
33

Ultra-Low Power Data Storage for
Sensor Networks

GAURAV MATHUR

Google, Inc.

PETER DESNOYERS

Northeastern University

and

PAUL CHUKIU, DEEPAK GANESAN and PRASHANT SHENOY

University of Massachusetts

Local storage is required in many sensor network applications, both for archival of detailed event
information, as well as to overcome sensor platform memory constraints. Recent gains in energy
efficiency of new-generation NAND flash storage have strengthened the case for in-network storage
by data-centric sensor network applications. We argue that current storage solutions offering a
simple file system abstraction are inadequate for sensor applications to exploit storage. Instead,
we propose Capsule—a rich, flexible and portable object storage abstraction that offers stream, file,
array, queue and index storage objects for data storage and retrieval. Further, Capsule supports
checkpointing and rollback of object state for fault tolerance. Our experiments demonstrate that
Capsule provides platform independence, greater functionality and greater energy efficiency than
existing storage solutions.

Categories and Subject Descriptors: B.7.1 [Integrated Circuits]: Types and Design Styles—
Memory technologies; B.8.2 [Performance and Reliability]: Performance Analysis; D.4.2 [Op-

erating Systems]: Storage Management

General Terms: Design, Measurement, Performance, Experimentation

Additional Key Words and Phrases: storage system, flash memory, energy efficiency, objects, file
system, sensors, embedded systems

This research is supported in part by NSF grants EEC-0313747, CNS-0626873, CNS-0546177,
CNS-052072, CNS-0325868, and EIA-0080119.
Preliminary versions of this work appear in Proceedings of the ACM Conference on Embedded
Networked Sensor Systems (SenSys’06) and the IEEE/ACM Conference on Information Processing
in Sensor Networks (IPSN/SPOTS).
Authors’ addresses: G. Mathur; email: gmathur@google.com; P. Desnoyers; email: pjd@ccs.neu.edu;
D. Ganesan; email: dganesan@cs.umass.edu; P. Shenoy; email: shenoy@cs.umass.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2009 ACM 1550-4859/2009/11-ART33 $10.00
DOI 10.1145/1614379.1614385 http://doi.acm.org/10.1145/1614379.1614385

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 33, Publication date: November 2009.

33:2 • G. Mathur et al.

ACM Reference Format:

Mathur, G., Desnoyers, P., Chukiu, P., Ganesan, D., and Shenoy, P. 2009. Ultra-low power data
storage for sensor networks. ACM Trans. Sens. Netw., 5, 4, Article 33 (November 2009), 34 pages.
DOI = 10.1145/1614379.1614385 http://doi.acm.org/10.1145/1614379.1614385.

1. INTRODUCTION

Storage is an essential ingredient of any data-centric sensor network applica-
tion. Common uses of storage in sensor applications include archival storage
[Li et al. 2006], temporary data storage [Hellerstein et al. 2003], storage of sen-
sor calibration tables [Madden et al. 2005], in-network indexing [Ratnasamy
et al. 2002], in-network querying [Ratnasamy et al. 2001] and code storage
for network reprogramming [Hui and Culler 2004], among others. A primary
consideration in these applications is the problem of energy efficiency, which
has been addressed by a significant fraction of the research in this area. Due
to the high relative energy cost of network communication in wireless sensor
networks—transmitting a single bit may require as much energy as hundreds
of instructions [Hill et al. 2000]—this work has often focused on in-network
aggregation and data fusion to reduce radio traffic. This computation vs. com-
munication trade-off [Pottie and Kaiser 2000] has had a tremendous influence
on the design of both algorithms and platforms for sensor networks. However,
the emergence of a new generation of NAND flash storage has added a new
variable to this design equation, as sufficient amounts of storage may be used
to reduce network traffic by updating the application lazily, deferring trans-
mission of a datum until we are confident that it will be needed by the appli-
cation. At least one recent study has shown that certain forms of flash storage
have combined (write+read) per-byte energy costs two orders of magnitude less
than total per-byte energy costs (transmit+receive) for low-power radio trans-
mission [Mathur et al. 2006b]. This development challenges existing sensor
network design principles, motivating a new set of principles based on trading
off not only local computation but local storage as well in order to reduce radio
usage and thereby optimize system performance and lifetime.

The emergence of low-cost high-capacity flash storage prompts us to ask: How
can a sensor network storage system be designed to minimize total energy costs
for varied sensor applications? To do this we require a storage system which
can provide services tailored to the application, so as to minimize redundant
or unnecessary work performed by the application or storage system. This in
turn requires a flexible and tunable storage system, which may be adapted to
the needs of varied applications for archiving, indexing, and querying.

1.1 Limitations of Existing Flash Storage Systems

Our survey of existing storage solutions (Table I) shows a mismatch between
the features they offer and the requirements of sensor applications. We describe
in more detail below the limitations we find in these existing sensor storage
solutions; to overcome the limitations of these solutions, we develop a new
object-based storage system, Capsule, offering rich functionality and flