICUData$outcome

died home other hospital

home 0.0534 - -

other hospital 1.0000 0.0534 -

secondary care/rehab 1.0000 0.0024 1.0000

P value adjustment method: holm

The output corresponds to the pairwise (FWER-)adjusted p-values, which can be compared with the
originally chosen signficance level �. A comparison with � = 0.05 shows that in the case of the pairwise
Welch t-tests, the “home” group is significantly different from all other groups. In the case of the pairwise
WMW tests, two of the three comparisons with the “home” group are just slightly not significant and only
the comparison with the “secondary care/rehab” group is significant. The nature of the difference (sig-
nificantly smaller or larger) can be determined by calculating the arithmetic means or Hodges-Lehmann
estimators, respectively. For the computations we use function tapply from package "base" (R Core
Team (2022a)) and function pairwise.fun from package "MKinfer" (Kohl (2022b)).

1 ## Mean values and SDs

2 t a p p l y ( ICUData$ t emp e r a t u r e [−398 ] , ICUData$ outcome [−398 ] , mean )

died home other hospital

37.96176 37.44118 37.80694

secondary care/rehab

37.85185

1 t a p p l y ( ICUData$ t emp e r a t u r e [−398 ] , ICUData$ outcome [−398 ] , sd )
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died home other hospital

1.4404632 1.0674633 0.9932627

secondary care/rehab

1.1822532

1 ## Hodges-Lehmann estimator

2 p a i r w i s e . f u n ( ICUData$ t emp e r a t u r e [−398 ] , ICUData$ outcome [−398 ] ,
3 f u n c t i o n ( x , y ) w i l c o x . t e s t ( x , y , c o n f . i n t = TRUE) $ e s t im a t e )

died vs home

-0.49997784

died vs other hospital

-0.10007520

died vs secondary care/rehab

-0.09994734

home vs other hospital

0.39996128

home vs secondary care/rehab

0.40003222

other hospital vs secondary care/rehab

0.09995271

According to this, the “home” group has the lowest mean and also the results for the HL estimator mean
that the “home” group has the lower values. Thus, in the case of significance, we can assume that the
values of the “home” group are significantly lower. For the graphical representation of the results of
the Welch 1-way ANOVA we select mean values and corresponding 95% confidence intervals. This is
similar to the calculations performed in case of the Welch t-test. More precisely, one would have to plot
the difference of the means and the corresponding 95% confidence intervals where, strictly speaking, the
confidence level would also have to be adjusted. However, the values of the individual groups, which
we would like to visualize, cannot displayed this way. We prepare a data.frame for this with the mean
values and the upper and lower limits of the respective confidence intervals. We use function tapply.

1 AM ← t a p p l y ( ICUData$ t emp e r a t u r e [−398 ] , ICUData$ outcome [−398 ] , mean )
2 CI ← t a p p l y ( ICUData$ t emp e r a t u r e [−398 ] , ICUData$ outcome [−398 ] , meanCI )
3 n ← t a p p l y ( ICUData$ t emp e r a t u r e [−398 ] , ICUData$ outcome [−398 ] , l e n g t h )
4 DF ← d a t a . f r am e (AM = AM,
5 C I . l o = c ( CI$ ‘ o t h e r h o s p i t a l ‘ $ c o n f . i n t [ 1 ] ,
6 CI$ ‘home ‘ $ c o n f . i n t [ 1 ] ,
7 CI$ ‘ s e conda ry c a r e / rehab ‘ $ c o n f . i n t [ 1 ] ,
8 CI$ d i ed $ c o n f . i n t [ 1 ] ) ,
9 CI .up = c ( CI$ ‘ o t h e r h o s p i t a l ‘ $ c o n f . i n t [ 2 ] ,
10 CI$ ‘home ‘ $ c o n f . i n t [ 2 ] ,
11 CI$ ‘ s e conda ry c a r e / rehab ‘ $ c o n f . i n t [ 2 ] ,
12 CI$ d i ed $ c o n f . i n t [ 2 ] ) ,
13 outcome = names ( CI ) ,
14 n = n )
15 DF$outcome ← f a c t o r (DF$outcome , l e v e l s = c ( "home" , " s e conda ry c a r e / r ehab " ,
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16 " o t h e r h o s p i t a l " , " d i e d " ) )
17 DF

AM CI.lo CI.up outcome n

died 37.96176 37.57354 38.04035 died 68

home 37.44118 37.27956 37.60280 home 170

other hospital 37.80694 37.68221 38.02149 other hospital 72

secondary care/rehab 37.85185 37.61310 38.31043 secondary care/rehab 189

We see that the confidence intervals of the individual groups can overlap slightly and the difference is
nevertheless still significant. Consequently, the presentation does not fully reflect the carried out analysis.
It is also possible to conclude from this that the equal analysis of two groups has a somewhat higher power
than if the two groups were considered separately. We plot the result and choose the NEJM palette from
the package "ggsci" (Xiao (2018)) for the colors and annotate the plot with functions geom_text and
annotate.
1 ggp l o t (DF , a e s ( x = outcome , y = AM, c o l o r = outcome ) ) +
2 s c a l e _ c o l o r _ n p g ( ) + geom_poin t ( ) + geom_hl ine ( y i n t e r c e p t = 37 . 5 ) +
3 geom_e r r o rba r ( a e s ( ymin = CI . l o , ymax = CI .up ) , wid th = 0 . 2 ) +
4 geom_tex t ( a e s ( y = rep (37 .1 , 4 ) , l a b e l = p a s t e ( " n =" , n ) ) ) +
5 a n n o t a t e ( geom = " t e x t " , x = 2 .5 , y = 38 .4 ,
6 l a b e l = "Welch 1−way ANOVA, p−value = 0 .001 " ) +
7 y l ab ( "Maximum body t emp e r a t u r e [ ◦C] " ) + yl im (37 .0 , 38 . 5 )

n = 68n = 170 n = 72n = 189

Welch 1−way ANOVA, p−value = 0.001

37.0

37.5

38.0

38.5

home secondary care/rehab other hospital died
outcome

M
ax

im
um

 b
od

y 
te

m
pe

ra
tu

re
 [°

C
]

outcome

a

a

a

a

home

secondary care/rehab

other hospital

died

Assuming approximate symmetry, we plot the result of the Kruskal-Wallis test similarly to the WMW-
test by means of Box-and-Whisker plots. We use function ggplot from package "ggplot2" (Wickham
(2009)). We do not show the value of patient 398, who belongs to the died group.
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1 ICUtmp ← ICUData [ , c ( " outcome " , " t emp e r a t u r e " ) ]
2 ICUtmp$outcome ← f a c t o r ( ICUtmp$outcome , l e v e l s = c ( "home" ,
3 " s e conda ry c a r e / r ehab " ,
4 " o t h e r h o s p i t a l " ,
5 " d i ed " ) )
6 ggp l o t ( d a t a=ICUtmp , ae s ( x=outcome , y=t empe r a t u r e , f i l l =outcome ) ) +
7 geom_hl ine ( y i n t e r c e p t = 37 . 5 ) + geom_boxplo t ( ) +
8 s t a t _compa re_means ( l a b e l . y = 43 , l a b e l . x = 2 . 0 ) +
9 g g t i t l e ( "Maximum body t emp e r a t u r e dependen t on outcome " ) +
10 yl im ( c ( 33 , 4 3 ) )

Kruskal−Wallis, p = 0.0012
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Maximum body temperature dependent on outcome

The median of the maximum body temperature of the group that was discharged home is obviously lower
than for the other groups.

Note:
When comparing the location of two or more independent groups (samples) that have similar variance,
the power of the comparison is essentially dictated by the smallest group. Therefore, in studies, care
should be taken to ensure, as far as possible, that groups of equal size are ideally compared with each
other. Groups of equal size are also referred to as a balanced design.

In the case of groups that are dependent (connected) (e.g. measurements of the same individuals at dif-
ferent time points) we speak of a 1-way ANOVA with repeated measures. We also speak of within-
and between-subject factors. The within-subject factor corresponds in many cases to different time-
points. While the between-subject factor describes the treatment. In addition to this classical approach,
so-called mixed-effects models are used, in which the subject (within-subject factor), of which several
measurements are available, is modeled as a so-called random effect. In addition, there are again rank-
based nonparametric approaches that may be applied, among others the Quade or the Friedman test. The
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Quade test can be regarded as an extension of the Wilcoxon signed rank test to more than two dependent
groups. The Friedman test is more conservative and corresponds to the extension of the sign/median
test (a special binomial test) to more than two related groups.

Since there are no variables with measurement repetitions in the ICU dataset, we use dataset selfesteem
from package "datarium" (Kassambara (2019)), which contains data on the self-esteem of 10 individ-
uals. For these individuals, that participate in a specific diet, self-esteem scores were measured at three
different time points

1 d a t a ( s e l f e s t e em )
2 s e l f e s t e em

# A tibble: 10 x 4

id t1 t2 t3

<int > <dbl > <dbl > <dbl >

1 1 4.01 5.18 7.11

2 2 2.56 6.91 6.31

3 3 3.24 4.44 9.78

4 4 3.42 4.71 8.35

5 5 2.87 3.91 6.46

6 6 2.05 5.34 6.65

7 7 3.53 5.58 6.84

8 8 3.18 4.37 7.82

9 9 3.51 4.40 8.47

10 10 3.04 4.49 8.58

We bring the data from the given “wide” to a “long” format required for the analysis and then perform
the 1-way ANOVAs presented above. Using the functions head and tail, we show the first and last six
lines of the “long” data set.

1 SE. long ← d a t a . f r am e ( i d = rep ( s e l f e s t e em $ id , 3 ) ,
2 s c o r e = c ( s e l f e s t e em $ t1 , s e l f e s t e em $ t2 ,
3 s e l f e s t e em $ t 3 ) ,
4 t ime = rep ( c ( " t 1 " , " t 2 " , " t 3 " ) , each = 10 ) )
5 head ( SE . l ong )

id score time

1 1 4.005027 t1

2 2 2.558124 t1

3 3 3.244241 t1

4 4 3.419538 t1

5 5 2.871243 t1

6 6 2.045868 t1

1 t a i l ( SE . l ong )

id score time

25 5 6.457287 t3
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26 6 6.653224 t3

27 7 6.840157 t3

28 8 7.818623 t3

29 9 8.471229 t3

30 10 8.581100 t3

We can perform all calculations using the function rm.oneway.test from the package "MKinfer" (Kohl
(2022b)).

1 ## Classic repeated-measures 1-way ANOVA

2 rm . o n eway . t e s t ( x = SE . long $ sco r e , g = SE . long $ t ime , i d = SE . long $ i d )

Repeated measures 1-way ANOVA

data: SE.long$score , SE.long$time and SE.long$id

F = 55.469 , num df = 2, denom df = 18, p-value = 2.014e-08

1 ## Mixed-effects 1-way ANOVA

2 rm . o n eway . t e s t ( x = SE . long $ sco r e , g = SE . long $ t ime , i d = SE . long $ id ,
3 method = " lme " )

Mixed -effects 1-way ANOVA

data: SE.long$score , SE.long$time and SE.long$id

F = 65.261 , num df = 2, denom df = 18, p-value = 5.641e-09

1 ## Quade test

2 rm . o n eway . t e s t ( x = SE . long $ sco r e , g = SE . long $ t ime , i d = SE . long $ id ,
3 method = " quade " )

Quade test

data: x, g and id

Quade F = 24.673 , num df = 2, denom df = 18, p-value = 6.96e-06

1 ## Friedman test

2 rm . o n eway . t e s t ( x = SE . long $ sco r e , g = SE . long $ t ime , i d = SE . long $ id ,
3 method = " f r i e dman " )

Friedman rank sum test

data: x, g and id

Friedman chi -squared = 18.2, df = 2, p-value = 0.0001117
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It appears that the various methods are in agreement and there is a significant change over time. We want
to investigate this change in more detail using paired t-tests and Wilcoxon signed rank tests.

1 ## Pairwise paired t-tests.

2 p a i r w i s e . t . t e s t ( SE . l ong $ sco r e , SE . l ong $ t ime , p a i r e d = TRUE)

Pairwise comparisons using paired t tests

data: SE.long$score and SE.long$time

t1 t2

t2 0.0015 -

t3 1e-06 0.0015

P value adjustment method: holm

1 ## Pairwise Wilcoxon signed rank tests.

2 p a i r w i s e . w i l c o x . t e s t ( SE . l ong $ sco r e , SE . l ong $ t ime , p a i r e d = TRUE)

Pairwise comparisons using Wilcoxon signed rank exact test

data: SE.long$score and SE.long$time

t1 t2

t2 0.0059 -

t3 0.0059 0.0059

P value adjustment method: holm

We get pairwise significant differences between all time points. Since we are dealing with paired val-
ues and we know that the paired tests are identical to the 1-sample test of the differences, we calculate
the means, SD and medians for the paired differences of the time points. To do this, we use function
pairwise.fun from package "MKinfer" (Kohl (2022b)), which can be used to apply any given func-
tion to pairs of groups.

1 ## arithmetic means

2 p a i r w i s e . f u n ( SE . l ong $ sco r e , SE . l ong $ t ime , f u n c t i o n ( x , y ) mean ( x−y ) )

t1 vs t2 t1 vs t3 t2 vs t3

1.79382 4.49622 2.70240

1 ## SDs

2 p a i r w i s e . f u n ( SE . l ong $ sco r e , SE . l ong $ t ime , f u n c t i o n ( x , y ) sd ( x−y ) )

t1 vs t2 t1 vs t3 t2 vs t3

1.141907 1.074852 1.755559
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1 ## medians

2 p a i r w i s e . f u n ( SE . l ong $ sco r e , SE . l ong $ t ime , f u n c t i o n ( x , y ) median ( x−y ) )

t1 vs t2 t1 vs t3 t2 vs t3

1.245675 4.623277 2.998624

We obtain increasing scores from t1 to t3. We plot the pairwise differences applying function ggpaired
from package ggpubr (Kassambara (2020)). In addition, we use function grid.arrange from package
"gridExtra" (Auguie (2017)) to arrange the three plots side by side.

1 gg1 ← ggp a i r e d ( d a t a = s e l f e s t e em , cond1 = " t 1 " , cond2 = " t 2 " ,
2 f i l l = " c o n d i t i o n " ) + yl im ( 1 , 10 . 5 ) +
3 s c a l e _ f i l l _m a n u a l ( v a l u e s = pa l_ j ama ( ) ( 3 ) [ 1 : 2 ] ) +
4 a n n o t a t e ( geom = " t e x t " , x = 1 .5 , y = 10 .5 ,
5 l a b e l = "Wilcoxon s i g n ed rank t e s t , a d j . p = 0 .006 " ) +
6 a n n o t a t e ( geom = " t e x t " , x = 1 .5 , y = 10 ,
7 l a b e l = " P a i r e d t− t e s t , a d j . p = 0 .002 " )
8 gg2 ← ggp a i r e d ( d a t a = s e l f e s t e em , cond1 = " t 1 " , cond2 = " t 3 " ,
9 f i l l = " c o n d i t i o n " ) + yl im ( 1 , 10 . 5 ) +
10 s c a l e _ f i l l _m a n u a l ( v a l u e s = pa l_ j ama ( ) ( 3 ) [ c ( 1 , 3 ) ] ) +
11 a n n o t a t e ( geom = " t e x t " , x = 1 .5 , y = 10 .5 ,
12 l a b e l = "Wilcoxon s i g n ed rank t e s t , a d j . p = 0 .006 " ) +
13 a n n o t a t e ( geom = " t e x t " , x = 1 .5 , y = 10 ,
14 l a b e l = " P a i r e d t− t e s t , a d j . p < 0 .001 " )
15 gg3 ← ggp a i r e d ( d a t a = s e l f e s t e em , cond1 = " t 2 " , cond2 = " t 3 " ,
16 f i l l = " c o n d i t i o n " ) + yl im ( 1 , 10 . 5 ) +
17 s c a l e _ f i l l _m a n u a l ( v a l u e s = pa l_ j ama ( ) ( 3 ) [ c ( 2 , 3 ) ] ) +
18 a n n o t a t e ( geom = " t e x t " , x = 1 .5 , y = 10 .5 ,
19 l a b e l = "Wilcoxon s i g n ed rank t e s t , a d j . p = 0 .006 " ) +
20 a n n o t a t e ( geom = " t e x t " , x = 1 .5 , y = 10 ,
21 l a b e l = " P a i r e d t− t e s t , a d j . p = 0 .002 " )
22 g r i d . a r r a n g e ( gg1 , gg2 , gg3 , nrow = 1)
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There are also clear differences graphically between the time points, with scores clearly increasing over
time for the vast majority of subjects.

With this, we have discussed all the tests of Figure 6.4 and we turn to other important statistical tests
below.

In some cases, we are not interested in the means but in the variances of two independent groups. If a
characteristic is present that is normally distributed in both groups, the corresponding test is based on the
quotient of the two variances. According to Remark 4.28 this leads to a F-distribution and, accordingly,
we speak of an F-test. We can perform this test with the help of the function var.test.
The non-parametric counterpart to the F-test, which does not require a normal distribution assumption
and is based on ranks, is the Ansari-Bradley test. It can be applied using the function ansari.test.
As we have seen above, the variances of the maximum body temperature are different for females and
males. We investigate, whether this is a random variation or not. We perform the test with and without
patient 398.
1 ## with patient 398

2 v a r . t e s t ( t emp e r a t u r e ∼ sex , d a t a = ICUData )

F test to compare two variances

data: temperature by sex

F = 0.41809 , num df = 174, denom df = 324, p-value = 6.066e-10

alternative hypothesis: true ratio of variances is not equal to 1
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95 percent confidence interval:

0.3236546 0.5457195

sample estimates:

ratio of variances

0.4180863

1 ## without patient 398

2 v a r . t e s t ( t emp e r a t u r e ∼ sex , d a t a = ICUData [−398 , ] )

F test to compare two variances

data: temperature by sex

F = 1.2547 , num df = 174, denom df = 323, p-value = 0.08265

alternative hypothesis: true ratio of variances is not equal to 1

95 percent confidence interval:

0.9711595 1.6379524

sample estimates:

ratio of variances

1.254713

In the case of the variance the influence of the outlier (patient 398) is even stronger than in the case of
the mean. Depending on whether we test with or without patient 398, we get a significant difference or
not. The p-value changes by a factor of 108!
Wewant to investigatewhether this is also true for theAnsari-Bradley test and use function ansari.test.
In contrast to the F-Test the Ansari-Bradley test compares the scale values themselves and not their
squares (variance). That means that the ratio of the scale values has to be squared in order to compare it
directly with the ratio of the variances. For the calculation of the ratio of the scale values as well as the
confidence interval, the position parameters of the two groups must be the same. Therefore, it is recom-
mended to center the data at the median before the calculation. Besides the function ansari.text we
use the function tapply for the calculations.

1 ICUtmp ← ICUData [ , c ( " t emp e r a t u r e " , " sex " ) ]
2 t a p p l y ( ICUtmp$ t empe r a t u r e , ICUtmp$ sex , median )

female male

37.5 37.8

1 male ← ICUtmp$ sex == "male "
2 ICUtmp$ t emp e r a t u r e [ male ] ← ICUtmp$ t emp e r a t u r e [ male ] − 37 . 8
3 ICUtmp$ t emp e r a t u r e [ ! male ] ← ICUtmp$ t emp e r a t u r e [ ! male ] − 37 . 5
4 a n s a r i . t e s t ( t emp e r a t u r e ∼ sex , d a t a = ICUtmp , c o n f . i n t = TRUE)

Ansari -Bradley test

data: temperature by sex
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AB = 21296 , p-value = 0.388

alternative hypothesis: true ratio of scales is not equal to 1

95 percent confidence interval:

0.9090881 1.2857440

sample estimates:

ratio of scales

1.000041

1 a n s a r i . t e s t ( t emp e r a t u r e ∼ sex , d a t a = ICUtmp [−398 , ] , c o n f . i n t = TRUE)

Ansari -Bradley test

data: temperature by sex

AB = 21210 , p-value = 0.3577

alternative hypothesis: true ratio of scales is not equal to 1

95 percent confidence interval:

0.9166452 1.3000351

sample estimates:

ratio of scales

1.055589

The results show that the influence of the outlier (patient 398) is clearly smaller, as we have already seen
in case of the other rank tests. In summary, we have to conclude that the hypothesis of an equal vari-
ance/scale cannot be rejected.

Another important test is to see if there is a significant correlation between two variables. If we assume
that there are two normally distributed characteristics, it follows that the correlation between these two
variables is linear. Consequently, in this case we can determine the strength of the correlation with
the help of the Pearson correlation �. The associated test statistic follows a t-distribution with n − 2
degrees of freedom, the null hypothesis is � = 0. If we cannot assume normal distributions and must
more generally assume a monotone relationship, the correlations according to Spearman and Kendall are
appropriate alternatives. The corresponding three tests can be performed using the function cor.test.
We investigate whether the correlation between maximum body temperature and maximum heart rate
is significantly different from 0. We use the function cor.test and examine Pearson, Spearman and
Kendall correlation, whereby in the case of the Pearson correlation we exclude patient 398 from the
calculations.
1 ## Pearson without patient 398

2 c o r . t e s t ( ICUData$ t emp e r a t u r e [−398 ] , ICUData$ h e a r t . r a t e [−398 ] )

Pearson 's product -moment correlation

data: ICUData$temperature [ -398] and ICUData$heart.rate [-398]

t = 6.9546 , df = 497, p-value = 1.118e-11

alternative hypothesis: true correlation is not equal to 0
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95 percent confidence interval:

0.2156624 0.3757592

sample estimates:

cor

0.2978033

1 ## Spearman

2 c o r . t e s t ( ICUData$ t empe r a t u r e , ICUData$ h e a r t . r a t e , method = " spearman " )

Spearman 's rank correlation rho

data: ICUData$temperature and ICUData$heart.rate

S = 15291695 , p-value = 1.521e-09

alternative hypothesis: true rho is not equal to 0

sample estimates:

rho

0.2659957

1 ## Kendall

2 c o r . t e s t ( ICUData$ t empe r a t u r e , ICUData$ h e a r t . r a t e , method = " k e n d a l l " )

Kendall 's rank correlation tau

data: ICUData$temperature and ICUData$heart.rate

z = 6.0032 , p-value = 1.935e-09

alternative hypothesis: true tau is not equal to 0

sample estimates:

tau

0.1826903

In all three cases we get a significant correlation. Unfortunately, we can only test whether the correlation
is significantly different from 0 or is positive or negative, and not, for example, whether the correlation
is is significantly different from a given value. This can be done in the case of the Pearson correlation by
using the respective confidence interval. In case of the Spearman and Kendall correlation, however, no
confidence intervals are calculated by function cor.test. For the confidence interval of the Spearman
correlation we can use the function SpearmanRho of package "DescTools" (Andri et mult. al. (2022)),
for the confidence interval of the Kendall correlation function KendallTauB of package "DescTools"
(Andri et mult. al. (2022)).

1 ## Spearman

2 SpearmanRho ( ICUData$ t empe r a t u r e , ICUData$ h e a r t . r a t e , c o n f . l e v e l = 0 . 95 )

rho lwr.ci upr.ci

0.2659957 0.1825635 0.3456245
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1 ## Kendall

2 Kendal lTauB ( ICUData$ t empe r a t u r e , ICUData$ h e a r t . r a t e , c o n f . l e v e l = 0 . 95 )

tau_b lwr.ci upr.ci

0.1826903 0.1254649 0.2399157

As we have already seen in Section 2.6.2, the Spearman correlation just matches the Pearson correlation
of ranks. We can use this for the calculation of a corresponding confidence interval and get the same
results as with function SpearmanRho with the help of function cor.test.

1 c o r . t e s t ( r ank ( ICUData$ t emp e r a t u r e ) , r ank ( ICUData$ h e a r t . r a t e ) )

Pearson 's product -moment correlation

data: rank(ICUData$temperature) and rank(ICUData$heart.rate)

t = 6.1578 , df = 498, p-value = 1.521e-09

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.1825635 0.3456245

sample estimates:

cor

0.2659957

Overall, there is a significant, but also only low to moderate correlation between the maximum body
temperature and the maximum heart rate, which is unlikely to be of practical use. We can test with
the help of the confidence intervals, whether the correlation is significantly less than 0.5, which makes
the correlation of little practical use for many applications. We want to test at a significance level of
� = 0.01. Accordingly, we need to consider 99% confidence intervals. Since function SpearmanRho

does not compute one-sided confidence intervals, we calculate a two-sided 1 − 2� confidence interval.
The upper limit of this interval is then equal to the upper limit of the corresponding one-sided interval.

1 ## Pearson

2 c o r . t e s t ( ICUData$ t emp e r a t u r e [−398 ] , ICUData$ h e a r t . r a t e [−398 ] ,
3 a l t e r n a t i v e = " l e s s " , c o n f . l e v e l = 0 . 99 ) $ c o n f . i n t

[1] -1.0000000 0.3897994

attr(,"conf.level")

[1] 0.99

1 ## Spearman

2 SpearmanRho ( ICUData$ t empe r a t u r e , ICUData$ h e a r t . r a t e , c o n f . l e v e l = 0 . 98 )

rho lwr.ci upr.ci

0.2659957 0.1666303 0.3600128
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1 c o r . t e s t ( r ank ( ICUData$ t emp e r a t u r e ) , r ank ( ICUData$ h e a r t . r a t e ) ,
2 a l t e r n a t i v e = " l e s s " , c o n f . l e v e l = 0 . 99 ) $ c o n f . i n t

[1] -1.0000000 0.3600128

attr(,"conf.level")

[1] 0.99

1 ## Kendall

2 Kendal lTauB ( ICUData$ t empe r a t u r e , ICUData$ h e a r t . r a t e , c o n f . l e v e l = 0 . 98 )

tau_b lwr.ci upr.ci

0.1826903 0.1147675 0.2506131

In all three cases we could say that the tests are highly significant (� = 0.01!), since the upper limit of
the confidence interval is smaller than 0.5. Indeed, the upper limits are clearly smaller than 0.5.

In the last part of this section we will briefly discuss distribution tests. We want to find out, whether
we can assume that the data at hand follow a certain predefined distribution P or not. We are therefore
dealing with the following hypotheses

H0 ∶ P ∈  versus H1 ∶ P ∉ 

Probably the most common question is whether data follows a normal distribution or not. We will restrict
ourselves to this case here; that is, if

P ∈  =
{Norm (�, �2) |� ∈ ℝ, � ∈ (0,∞)

} (6.4)

There are several possible tests for this situation, because the alternative is very large (infinite-dimen-
sional) and no single test can completely cover the alternative. Accordingly, it is also unclear which test
has the overall highest power in this situation. Known tests implemented in R are for example: Shapiro-
Wilk test, Kolmogorov-Smirnov test or Lilliefors test, Anderson-Darling test, Cramér-von-Mises test,
Shapiro-Frankia test, Jarque-Bera test, D’Agostino test, etc. Besides the function shapiro.test from
package "stats" (R Core Team (2022a)), we apply the functions LillieTest, CramerVonMisesTest
and ShapiroFranciaTest from the package "DescTools" (Andri et mult. al. (2022)) to calculate some
known tests for normal distribution for the maximum body temperature. Since these tests can react to
outliers, which is quite justified, if one considers such values as a correct part of the data set, we perform
the calculations without patient 398.

1 ## Shapiro-Wilk test

2 s h a p i r o . t e s t ( ICUData$ t emp e r a t u r e [−398 ] )

Shapiro -Wilk normality test

data: ICUData$temperature [ -398]

W = 0.99189 , p-value = 0.008013
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1 ## Lilliefors (Kolmogorov-Smirnov) test

2 L i l l i e T e s t ( ICUData$ t emp e r a t u r e [−398 ] )

Lilliefors (Kolmogorov -Smirnov) normality test

data: ICUData$temperature [ -398]

D = 0.048498 , p-value = 0.007001

1 ## Cramer-von Mises Test

2 CramerVonMisesTest ( ICUData$ t emp e r a t u r e [−398 ] )

Cramer -von Mises normality test

data: ICUData$temperature [ -398]

W = 0.16686 , p-value = 0.01426

1 ## Shapiro-Francia Test

2 Sh a p i r o F r a n c i a T e s t ( ICUData$ t emp e r a t u r e [−398 ] )

Shapiro -Francia normality test

data: ICUData$temperature [ -398]

W = 0.99131 , p-value = 0.006149

In this case, all tests agree and reject the normal distribution assumption. This is probably due to the
rather large sample size and the fact that these tests at high sample sizes are able to detect even the
smallest deviations from the given distribution with a high degree of certainty. Since the deviation tends
to be small as the analysis in Section 5.2 shows, these results can be ignored with regard to the central
limit theorem and one can perform a t-test or a 1-way ANOVAwithout restriction, at least if one omits the
obvious outlier (patient 398). This is also confirmed by the fact that t-test, 1-way ANOVA, WMW-test
and Kruskal-Wallis test consistently yield very similar results when patient 398 is not considered.

Note:
The use of distribution tests is not recommended in most cases, for example as pre-tests (Rasch
et al. (2011)). In particular, the Kolmogorov-Smirnov test should be avoided (Schoder et al. (2006);
Ghasemi and Zahediasl (2012)). These tests in most cases do not or just insufficiently solve the prob-
lem at hand. For small and medium sample sizes, where arguing with limit theorems is questionable,
the tests have a low power and reliably detect only clear deviations from the given distribution. For
large or very large samples, even the smallest deviations are detected. In many cases, however, such
small deviations are irrelevant for the applied statistical methods, since corresponding limit theorems
apply. In summary, my recommendation is therefore to use the diagnostic plots presented in Sec-
tion 5.2 for model diagnostics and validation instead of various statistical tests.
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6.4 Exercises

Always describe the steps of your analysis and interpret the results. In case of exercises 4–15, 17 and 18
use the ICU dataset and choose appropriate functions for the computations.

1. In a randomized and controlled trial, a new treatment to avoid the infection with HIV was studied.
There were no significant differences between the new treatment and a control group. The ratio
between newly occurring infections was 1.0, where the 95% confidence interval was [0.63, 1.58].
Based on this result, can you be sure that the new treatment has no effect? In this context, what
could be the meaning of “Absence of Evidence Is Not Evidence of Absence”?

2. Those responsible for the FranSO study (Kemmler et al. (2017)) assumed for the sample size cal-
culation of the primary endpoint (sarcopenia z-score), a difference of means of 1.0 and a standard
deviation of 1.4. Calculate the sample size using Student’s t-test. Use a significance level of 5%
and a power of 80%. How much does the sample size increase if you increase the power to 90%?
The study ultimately included 33 respectively, 34 subjects per group. How large is the power of
the study if you assume a sample size of 33 per group?

3. For a study that shall be planned, we expect a difference in means of 0.70 for the selected primary
endpoint, assuming that the standard deviation of the control group will be 0.75 and the standard
deviation of the treatment group will be 1.40. For the sample size calculation, use the Welch t-test
with a significance level of 5% and a power of 90%. How does the sample size change if you use
the Hsu t-test instead? What sample size do you get for the WMW-test? Also, examine how the
sample size changes, if the difference between the means is actually slightly smaller or larger than
expected. To do this, consider the interval [0.60, 0.80].
Use the functions power.welch.t.test, power.hsu.t.test and sim.ssize.wilcox.test

from the package "MKpower" (Kohl (2020c)). Use sim.ssize.wilcox.test in combination
with function rnorm. For more details on how to use these functions, look at the help pages for
the functions and in the vignette of the package, which you can open via vignette("MKpower").

4. Investigate the assumption that more men than women are treated at the ICU. Formulate the hy-
potheses and use both an exact test and an asymptotic test to verify this. Plot the data appropriately
with the test result.

5. Investigate, whether males die more frequently on the ICU than females. Compute an exact as well
as an asymptotic test to check this. As starting point, use the 2×2 contingency table generated by

1 t a b l e ( ICUData$ sex , ICUData$ outcome == " d i ed " )

Plot the data appropriately with the test result.
6. Investigate whether patients in an ICU are, on average, significantly older than 60 years of age.

Use the 1-sample t-test as well as the Wilcoxon signed rank test for the analysis. Which test seems
more appropriate? Plot the data appropriately with the test result.
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7. Assume a normal distribution for the logarithmized bilirubin values and compare the mean log-
concentrations of bilirubin for the ICU patients with and without liver failure applying t-tests.
Do you think the classical or the Welch t-test is more appropriate? In a second step, apply the
Wilcoxon-Mann-Whitney U-test and compute the test once with and once without taking the log-
arithm of the bilirubin values. Compare the two results. What do you detect? What is the reason
for it? Plot the data appropriately with the test result.

8. Compare the average length of stay of females andmales by applying theWilcoxon-Mann-Whitney
U-test. Plot the data appropriately with the test result.

9. Assume that the maximum body temperature of the ICU patients can be described by a normal
distribution. Investigate, whether the mean values of the different surgical groups differ signifi-
cantly. Use the Welch 1-way ANOVA for the analysis and disregard patient 398. If you obtain a
significant result, examine the difference in more detail using appropriate post hoc tests. Plot the
data appropriately with the test result.

10. Consider only patients with a length of stay greater than one day (LOS > 1).
1 ICUData.LOS2 ← ICUData [ ICUData$LOS > 1 , ]

Assume that the log bilirubin values of ICU patients can be described by a normal distribution. Use
theWelch 1-way ANOVA to find out whether the mean values of the logarithmized bilirubin values
are different for the surgical groups. If you obtain a significant result, investigate the difference in
more detail using appropriate post hoc tests. Plot the data appropriately with the test result.

11. Assume that the maximummeasured heart rate of the ICU patients can approximately be described
by a normal distribution. Investigate, using a Welch 1-way ANOVA, whether the mean heart rates
of the different outcome groups differ significantly. If you obtain a significant result, examine the
differences in more detail using post hoc tests. Plot the data appropriately with the test result.

12. Compare the mean length of stay of the different surgical groups. Use the Kruskal-Wallis test for
this purpose. If you obtain a significant result, examine the differences more closely using post
hoc tests. Plot the data appropriately with the test result.

13. Consider only patients with a length of stay greater than one day (LOS > 1).
1 ICUData.LOS2 ← ICUData [ ICUData$LOS > 1 , ]

Apply the Kruskal-Wallis test to find out whether the outcome groups differ significantly with
respect to their mean SAPS-II scores. If you obtain a significant result, examine the differences in
more detail using post hoc tests. Plot the data appropriately with the test result.

14. Consider the SAPS II scores of the ICU patients and investigate, whether the mean scores differ
between the different surgical groups. Use the Kruskal-Wallis test for this purpose. If you obtain
a significant result, examine the differences in more detail using post hoc tests. Plot the data
appropriately with the test result.
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15. Consider only patients with a length of stay greater than one day (LOS > 1).

1 ICUData.LOS2 ← ICUData [ ICUData$LOS > 1 , ]

Apply the Kruskal-Wallis test to find out whether the outcome groups differ significantly with
respect to their mean ages. If you obtain a significant result, examine the differences in more detail
using post hoc tests. Plot the data appropriately with the test result.

16. Consider the following data set:

id: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

t0: 8.8, 8.9, 9.4, 8.7, 9.2, 10.9, 9.5, 11.2, 10.6, 9.2

t1: 10.6, 11.3, 11.8, 11.1, 11.8, 12.6, 11.7, 13.0, 12.9, 10.6

t2: 12.9, 13.1, 13.2, 13.2, 13.8, 14.7, 13.8, 15.0, 14.7, 13.1

Measurements were taken from 10 subjects at three time points. Create a data.frame with the
data. Investigate with the help of a repeated-measures 1-way ANOVA to see if there are significant
differences between the time points. Also, use a mixed-effects 1-way ANOVA as well as the Quade
and the Friedman test for the analysis. If significant results are found, perform post hoc tests with
paired t-tests andWilcoxon signed rank tests, respectively. Plot the data appropriately with the test
result.

17. Investigate whether the log bilirubin values of men and women differ with respect to their scale.
Use both the F-test and the Ansari-Bradley test. Plot the data appropriately with the test result.

18. Using an appropriate test to investigate whether there is a significant correlation between age and
SAPS II score. Which correlation coefficient seems appropriate for this situation and why? Plot
the data appropriately with the test result.

19. Use the chem dataset of package "MASS" (Venables and Ripley (2002)), which can be loaded by
the following R code

1 l i b r a r y (MASS)
2 d a t a ( chem )

Use the Shapiro-Wilk test as well as the Lilliefors (Kolmogorov-Smirnov), the Cramer-von Mises
and the Shapiro-Francia test of package "DescTools" (Andri et mult. al. (2022)) to verify, whether
the data follows a normal distribution. What do you observe? In addition, use a qq-plot to check
the assumption of normality, which can be generated by functions qqnorm and qqline. Do you
think the plot confirms the tests? Repeat the tests of normality, but this time omit observation 17.
Compare and interpret all results.
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In this chapter, we discuss the multiple testing problem. In detail the following topics are discussed:
• Family-wise error rate (FWER)
• Bonferroni method
• (Bonferroni-) Holm method
• Simes-Hochberg method
• sample size calculations for multiple primary endpoints
• False discovery rate (FDR)
• Benjamini-Hochberg method
• Benjamini-Yekutieli method
• Volcano plot

The R code for this chapter is contained in file MultiplesTesten.Rmd, which is downloadable from my
GitHub account (link: https://github.com/stamats/ISDR/blob/main/MultipleTesting.Rmd).
Right-click on Raw and save the file. The least difficulties arise if you save my R Markdown files in the
same folder as the data used in the respective chapters.
We first install the packages needed in this chapter.

1 BiocManager : : i n s t a l l ( " m u l t t e s t " , upda t e = FALSE)
2 BiocManager : : i n s t a l l ( " limma " , upda t e = FALSE)
3 i n s t a l l . p a c k a g e s ( "MKomics" )

Make sure that you have already installed the packages from the previous Chapters 2–6. We load all
packages required in this chapter.

1 l i b r a r y ( g gp l o t 2 )
2 l i b r a r y (MKpower )
3 l i b r a r y ( m u l t t e s t )
4 l i b r a r y (MKomics )
5 l i b r a r y ( MKinfer )

As explained in Section 2.4, running library repeatedly is unproblematic.
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7.1 Introduction

In Chapter 6 we already learned about some of the pitfalls of statistical testing. However, the assumption
there was that you just run one statistical test and the result of this test describes the success or failure of
a study. In practice, this is still often the case. In the context of clinical trials, for example, one speaks of
the primary endpoint, which is still often described by a single parameter. However, there are also more
and more situations where this is no longer considered adequate. For example, in studies of migraine
drugs, the following four parameters should be used: pain, nausea, sensitivity to light, and sensitivity to
sound (Offen et al. (2007)). Accordingly, an increasing number of studies are investigating not only one
but several (primary) hypotheses simultaneously.

In addition, high-throughput methods have been developed in recent years and decades, for example in
biology andmedicine, that allow the simultaneous measurements of hundreds or thousands of parameters
(e.g. genes, proteins or metabolites). A large number of variables are also determined simultaneously
on the internet or by smartphone apps and their relevance, for e.g. the placement of advertisements or
shopping behavior is being investigated. In this context, we speak of so-called “big data”, which is then
analyzed by a bioinformatician or a “data scientist” and visualized.

In many fields today not only one but N > 1 (N ∈ ℕ) hypotheses are considered simultaneously and
accordingly not only one butN statistical tests have to be performed simultaneously. We already know:

• for a single test we have an type I error of � ∈ (0, 1)
• If we testN > 1 hypotheses, each at the same significance level �, we have for each of theN tests

again a type I error of �.
However, we do not know how large the error probability is for allN tests together, or, more fundamen-
tally, how the concept of type I error can be canonically applied to N tests. In the following we will
discuss the two most important approaches in multiple testing.

7.2 Family-wise Error Rate (FWER)

In the case of the family-wise error rate (FWER) one considers the probability of making at least one
type I error inN ∈ ℕ tests

FWER = P (“at least 1 type I error”) (7.1)
The exact calculation of this probability is generally difficult. In the case, that the N hypotheses are
(stochastically) independent from each other and all N statistical tests are performed with the same
significance level � ∈ (0, 1), exact calculations are possible. We first use the counter probability

FWER = P (“at least 1 type I error”) = 1 − P (“no type I error”) (7.2)
where in the case of a single test

N = 1∶ P (“no type I error”) = sensitivity = 1 − � (7.3)
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In the case ofN (stochastic) independent tests, it follows that
P (“no type I error”) = (1 − �)N (7.4)

This gives
FWER = 1 − (1 − �)N (7.5)

We plot the situation for � = 0.05.
1 N ← 1 :150
2 FWER ← 100∗ (1 − (1 −0.05 ) ∧N)
3 DF ← d a t a . f r am e (N = N, FWER = FWER)
4 ggp l o t (DF , a e s ( x = N, y = FWER) ) +
5 geom_poin t ( ) + geom_l ine ( ) + x l ab ( "Number o f t e s t s " ) + y l ab ( "FWER [%] " ) +
6 g g t i t l e ( "FWER assuming i n d ep end en t t e s t s " )
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FWER assuming independent tests

The FWER thus increases quite rapidly with the number of tests and we get for example
1 round (DF[ c ( 1 , 2 , 3 , 5 , 1 0 , 1 4 , 4 5 , 5 9 , 9 0 ) , ] , 1 )

N FWER

1 1 5.0

2 2 9.8

3 3 14.3

5 5 22.6

10 10 40.1

14 14 51.2

45 45 90.1

59 59 95.2

90 90 99.0
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Unfortunately, the assumption of independent hypotheses and tests is not fulfilled in practice in the vast
majority of cases. In addition, the exact dependency structure between the hypotheses is difficult to
describe in practice or is not known. Thus, the exact calculation of the FWER is usually not possible and
one can only use estimations (by upper bounds). The simplest and also generally most valid estimation
follows directly from the property of the so-called sub-additivity of probability measures

P

( N
⋃

i=1
Ai

)

≤
N
∑

i=1
P (Ai) (7.6)

for any (measurable) events A1,… , AN . From this we get with
P (Ai) = P (“type I error of test i”) = � ∀i = 1,… , N (7.7)

the following upper bound for the FWER
FWER ≤ min{N�, 1} (7.8)

SinceN� > 1 forN > 1
�
, the minimum ofN� and 1 is considered to obtain a valid probability (∈ [0, 1])

in each case. Instead of � we use an adjusted significance level �̃ < � for each test. In particular, by
defining �̃ = �

N
, we get

FWER ≤ min{N�̃, 1} = N�̃ = N �
N
= � (7.9)

This approach can also be applied to the p values p1,… , pn of the tests, since it is equivalent to adjust
the p values instead of the significance levels. That is, instead of comparing pi with �̃, one compares
p̃i = min{Npi, 1} with �.

Note:
In practice, one usually adjusts p values in multiple testing situations (not the significance level). The
only important exception is the case of sample size calculation. Here it is most of the time easier to
work with the adjustment of the significance level.

The approach outlined above is known as the Bonferroni method

Algorithm 7.1. Let there beN ∈ ℕ statistical tests at significance level � ∈ (0, 1) with null hypotheses
H0,1,… ,H0,N and corresponding alternatives H1,1,… ,H1,N , which lead to the p values p1,… , pN .
The Bonferroni method is the following one-step method

Replace pi by p̃i ∶= min{Npi, 1} (∀i = 1,… , N).

If p̃i ≤ �, chooseH1,i, otherwise keepH0,i (∀i = 1,… , N).

Note:
The Bonferroni method does not require knowledge about the dependence structure of the hypotheses.
This advantage on the other hand makes the Bonferroni method very conservative; i.e., one has a high
certainty that one does not make any false positive decisions. However, this also means that many
correct positive tests may be classified as non-significant (false negative tests). The power of this
method is therefore comparatively small and the type II error comparatively large, respectively.

Download free eBooks at bookboon.com 250



Introduction to statistical data analysis with R 7 Multiple testing

In addition to the Bonferroni method, there are somewhat less conservative so-called multi-step methods
to control the FWER. For these methods the p values have to be sorted in ascending order in a first step

p(1) ≤ p(2) ≤… ≤ p(N)

The main alternative to the Bonferroni method is the method of Holm (1979), which is also known as
Bonferroni-Holm method.
Algorithm 7.2. Let there beN ∈ ℕ statistical tests at significance level � ∈ (0, 1) with null hypotheses
H0,1,… ,H0,N and corresponding alternatives H1,1,… ,H1,N which lead to the p values p1,… , pN .
Let p(1),… , p(N) be the p values sorted in ascending order and H0,(j) and H1,(j) (j = 1,… , N) be the
corresponding hypotheses. The (Bonferroni-) Holm method is applied for j = 1,… , N in a stepwise
manner starting with the smallest p value. The adjusted p value is calculated as follows

Replace p(j) by
p̃(j) = max

k=1,…,j

{

min
{

(N − k + 1)p(k), 1
}} (7.10)

If p̃(j) ≤ �, chooseH1,(j), otherwise keepH0,(j).

It would also be possible to integrate an early stop into the algorithm.
Remark 7.3. If one obtains an adjusted p value that is greater than the predefined significance level, one
could also stop the (Bonferroni-) Holm procedure, since all subsequent adjusted p values will in any case
be at most even larger. In practice, however, all p values are usually adjusted. Therefore, this optional
early stop was not included in the above algorithm.

Note:
The (Bonferroni-) Holm method is a so-called step-downmethod: starting from the smallest p value,
larger p values are considered step by step. This is referred to as step-down, because the test statis-
tic becomes smaller with greater p value, that means the test statistic steps down. This method is
somewhat less conservative (i.e., has greater power) than the Bonferroni method.

We consider a simple example.
Example 7.4. Let there be p values of six tests at a significance level of 5% with null hypotheses
H0,1,… ,H0,6 and alternativesH1,1,… ,H1,6. The corresponding p values are

p1 = 0.004, p2 = 0.011, p3 = 0.039, p4 = 0.012, p5 = 0.001, p6 = 0.480

Without an adjustment of the p values, one would choose the alternative in five of the six cases at a
significance level of 5%.
(a) The Bonferroni method yields

p̃1 = 6p1 = 0.024

p̃2 = 6p2 = 0.066

p̃3 = 6p3 = 0.234

p̃4 = 6p4 = 0.072

p̃5 = 6p5 = 0.006

p̃6 = 6p6 = 2.880 ⇐⇒ 1.000
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We compare our results with the results of function p.adjust.

1 pva l ← c (0 .004 , 0 .011 , 0 .039 , 0 .012 , 0 .001 , 0 . 480 )
2 p . a d j u s t ( pva l , method = " b o n f e r r o n i " )

[1] 0.024 0.066 0.234 0.072 0.006 1.000

i.e., “only”H0,1 andH0,5 can be rejected at the 5% level.
(b)We first sort the p values

p5 ≤ p1 ≤ p2 ≤ p4 ≤ p3 ≤ p6

We calculate the adjusted p values based on this sequence using the (Bonferroni-) Holm method

p̃5 = 6p5 = 0.006

p̃1 = 5p1 = 0.020

p̃2 = 4p2 = 0.044

p̃4 = 3p4 = 0.036 ⇐⇒ 0.044

p̃3 = 2p3 = 0.078

p̃6 = 1p6 = 0.480

In the case of p̃4, the calculated value of 0.036 would be below the the previous value of p̃2. This is not
allowed and is compensated for by the maximum in equation (7.10). We verify the results again using
function p.adjust, where a sorting of the p values is not necessary, but is done within the function.

1 ## sorting not necessary

2 p . a d j u s t ( pva l , method = " holm " )

[1] 0.020 0.044 0.078 0.044 0.006 0.480

Thus, we can reject the null hypotheses H0,5, H0,1, H0,2 and H0,4 at the 5% level. This shows that the
(Bonferroni-) Holm method is less conservative than the Bonferroni method.
Another well-known adjustment method and in a certain sense a counterpart to the (Bonferroni-) Holm
method is the Simes-Hochberg method.
Algorithm 7.5. Let there be N ∈ ℕ independent statistical tests at a significance level � ∈ (0, 1)
with null hypotheses H0,1,… ,H0,N and associated alternatives H1,1,… ,H1,N which lead to the p
values p1,… , pN . Let p(1),… , p(N) be the p values sorted in ascending order and H0,(j) and H1,(j)

(j = 1,… , N) be the corresponding hypotheses. The Simes-Hochberg method for j = N,… , 1 con-
sists of the following calculation rule

Replace p(j) by
p̃(j) = min

k=j,…,N

{

min{(N − k + 1)p(k), 1
} (7.11)

If p̃(j) ≤ �, chooseH1,(j), otherwise keepH0,(j).
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Again, it would be possible to include an early stop in the algorithm.
Remark 7.6. If, starting with the largest p value, one obtains an adjusted p value that is smaller than
the given significance level, one could also stop the procedure, since all following adjusted p values will
in any case be at most even smaller. In practice, however, all p values are usually adjusted. Therefore,
this optional early stop was not included in the above algorithm.

Note:
The Simes-HochbergMethod is a so-called step-up procedure. One starts with the largest p value and
steps up the test statistic. In general, step-up procedures are less conservative than the corresponding
step-down procedures. This is also true for the Simes-Hochberg method, which is somewhat less
conservative than its step-down counterpart, the (Bonferroni-) Holm method. However, it requires
independent tests, which is a rather strong requirement that in most of the cases is not fulfilled in
practice.

We consider the situation of Example 7.4 in the following example.
Example 7.7. We additionally have to assume that the tests are independent. We apply the Simes-
Hochberg procedure to calculate the adjusted p values, where as a reminder

p5 ≤ p1 ≤ p2 ≤ p4 ≤ p3 ≤ p6

We get
p̃6 = 1p6 = 0.480

p̃3 = 2p3 = 0.078

p̃4 = 3p4 = 0.036

p̃2 = 4p2 = 0.044 ⇐⇒ 0.036

p̃1 = 5p1 = 0.020

p̃5 = 6p5 = 0.006

In the case of p̃2 the calculated value of 0.044 would be above the the previous value of p̃4. This is not
allowed and is prevented by the outer minimum in equation (7.11). We check our calculations again
using function p.adjust.
1 ## sorting not necessary

2 p . a d j u s t ( pva l , method = " hochberg " )

[1] 0.020 0.036 0.078 0.036 0.006 0.480

Thus, as in case of the (Bonferroni-) Holm method, we can reject the null hypotheses H0,5, H0,1, H0,2

andH0,4 at the 5% level. However, p̃2 and p̃4 are slightly smaller than in the case of (Bonferroni-) Holm.
This shows that the Simes-Hochberg method is is somewhat less conservative than the (Bonferroni-)
Holm method. However, this is quite expensively bought by the additional requirement of independent
tests.
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Note:
In practice, it is in most cases recommended to use the (Bonferroni-) Holm method for the adjustment
of p values in order to reliably control the FWER. It is less conservative than the Bonferroni’s method
and, in contrast to the Simes-Hochberg method, can also be used for can also be used for dependent
tests.

Finally, we consider an example of sample size calculation in a situation with multiple primary endpoints.
Example 7.8. We assume that we want to consider three (primary) endpoints simultaneously, comparing
two groups. The study is successful, if we obtain a significant difference for all three endpoints. For
simplicity, we further assume that the three parameters reflecting the primary endpoints follow a normal
distribution. The groups can each have different standard deviations. Consequently, we decide to use the
Welch t-test for the sample size calculation. We expect the following situations for the three endpoints:
endpoint 1: |�1 − �2| = 0.5, �1 = 1, �2 = 1.2
endpoint 2: |�1 − �2| = 0.75, �1 = 1.5, �2 = 1.2
endpoint 3: |�1 − �2| = 1.0, �1 = 1.5, �2 = 1.75
We want to achieve a power of at least 90% in the study. Furthermore the FWER should be at most 5%.
For the sample size calculation, the Bonferroni method is usually easiest to use in such cases. Conse-
quently, we should perform the tests with a type I error of � = 0.05∕3. This leads to

1 ## endpoint 1

2 p o w e r . w e l c h . t . t e s t ( d e l t a = 0 .5 , sd1 = 1 .0 , sd2 = 1 .2 ,
3 s i g . l e v e l = 0 . 05 / 3 , power = 0 . 9 )

Two -sample Welch t test power calculation

n = 133.3424

delta = 0.5

sd1 = 1

sd2 = 1.2

sig.level = 0.01666667

power = 0.9

alternative = two.sided

NOTE: n is number in *each* group

1 ## endpoint 2

2 p o w e r . w e l c h . t . t e s t ( d e l t a = 0 .75 , sd1 = 1 .5 , sd2 = 1 .2 ,
3 s i g . l e v e l = 0 . 05 / 3 , power = 0 . 9 )

Two -sample Welch t test power calculation

n = 90.13938
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delta = 0.75

sd1 = 1.5

sd2 = 1.2

sig.level = 0.01666667

power = 0.9

alternative = two.sided

NOTE: n is number in *each* group

1 ## endpoint 3

2 p o w e r . w e l c h . t . t e s t ( d e l t a = 1 .0 , sd1 = 1 .5 , sd2 = 1 .75 ,
3 s i g . l e v e l = 0 . 05 / 3 , power = 0 . 9 )

Two -sample Welch t test power calculation

n = 73.25381

delta = 1

sd1 = 1.5

sd2 = 1.75

sig.level = 0.01666667

power = 0.9

alternative = two.sided

NOTE: n is number in *each* group

We obtain the highest number of cases for the first endpoint. Hence, the study should be conducted with a
sample size of 134 subjects per group, to achieve the desired power of at least 90% and to keep an FWER
of at most 5%. We can use the function power.welch.t.test to calculate not only the sample size, but
also, starting from a sample size the corresponding power. For a sample size of 134, we calculate the
power for the second and third endpoints.

1 ## endpoint 2

2 p o w e r . w e l c h . t . t e s t ( d e l t a = 0 .75 , sd1 = 1 .5 , sd2 = 1 .2 ,
3 s i g . l e v e l = 0 . 05 / 3 , n = 134)

Two -sample Welch t test power calculation

n = 134

delta = 0.75

sd1 = 1.5

sd2 = 1.2

sig.level = 0.01666667

power = 0.9821366

alternative = two.sided

NOTE: n is number in *each* group
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1 ## endpoint 3

2 p o w e r . w e l c h . t . t e s t ( d e l t a = 1 .0 , sd1 = 1 .5 , sd2 = 1 .75 ,
3 s i g . l e v e l = 0 . 05 / 3 , n = 134)

Two -sample Welch t test power calculation

n = 134

delta = 1

sd1 = 1.5

sd2 = 1.75

sig.level = 0.01666667

power = 0.995346

alternative = two.sided

NOTE: n is number in *each* group

In the case of endpoints 2 and 3, a sample size of 134 subjects per group leads leads to a power of 98.2%
and 99.5%, respectively. This approach ignores a possible correlation between the variables. If also
the correlations between the variables are known, a sample size calculation with multivariate normal
distributions, for example by Monte Carlo simulations could be done.

Note:
There is the general problem, that all known approaches to control the FWER are quite conservative,
as they involve a rather strong adjustment of the p values. Therefore, especially in situations with a
lot of tests (> 10), these methods lead to many true differences remaining undetected.

7.3 False Discovery Rate (FDR)

The conservatism of the FWER or more precisely of the known FWER procedures has led to the search
for alternatives for situations with many or very many simultaneous tests. We first consider the possible
testing decisions in multiple testing.

decision for
i = 1,. . . ,N for H0i against H0i Sum
H0i true U V N0(= U + V )
H0i false W S N1(= W + S)
Sum N − R(= U +W ) R(= V + S) N(= U + V +W + S)

Table 7.1: Testing decisions in multiple testing.

With these terms we get FWER = P (V ≥ 1). A possible alternative to a strict control of the probability
of false positive test results is to look for a control “in the mean” (i.e., in the expected value). This led to
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the criterion of the expected proportion of false positive tests in all positive tests, which is referred to as
the false discovery rate (FDR)

FDR = E
(V
R

)

= E
( V
V + S

)

(7.12)

In general, FDR ≤ FWER, which means that FDR is less conservative than FWER.

Probably the most commonly used procedure for calculating the FDR adjusted p values is the method of
Benjamini and Hochberg (1995).
Algorithm 7.9. LetN ∈ ℕ independent or positive dependent statistical tests be given at significance
level � ∈ (0, 1) with null hypotheses H0,1,… ,H0,N and alternatives H1,1,… ,H1,N , leading to the
p values p1,… , pN . Let p(1),… , p(N) be the p values in ascending order and H0,(j) and H1,(j) (j =
1,… , N) be the corresponding hypotheses. The Benjamini-Hochberg method for j = N,… , 1 consists
of the following calculations

Replace p(j) with

p̃(j) = min
k=j,…,N

{

min
{N
k
p(k), 1

}}

(7.13)

If p̃(j) ≤ �, chooseH1,(j), otherwise keepH0,(j).

Remark 7.10. (a) Starting with the largest p value if one obtains an adjusted p value, which is smaller
than the given significance level, one could also stop the procedure, since all following adjusted p values
will in any case be at most even smaller. In practice, however, all p values are usually adjusted. Therefore,
this optional early stop was not included in the above algorithm.

(b) The exact definition of the assumed positive dependence is described in Benjamini and Yekutieli
(2001) and, as shown there, captures many practical situations.

(c) The Benjamini-Hochberg method is, as the method of Simes-Hochberg, a step-up method. We can
compare these two methods directly, since they only differ in the correction factor. In the following we
want to examine whether the Benjamini-Hochberg method indeed leads to smaller p values.

N
k
p(k) ≤ (N − k + 1)p(k) for k = 1,… , N

N
k

≤ (N − k + 1) (p(k) > 0)

N ≤ Nk − k2 + k

0 ≤ N(k − 1) − k2 + k

0 ≤ N(k − 1) − k(k − 1)

0 ≤ (N − k)(k − 1)

In the last equation, with the exception of the cases k = 1 and k = N , the right hand side is always
greater than 0; that means the adjusted p values in case of Benjamini-Hochberg are smaller in all steps
except the first and the last (where they are equal) than in case of Simes-Hochberg.

We continue example 7.4.
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Example 7.11. We additionally assume that the tests are independent or at least only positively depen-
dent. Remember that

p1 = 0.004, p2 = 0.011, p3 = 0.039, p4 = 0.012, p5 = 0.001, p6 = 0.480

and
p5 ≤ p1 ≤ p2 ≤ p4 ≤ p3 ≤ p6

With the Benjamini-Hochberg method we obtain
p̃6 = 1p6 = 0.480

p̃3 =
6
5
p3 = 0.0468

p̃4 =
6
4
p4 = 0.018

p̃2 =
6
3
p2 = 0.022 ⇐⇒ 0.018

p̃1 =
6
2
p1 = 0.012

p̃5 = 6p5 = 0.006

In the case of p̃2 the calculated value of 0.022 would be above the previous value of p̃4. This is not
allowed and is compensated for by the outer minimum in equation (7.13). Again, we can verify these
calculations using function p.adjust.
1 ## Sorting not necessary

2 p . a d j u s t ( pva l , method = " f d r " )

[1] 0.0120 0.0180 0.0468 0.0180 0.0060 0.4800

Thus, we can reject the null hypothesesH0,5,H0,1,H0,2,H0,4 and alsoH0,3 at the 5% level. The adjusted
p values are strikingly smaller than in the case of the FWER methods.

Note:
In practice, the method of Benjamini and Hochberg (1995) is used to control the FDR in most of the
cases. If it is unclear, whether the assumption of positive-dependent tests is fulfilled, one can switch to
the more conservative Benjamini-Yekutieli method, which is described in Benjamini and Yekutieli
(2001) as a modification of the Benjamini-Hochberg method. It controls the FDR in any case.

In the following example, we will apply the presented methods to a real and very well-known gene
expression dataset.
Example 7.12. We use the gene expression data from Golub et al. (1999), which is available in the
Bioconductor package "multtest" (Pollard et al. (2012)). This is one of the first publications in which
gene expression was used for the prediction (diagnosis) of a disease. Namely, samples were taken from
patients with acute lymphoblastic leukemia (ALL) and patients with acute myeloid leukemia (AML) and
patients were classified by their molecular gene signature. The package "multtest" contains several
methods that can be used to adjust p values. We first load the dataset golub.
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1 d a t a ( go lub )
2 s t r ( go lub )

num [1:3051 , 1:38] -1.458 -0.752 0.457 3.135 2.766 ...

- attr(*, "dimnames ")= List of 2

..$ : NULL

..$ : NULL

For clarity, we convert the existing variable golub.cl into a factor.
1 g o l u b . c l ← f a c t o r ( g o l u b . c l , l a b e l s = c ( "ALL" , "AML" ) )
2 t a b l e ( g o l u b . c l )

golub.cl

ALL AML

27 11

We apply the Welch t-test to compare the two types of leukemia. To do this, we first implement a simple
function ttest that returns only the p value of the test. With the help of the function apply, we then
apply this function to the rows (MARGIN = 1) of the dataset.
1 t t e s t ← f u n c t i o n ( x , g ) t . t e s t ( x∼g ) [ [ " p . v a l u e " ] ]
2 p . v a l u e s ← app ly (X = golub , MARGIN = 1 , FUN = t t e s t , g = g o l u b . c l )

We plot the (unadjusted) p values in the form of a histogram plot.
1 h i s t ( p . v a l u e s , n c l a s s = 101 ,
2 main = " His togram of t h e ( u n a d j u s t e d ) p v a l u e s " )

Histogram of the (unadjusted) p values
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With a clear peak at small p values the histogram strongly indicates that there are many significant differ-
ences between the two groups. To illustrate this, we generate (pseudo-)random numbers of two groups
without differences in the next step and calculate the corresponding p values. We use a random data set,
which has the same dimension as the gene expression data set.

1 M ← ma t r i x ( rnorm ( nrow ( go lub ) ∗ nco l ( go lub ) ) , nrow = nrow ( go lub ) )
2 p . v a l u e s . c f ← app ly (M, 1 , t t e s t , g = g o l u b . c l )

We compare the histograms of the p values of the two analyses.

1 pa r ( mfrow = c ( 2 , 1 ) )
2 h i s t ( p . v a l u e s , n c l a s s = 101 , x l a b = "p va l u e " , main = "Golub d a t a " )
3 a b l i n e ( h = 30 . 2 )
4 h i s t ( p . v a l u e s . c f , n c l a s s = 101 , x l a b = "p va l u e " ,
5 main = " random numbers wi th no group d i f f e r e n c e " )
6 a b l i n e ( h = 30 . 2 )

Golub data
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In case of no significant differences, the p values of the Welch t-test follow a uniform distribution. In
particular, it is expected by chance that in about 5% of the cases we will find a p value less than 5% (i.e.
false positive test results).

1 ## expected number

2 0 . 05 ∗nrow (M)

[1] 152.55

1 ## actual number

2 sum ( p . v a l u e s . c f < 0 . 05 )
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[1] 153

We see that the expected number of false positive tests in the case of the random number data set agrees
very well with the actual number. Also in the case of the real data set, which has the same dimension,
one has to expect a corresponding number of false positive test results. In total one obtains the following
number of positive tests.

1 sum ( p . v a l u e s < 0 . 05 )

[1] 1078

How many of these positive test results are true positives and how many false positives?
The exact answer to this question is not known in practice. We calculate the adjusted p values to ap-
proximate the answer to this question, where we use the various methods implemented in function
mt.rawp2adjp of package "multtest" (Pollard et al. (2012)).

1 p . v a l u e s . a d j ← mt . r awp2ad jp ( p . v a l u e s )

For each of the methods, we calculate the number of p values that are less than 5%.

1 colSums ( p . v a l u e s . a d j [ [ " ad j p " ] ] < 0 . 05 )

rawp Bonferroni Holm Hochberg SidakSS SidakSD

1078 103 103 103 103 104

BH BY ABH TSBH_0 .05

695 293 824 807

The first result comes from the unadjusted p values. The procedures Bonferroni to SidakSD are proce-
dures that control the FWER. We see that we would be able to identified only slightly more than 100 of
the more than 1000 significant genes as true positives, if we want to control the FEWR. In this group of
about 100 genes, however, the probability of one or more false positive tests is at most 5%. The remain-
ing four results are from methods that control the FDR. In the case of the Benjamini-Hochberg method
(BH) we obtain nearly 700 genes that we can still consider as significant after adjustment. The expected
proportion of false positives among these nearly 700 genes is therefore at most 5%, which corresponds
to about 0.05 × 695 ≈ 35 genes. Within the original 1078 genes, we have to assume that this fraction
is about 152.551078 ≈ 14%. Hence, instead of about one in seven positive results in the unadjusted list of
significant genes only about one in 20 is false positive in the BH list.
The results of the Benjamini-Yekutieli method (BY) is also interesting, because it does not require any
additional assumption about the form of the dependence. We see that this method gives a result that is
between the FWER methods and the method of Benjamini-Hochberg. For more details on the methods,
we refer to the help page of the of function mt.rawp2adjp and the literature given there.
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Finally, we would like to point out the main result of phase I of theMicroarray Quality Control (MAQC-I)
project, which was initiated by the FDA (U.S. Food and Drug Administration). In this project, which was
about the reproducibility of the results of gene expression analyses with the aid of so-called microarrays,
it was shown that the reproducibility of the results can be increased by combining adjusted p values with
the log-fold change; see MAQC-Consortium (2006). We continue with the above example and take a
look at this combination with the help of a so-called volcano plot.
Example 7.13. To generate the volcano plot, we first need to calculate the log-fold changes. We use the
function pairwise.logfc from the package "MKomics" (Kohl (2020b)).
1 logFC ← app ly ( golub , 1 , p a i r w i s e . l o g f c , g = g o l u b . c l )

We can create the volcano plot with the function volcano from the package "MKinfer" (Kohl (2022b)).
In addition to the log-fold change, we will plot the p values adjusted by the Benjamini-Hochberg method.
It is common in gene expression analyses to consider an adjusted p value of less than 0.05 as significant
and a change of 2-fold or more as relevant. The values of the data set are log10-transformed. Conse-
quently, the limit for the log-fold change is ± log10(2) ≈ ±0.3.
1 vo l cano ( x = logFC , pva l = p . v a l u e s . a d j [ [ " ad j p " ] ] [ , "BH" ] , e f f e c t . l o w = − log10 ( 2 ) ,
2 e f f e c t . h i g h = log10 ( 2 ) , a l p h a = 0 .3 ,
3 x l ab = e x p r e s s i o n ( p a s t e ( l og [ 1 0 ] , " − fo ld change " ) ) ,
4 y l ab = e x p r e s s i o n ( p a s t e ( − log [ 1 0 ] , " ( a d j . p v a l u e ) " ) ) ,
5 t i t l e = " vo l c ano p l o t " )

0.1

−3 −2 −1 0 1 2
log10−fold change

−
lo

g 1
0(

ad
j. 

p 
va

lu
e)

col

low

normal

high

volcano plot

As can be seen in the plot, the p values are first log10-transformed for the plot. By this transformation
very small p values become large negative numbers. Due to the additional change of the sign, these large
negative numbers then become large positive numbers; i.e., the smallest p values are at the top of the
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figure. The limit for the transformed p values is thus at − log10(0.05) ≈ 1.3. The most important genes
are therefore located at the top left (blue) and top right (red) in the plot.
With the help of the functions expression and paste it is also possible to use simple mathematical
expressions in the labeling of plots. Amore detailed description can be found on the help page plotmath.

Note:
The result of the MAQC-I project is not very surprising from a statistical point of view, since the
log-fold change in this case is a measure of the effect and accordingly also represents the relevance of
the results. Independently of gene expression data, it can be assumed that in case of single as well as
multiple tests, a combination of significance and relevance will increase the probability of selecting
true positive test results and thus will increase their reproducibility.

7.4 Exercises

Explain the steps of your analysis and interpret the results.
1. Adjust the following p values manually.

0.001, 0.760, 0.550, 0.001, 0.002, 0.271, 0.005, 0.007, 0.210, 0.008

Use the methods of
a) Bonferroni
b) Bonferroni-Holm
c) Simes-Hochberg
d) Benjamini-Hochberg

Compare your results with the results you obtain using function p.adjust. Interpret the results of
the different methods and compare them with each other. Does it confirm that the FWER methods
are more conservative than the FDR method?

2. Adjust the following p values manually.

0.001, 0.820, 0.950, 0.001, 0.001, 0.011, 0.012, 0.001, 0.009, 0.001

Use the methods of
a) Bonferroni
b) Bonferroni-Holm
c) Simes-Hochberg
d) Benjamini-Hochberg

Compare your results with the results you obtain using function p.adjust. How do the different
adjustment methods behave when several p-values are identical? Compare and interpret the results
of the different methods.
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3. Perform a sample size calculation for the study of Dodick et al. (2019). Two primary endpoints
were considered. First, the proportion of patients free of pain after two hours and second, the
proportion of patients free of pain and rid of the most other symptoms (noise sensitivity, odor
sensitivity, nausea) after two hours. According to the study protocol, which can be found at
https://clinicaltrials.gov/ct2/show/NCT02828020, the assumptions for the sample size
case calculation were
endpoint 1: p1 = 0.1, p2 = 0.24
endpoint 2: p1 = 0.267, p2 = 0.377
Apply function power.prop.test of package "stats" (R Core Team (2022a)) for determining
the required sample size. The FWER should be at most 5% and the power should be at least 90%.
Based on your results, do you consider a sample size of 450 cases per group, as used by Dodick
et al. (2019), as sufficient for the study?

4. Use the ICU dataset and compare patients with and without liver failure with respect to sex, age,
maximum heart rate, maximum body temperature, SAPS-II score, length of stay, and outcome.
Use appropriate tests for each. Store the p values and adjust them using Holm’s method. Use the
function p.adjust. For which variables do you obtain a significant result even after adjusting the
p-values?

5. Use the ICU dataset and compare female and male patients with respect to age, maximum heart
rate, maximum body temperature, SAPS-II score, liver failure, length of stay, and outcome. Use
appropriate tests for each. Store the p values and adjust them using Holm’s method. Use the
function p.adjust. For which variables do you obtain a significant result even after adjusting the
p-values?

6. Use the ICU dataset and compare patients who died with patients who didn’t die with respect to
sex, age, maximum heart rate, maximum body temperature, SAPS-II score, liver failure, and length
of stay.
1 ICUData$ d i ed ← a s . i n t e g e r ( ICUData$outcome == " d i ed " )

Use appropriate tests for each. Store the p values and adjust them using Holm’s method. Use the
function p.adjust. For which variables do you obtain a significant result even after adjusting the
p-values?

7. Download the file normData.RData from my GitHub account (link: https://github.com/

stamats/ISDR/blob/main/normData.RData).
a) Apply the Welch t-test to the rows of the dataset normData, where the two groups are given

by the factor group also included in the RData-file. Draw a histogram of the (unadjusted)
p values. Do you obtain more significant results than would be expected by chance?

b) Calculate the adjusted p values using function mt.rawp2adjp of package "multtest" (Pol-
lard et al. (2012)). Compare the results of the different adjustment methods by calculating,
how many of the adjusted p values are smaller than 0.05 in each case.
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c) The data in normData are log2-transformed. Calculate the log2-fold changes for the rows and
display them together with the Benjamini-Hochberg adjusted p values in a volcano plot.
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For generating this book the following software versions have been used:
• R version 4.2.1 Patched (2022-09-25 r82918), x86_64-pc-linux-gnu
• Locale: LC_CTYPE=de_DE.UTF-8, LC_NUMERIC=C, LC_TIME=de_DE.UTF-8,
LC_COLLATE=de_DE.UTF-8, LC_MONETARY=de_DE.UTF-8, LC_MESSAGES=de_DE.UTF-8,
LC_PAPER=de_DE.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=de_DE.UTF-8, LC_IDENTIFICATION=C

• Running under: Linux Mint 20.3

• Matrix products: default
• BLAS: /usr/lib/x86_64-linux-gnu/libf77blas.so.3.10.3
• LAPACK: /home/kohlm/RTOP/Rbranch/lib/libRlapack.so
• Base packages: base, datasets, graphics, grDevices, methods, parallel, stats, stats4, utils
• Other packages: Biobase 2.56.0, BiocGenerics 0.42.0, boot 1.3-28, coin 1.4-2, datarium 0.1.0,

DescTools 0.99.46, distr 2.8.0, distr6 1.6.11, distrEx 2.8.0, distrMod 2.8.5, evd 2.3-6.1,
exactRankTests 0.8-35, ggplot2 3.3.6, ggpubr 0.4.0, ggsci 2.9, gridExtra 2.3, knitr 1.40,
MASS 7.3-58.1, MKclass 0.3, MKdescr 0.8, MKinfer 0.8, MKomics 0.8, MKpower 0.5,
multtest 2.52.0, qqplotr 0.0.5, RandVar 1.2.1, RColorBrewer 1.1-3, rmx 0.8, RobAStBase 1.2.2,
RobExtremes 1.2.0, RobLox 1.2.0, robustbase 0.95-0, ROptEst 1.2.1, rrcov 1.7-1, scales 1.2.1,
sfsmisc 1.1-13, startupmsg 0.9.6, survival 3.4-0

• Loaded via a namespace (and not attached): abind 1.4-5, actuar 3.3-0, arrangements 1.1.9,
assertthat 0.2.1, backports 1.4.1, broom 1.0.1, car 3.1-0, carData 3.0-5, cellranger 1.1.0,
checkmate 2.1.0, circlize 0.4.15, class 7.3-20, cli 3.4.1, clue 0.3-61, cluster 2.1.4,
codetools 0.2-18, colorspace 2.0-3, compiler 4.2.1, ComplexHeatmap 2.12.1, crayon 1.5.2,
data.table 1.14.2, DBI 1.1.3, DEoptimR 1.0-11, dictionar6 0.1.3, digest 0.6.29, doParallel 1.0.17,
dplyr 1.0.10, e1071 1.7-11, ellipsis 0.3.2, evaluate 0.17, Exact 3.2, expint 0.1-7, expm 0.999-6,
fansi 1.0.3, farver 2.1.1, foreach 1.5.2, generics 0.1.3, GetoptLong 1.0.5, ggsignif 0.6.4, gld 2.6.5,
GlobalOptions 0.1.2, glue 1.6.2, gmp 0.6-6, grid 4.2.1, gtable 0.3.1, httr 1.4.4, IRanges 2.30.1,
iterators 1.0.14, labeling 0.4.2, lattice 0.20-45, libcoin 1.0-9, lifecycle 1.0.3, limma 3.52.4,
lmom 2.9, magrittr 2.0.3, Matrix 1.5-1, matrixStats 0.62.0, matrixTests 0.1.9.1, mgcv 1.8-40,
modeltools 0.2-23, multcomp 1.4-20, munsell 0.5.0, mvtnorm 1.1-3, nlme 3.1-160, ooplah 0.2.0,
param6 0.2.4, pcaPP 2.0-2, pillar 1.8.1, pkgconfig 2.0.3, png 0.1-7, proxy 0.4-27, purrr 0.3.5,
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R6 2.5.1, Rcpp 1.0.9, readxl 1.4.1, rjson 0.2.21, rlang 1.0.6, RobAStRDA 1.2.0,
rootSolve 1.8.2.3, rstatix 0.7.0, rstudioapi 0.14, S4Vectors 0.34.0, sandwich 3.0-2, set6 0.2.5,
shape 1.4.6, splines 4.2.1, stringi 1.7.8, stringr 1.4.1, TH.data 1.1-1, tibble 3.1.8, tidyr 1.2.1,
tidyselect 1.2.0, tools 4.2.1, utf8 1.2.2, vctrs 0.4.2, withr 2.5.0, xfun 0.33, zoo 1.8-11
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confidence interval, 154
efficient, 125
logarithmized observations, 43
unbiased, 125

Assignment, 12, 15
Assignment operator, 15
Attribute, 10

categorical, 10

metric, 10
qualitative, 10
quantitative, 10

Ausreißer, 28
Axis label, 21
balanced accuracy (bACC), 147
balanced design, 232
Bar chart, 70, 71
Bar plot, 21, 22, 37
Base packages, 2
Benjamini-Hochberg method, 257
Benjamini-Yekutieli method, 258
Bernoulli distribution, 87, 89
Big data, 248
Bilirubin, 17
bindings, 219
Binomial distribution, 88, 89, 94, 96, 100
Bitmap, 75
bmp, 75
Bonferroni method, 250
Bonferroni-Holm method, 251
Bootstrap, 129

Normalapproximation interval, 159
bootstrap, 150, 157

BCa-interval, 159
confidenceinterval, 158
percentileinterval, 159
stratified, 150
studentized interval, 159

bootstrap-confidenceinterval, 158
Box-and-whisker plot, 28, 78, 79
box-and-whisker plot, 231
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Box-und-Whisker Plot, 28
Central limit theorem, 103, 155
�2 distribution, 110, 117
�2 test, 206
�2-Test, 209
Cochran-Mantel-Haenszel �2-test, 211, 213
Coefficient of variation, 45
Color coding, 69
ColorBrewer, 67

diverging color palettes, 68
qualitative color palettes, 67
selection criteria, 68
sequential color palettes, 67

Confidence interval, 153
arithmetic mean, 154
confidence bounds, 154
confidence level, 154
CvM-MD estimator, 167
MAD, 164
maximum estimate error, 154
MD estimator, 167
median, 164
normal approximation, 155
one-sided, 153
point estimator, 154
relative frequency, 160
variance, 154

contamination environment, 141
contamination neighborhood, 141
Contingency coefficient, 36
Contingency table, 34
contingency table, 204
Continuity correction, 160
Continuous distribution, 102
Continuous probability distribution, 102
Continuous random variable, 102
Contributed Packages

Installation, 18
Installation with RStudio, 18

Contributed packages, 3
Correlation test

Pearson, 239
Spearman, 239

correlation test, 239
Kendall, 239

Covariance, 59
Cramér’s V, 36
Cramér-von-Mises distance, 139
Cross table, 34
cross-validation, 150
Cumulative distribution function, 86, 89
Cumulative Frequency, 20
CvM-MD estimator, 139

confidence interval, 167
Data export, 13, 14
Data import, 12, 13

check, 15
data structure, 15
RStudio, 12
text file, 12

Data scientist, 248
Density, 102
Density estimation, 52–55
Density plot, 130
Descriptive statistics, 8

goal, 9
Discrete distribution, 86
Discrete probability distribution, 86
Discrete random variable, 86
Distribution

left-skewed, 47
leptokurtic, 48
platykurtic, 48
right-skewed, 47

distribution test, 242
Empirical cumulative distribution function, 33,

34, 57
Empirical frequency distribution, 20
Encapsulated PostScript, 75
environment, 141
eps, 75
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Erlang distribution, 109
Estimation, 124
Estimator, 124, 125

bias-free, 125
consistent, 125
efficient, 125

Estimator construction, 127
Example

body height in Germany, 104
diabetes in Andorra, 93
failure rate of bulbs, 99
hospital length of stay, 112
intelligence quotient, 105
life expectancy of a battery, 110, 114
normal range of thyrotropin (TSH), 107
opinion poll, 180
prevalence of diabetes, 88, 96
quality control of bulbs, 87, 88, 90, 93, 96
type 1 diabetes in Finland, 99
wind speed, 115

Expectation, 87, 103
Exponential distribution, 109, 114
Export of graphics, 74, 76

image, 74
pdf, 74
RStudio, 74

external validation, 129
Extreme value distribution, 114
F distribution, 117, 118
F-test, 237
false discovery rate (FDF), 257
family-wise error rate (FWER), 248
FDR, 257
Finite-population correction, 160
Fisher’s exact test, 206
for-loop, 137
Formula, 79
Formula operator ∼, 79
Friedman Test, 233
FWER, 248

independent tests, 248

Gamma distribution, 109, 110
Gamma function, 109
Gaussian distribution, 103
Geometric distribution, 97, 109
Geometric mean, 42, 43
Geometric standard deviation, 46
Gold standard, 193
golub-dataset, 258
Grammar of graphics, 22
Graphic systems, 22
gross-error model, 141
Handling colors, 65, 66
Hexadecimal code, 69
Histogram, 50, 52–55, 80, 81, 130
HL estimator, 229
Hodges-Lehmann estimator, 229
Holm method, 251
Hypergeometric distribution, 93, 94
Hypothesis, 191

one-sided, 192
two-sided, 192

ICU, 14
ICU dataset, 14

bilirubin, 43, 46
Description of variables, 17
Heart rate, 239
heart rate, 59–63, 82, 83
import, 14
Liver failure, 206
liver failure, 126, 161, 167
liver.failure, 201–204
LOS, 39, 40, 42, 48, 49, 52
outcome, 226, 227
SAPS II, 25–28, 33, 34, 39, 40, 78, 79
sex, 34–37, 204, 206, 220, 237, 238
surgery, 20–23, 34–37, 70, 71, 78, 79
temperature, 41, 42, 44, 45, 47–55, 57, 59–

63, 80–83, 126, 128, 130–132, 134, 135,
138, 140, 155, 156, 164, 165, 167, 215,
216, 220, 226, 227, 237, 238, 242
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ICU-dataset
liver.failure, 207
OP, 208
outcome, 208, 228
Result, 229
result, 231
sex, 207
temperature, 216, 228, 229, 231, 239

ICUData
bilirubin, 148–151
liverfailure, 148–151, 163
temperature, 142, 156

ICUData.csv, 14
Incidence, 99
Incidence rate, 99
Inferential statistics, 8, 123

goal, 9
influence function, 141
internal validation, 129
Interquartile range, 26
Interval estimator, 153
IQR, 26, 48
ITS-Datensatz

SAPS II, 28
Jittering, 31
jpeg, 75
Kendall’s �, 39
Kolmogorov(-Smirnov) distance, 139
Kreuzvalidierung, 129
Kruskal-Wallis test, 226, 228
KS-MD estimator, 139
Kurtosis, 48

normal distribution, 49
Label axes, 22
Left-skewed, 47
Level, 10
Likelihood function, 127
limit of blank (LOB), 146
limit of detection (LOD), 146, 147
limit of quantification (LOQ), 146, 147

limit of quantitation (LOQ), 146, 147
Location and scale model, 129
Log-likelihood function, 127
Log-normal distribution, 107
LOS, 17
MAD, 26, 44, 45, 48, 138

confidence interval, 164
consistent, 139
standardization, 26

Mann-Whitney U-test, see Wilcoxon rank sum
test

Markdown, 6
Maximum likelihood estimator, seeML estima-

tor
McNemar test, 209
MD estimator, 139

confidence interval, 167
consistent, 139
Cramér-von-Mises, seeCvM-MDestimator
Kolmogorov(-Smirnov), 139

Median, 24, 25, 32, 42, 45, 47, 138
confidence interval, 164
consistent, 139

Median absolute deviation, seeMAD
Minimum-distance estimator, seeMD estimator
ML estimator, 127

Bernoulli model, 127
Exponential model, 128
normal distribution model, 128
Poisson model, 128

ML-Schätzer
efficient, 127

Mode, 20
Modelldiagnostik, 129
Modellvalidierung, 129
MSE

maximum asymptotic, 141
Namespace, 115
Negative binomial distribution, 96, 97
Normal distribution, 103, 104
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normal range, 146
Null hypothesis, 192
Number of R packages, 3
odds, 207
odds-ratio, 207
one-sample binomial test, 201

asymptotic, 201
exact, 201

one-sample multinomial test, 204
One-way ANOVA, 226

repeated measures, 233
Welch, 226

one-way ANOVA, 228
OR, 207
Outlier, 48

Kendall’s �, 62
median, 33
quantile, 32
Spearman’s �, 62

Parametric family, 124
Parametric model, 124
Pascal distribution, 97
pdf, 75
pdfLATEX, v, vi
Pearson correlation, 58
Pearson’s contingency coefficient, 36
Percentile, 24
�-coefficient, 36
Pie chart, 23

drawbacks, 23
Plot title, 21, 22
png, 75
Point estimation, see Estimation
Point estimator, see Estimator
Poisson distribution, 99, 100
Population, 8
Portable document format, 75
Portable network graphics, 75
post hoc tests, 228
PostScript, 75

pp-plot, 131
Probability, 86
Probability density, 102
Probability mass function, 86, 89
Probability model, 9
Probability theory, 8
ps, 75
p value

adjusted, 250
Pólya distribution, 97
qq plot, 134
qq-Plot, 135
qq-plot, 132
Quade Test, 233
Quantile function, 86, 89
Quantile-quantile plot, see qq plot
Quartile, 24, 26, 32, 45
Quartile coefficient of dispersion, 45
R Code Chunk, 6
R Consortium, 2
R Core Development Team, 2
R Installation

Linux, 4
Mac OS X, 3
Windows, 3

R Markdown, 6
R script, 5
R Windows GUI, 4
R6 object oriented programming, 91
radius minimax estimators, 142
Random numbers, 89
Random sample, 9
Random variable, 86
Randomization, 87
Rank, 38
Rank correlation, 38, 39, 58
Realisation, 86
Recommendations by E. Tufte, 78
Recommended packages, 3
reference range, 146
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Relative frequency, 20
approximative confidence interval, 160
confidence interval, 160
cross table, 35
efficient, 125
exact confidence interval, 160
unbiased, 125

relative risk, 207
Representative sample, 9
Reproducible research, 124
Resampling, 129
Resubstitution bias, 129
resubstitution bias, 150
RGB code, 69
Right-skewed, 47
RStudio

interactive help, 21
panes, 5
window Environment, 12, 15
window Help, 21
window History, 12
Window Packages, 18

RStudio IDE, 4
S, 1
S4 object oriented programming, 91
Sample size calculation, 196, 200
SAPS II, 17
Scalable vector graphics, 75
Scale of measurement, 10

interval scaled, 10
nominal, 10, 19, 34
ordinal, 10, 24
ratio scaled, 10

Scatter diagram, 60, 82, 83
Scatter plot, 39
sensitivity, 147
Shape measure, 47
significance level

adjusted, 250
Simes-Hochberg method, 252
Six Sigma, 104

Skewness, 47, 48
Spearman’s �, 38, 39, 59
specificity, 147
Standard deviation, 44, 48, 87

standardization, 44
Standard error, 128, 154
Standard normal distribution, 104
starting estimator, 142
Statistical programming language S, 1
Statistical test, 191

acceptance region, 194
�2-test, see �2-test
decisions, 193
extremely significant, 194
highly significant, 194
Kruskal-Wallis test, see Kruskal-Wallis test
one-way ANOVA, see one-way ANOVA
p value, 195
power, 193
rejection region, 194
relevance, 195
sample size calculation, 196
sensitivity, 193
significant, 194
specificity, 193
steps, 194
t test, see t test
test for normal distribution, see test for nor-

mal distribution
type I error, 193
type II error, 193, 194
very significant, 194
Wilcoxon rank sum test, 224

statistical test
Ansari-Bradley Test, seeAnsari-Bradley Test
correlationtest, see correlationtest
distribution test, 242
F-test, see F-test
Fisher’s exact test, see Fisher’s exact test
one-sample binomial test, 201
post hoc, 228
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svg, 75
t distribution, 117, 118
t test

two-sample, 195–198
t-test

Bootstrap, 220
Hsu, 220
one-sample, 215
paired, 217
Permutation, 220
Two-sample, 199
two-sample, 199
Welch, 220, 228

Tagged image file format, 75
test

pairwise, 228
Student, 219
Two-sample, 219

Test for normal distribution
Cram?r-von Mises Test, 242
Shapiro-Francia Test, 242

test for normal distribution, 242
Lilliefors (Kolmogorov-Smirnov) test, 242
Shapiro-Wilk test, 242

test of McNemar, 209
tiff, 75
2� rule, 104
2 × 2-contingency table, 204
Types of attributes, 10
Universe, 8
Variable, 10

metric, 41
Variable names, 17
Variance, 44, 87, 103

confidence interval, 154
standardization, 44, 125
unbiased, 125

volcano plot, 262
Waiting time distribution, 97

Weibull distribution, 113, 114
weighted accuracy (bACC), 147
Wilcoxon rank sum test, 224

pairwise, 228
Wilcoxon signed rank test, 216
WMW test, seeWilcoxon rank sum test
WMW-test, 228

pairwise, 228
Working directory

change, 14
check, 14

Youdens J statistics, 147
z-transformation, 47
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(..count..)/sum(..count..), 22
—, 6
.RData, 19
:, 96
::, 115
<-, 15
==, 82
?barplot, 21
[, 48, 82
$, 20
“‘, 6
“‘r, 6
abline, 51
add = TRUE, 105
aes, 22
alternative = ’greater’, 215
animation (package), 76
annotate, 61, 130, 223, 231
ansari.test, 237, 238
ansari.text, 238
apply, 259
barplot, 21, 37, 63, 83
base (package), 2, 229
beside = TRUE, 37
Binom, 91
binom.test, 201
binomCI, 161–163, 202
binomDiffCI, 205, 210
BinomFamily, 163
binwidth, 52
Biobase (package), 122

BiocManager (package), 122
bmp, 75
boot, 167, 171, 178
boot (package), 3, 122, 158, 159, 167, 171
boot.ci, 158, 167, 171
boot.t.test, 220
boxplot, 78, 84
breaks, 50
brewer.pal, 69
c, 18, 24, 73
ceiling, 24
cex.points, 98
character, 82
check.names, 17
check.names = FALSE, 17
chem, 246
chisq.test, 206
chisq_test, 207
class (package), 3
closed = left|hyperpage, 55
closed = right|hyperpage, 55
cluster (package), 3
cmh_test, 213
codetools (package), 3
coin (package), 207, 209, 213, 219, 224, 228
col, 70
col2rgb, 70
colorRampPalette, 73
colors, 70
compiler (package), 2
conf.int, 155
confint, 156, 163, 167, 169
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constant, 26
ContCoef, 36
cor, 39
cor.test, 239–241
CramerV, 36, 207
CramerVonMisesTest, 242
curve, 104, 112, 114
CV, 45
CvMMDEstimator, 140
data, 217
data.frame, 12, 15, 20, 222, 230, 246
datarium (package), 233
datasets (package), 2, 217
dbinom, 89
decisionStump, 151
density, 52
DescTools (package), 18–20, 35, 36, 43, 46, 47,

49, 207, 240, 242, 246
detectCores, 178
dev.off, 76
dexp, 110
dgamma, 110
dhyper, 94
display.brewer.all, 67
distr (package), 85, 91, 94, 98, 101, 105, 107,

110, 115, 118, 119, 128, 135
distr6 (package), 86, 91, 95, 98, 101, 106, 108,

111, 112, 114–116
distrMod (package), 127–129, 140, 156, 163, 167
distrModOptions, 129
dlnorm, 107
dnbinom, 97
dnorm, 104
do.points = FALSE, 57
dPlot, 144
dpois, 100
ecdf, 33, 57
EMT (package), 204
exactRankTests (package), 219, 224
exp, 43

expr, 105
expression, 263
Factor, 17
FALSE, 16
fill, 79
fisher.test, 206
fitdistr, 128, 129, 142, 156
fitdistrplus (package), 127
for, 137
foreign (package), 3
Freq, 20
from, 105
Gammad, 119
geom_bar, 22, 27, 37
geom_boxplot, 28, 79
geom_density, 54, 130
geom_gitter, 31
geom_histogram, 52, 54–56, 130
geom_point, 29
geom_smooth, 61
geom_text, 223, 231
getOutliers, 143
gganimate (package), 76
ggpaired, 236
ggplot, 22, 27, 54, 57, 130, 231
ggplot2 (package), 18, 19, 22, 28, 34, 37, 40, 49,

52, 54, 57, 63, 64, 71, 79, 81, 83, 84,
130, 131, 133, 134, 136, 222, 225, 231

ggpubr, 236
ggpubr (package), 225
ggsci (package), 71, 72, 83, 223, 231
ggtitle, 22, 27
Gmean, 43
graphics (package), 2
grDevices (package), 2, 75
grid (package), 2
grid.arrange, 144, 236
gridExtra (package), 144, 236
Gsd, 46
head, 233
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hist, 53, 55, 84
hsu.t.test, 220
ICUData, 15
illustrate.boxplot, 28
illustrate.quantile, 25
install.packages, 18
install_github, 86
integer, 17
IQR, 26
iqrCV, 45, 46
jpeg, 75
KendallTauB, 240
KernSmooth (package), 3
knitr (package), v, vi, 6
KolmogorovMDEstimator, 140
kruskal.test, 226, 227
kruskal_test, 228
Kurt, 49
lattice (package), 3
legend, 82
legend.text = TRUE, 37
library, 19, 65, 86, 122, 191, 247
LillieTest, 242
lines, 53
load, 13
lower.tail = FALSE, 90, 94, 100
lwd, 130
mad, 26
madCI, 165
main, 21
mantelhaen.test, 211
MASS (package), 3, 122, 127, 128, 142, 156,

246
Matrix (package), 3
mcnemar.test, 209
MDEstimator, 140, 167
mean, 41, 128
meanCI, 155, 159

meanlog, 107
medCV, 45, 46
median, 25
medianCI, 164, 165
methods (package), 2
mfrow, 137
mgcv (package), 3
mh_test, 209
MKclass (package), 148–152
MKdescr (package), 18, 25, 27, 28, 45, 59
MKinfer (package), 155, 156, 159, 161, 164, 165,

202, 205, 210, 220, 229, 234, 235, 262
MKomics (package), 262
MKpower (package), 182, 189, 244
MLEstimator, 128, 156, 163
mt.rawp2adjp, 261
mu = 37.5, 215
multinomial.test, 204
multtest (package), 258, 261, 264
n, 105
nlme (package), 3
nnet (package), 3
normCI, 156, 159
NormLocationScaleFamily, 129
nrow, 20
numeric, 17
oneway.test, 226
optCutOff, 148
optCutoff, 149, 150
outlier, 143
p.adjust, 252, 253, 258, 263, 264
pairwise.fun, 229, 235
pairwise.logfc, 262
pairwise.t.test, 228
pairwise.wilcox.test, 228
pal_npg, 71, 73
par, 137
parallel (package), 2, 122, 178
paste, 263
path.package, 146
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pbinom, 89
pdf, 75
percent_format, 22
PercTable, 35
perfMeasures, 148–150
perfScores, 152
perm.t.test, 220
pexp, 110
pgamma, 110
Phi, 36
phyper, 94
pie, 23
plnorm, 107
plot, 33, 39, 52, 57, 82, 84, 91, 92
plotmath, 263
pnbinom, 97
png, 75
pnorm, 104
points, 40, 82
postscript, 75
power.anova.test, 200
power.hsu.t.test, 244
power.prop.test, 200, 264
power.t.test, 196, 197, 200
power.welch.t.test, 244, 255
ppois, 100
ppPlot, 144
prop.table, 37
prop.test, 201, 204
proportions, 34
qbinom, 89
qexp, 110
qgamma, 110
qhyper, 94
qlnorm, 107
qnbinom, 97
qnorm, 104
qpois, 100
qqline, 132, 137, 246
qqnorm, 132, 137, 246
qqPlot, 144

qqplot, 135
qqplotr (package), 131, 133, 136
quantile, 24
r, 6
rank, 63
rate, 110
rbinom, 89, 90
RColorBrewer (package), 67, 69, 72, 83
read.*, 12, 13
read.csv, 12, 15
read.csv2, 12
read.delim, 12
read.delim2, 12
read.table, 12
readRDS, 13
remotes (package), 86
remotes::install_github, 86
remove.packages, 19
rep, 80
rev, 80
rexp, 110
rgamma, 110
rgb, 69
rhyper, 94
rlnorm, 107
rm.oneway.test, 234
rmarkdown (package), 6
rmx, 142, 169
rmx (package), 122, 142, 143, 145, 146, 169,

170
rnbinom, 97
rnorm, 104, 137, 198, 244
RobExtremes (package), 145, 187, 188
roblox, 169, 185, 186
RobLox (package), 122, 142, 145, 169, 185, 186
roptest, 145, 172, 185–188
ROptEst (package), 145, 172, 185–188
round, 35, 42
rpart (package), 3
rpois, 100
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save, 13
save.image, 13, 14
saveRDS, 13
scale_colour_manual, 83
scale_fill_grey, 37
scale_y_*, 22
scales (package), 18, 22
scan, 12
sd, 44, 128
sdCI, 156, 159
sdlog, 107
selfesteem, 233
seq, 24
shapiro.test, 242
ShapiroFranciaTest, 242
sim.ssize.wilcox.test, 244
simCorVars, 59
sIQR, 27
Skew, 47
sleep, 217
spatial (package), 3
SpearmanRho, 240, 241
splines (package), 2
ssize.propCI, 182, 189
stat_compare_means, 225
stat_ecdf, 34, 57
stat_function, 130
stat_pp_band, 131
stat_pp_line, 131
stat_pp_point, 131
stat_q_band, 136
stat_q_line, 136
stat_qq, 133
stat_qq_line, 133
stat_qq_point, 136
stats (package), 2, 200, 242, 264
stats4 (package), 2, 127
str, 15
stringsAsFactors, 16
summary, 92, 95, 98, 101, 106, 108, 111, 112,

114, 116, 143

survival (package), 3
svg, 75
t.test, 155, 198, 199, 215, 217, 219, 220
table, 20, 34, 37
tail, 233
tapply, 37, 38, 222, 229, 230, 238
tcltk (package), 2
theme, 29
tiff, 75
to, 105
tools (package), 2
TRUE, 16
utils (package), 2
var, 44
var.equal = TRUE, 219
var.test, 237
View, 15
vignette, 146
volcano, 262
Weibull, 115
wilcox.exact, 219, 224
wilcox.test, 224
wilcox_test, 224
wilcoxsign_test, 219
write.csv, 13
write.csv2, 13
write.table, 13
xlab, 29
xlim, 29, 51
ylab, 21, 22, 27
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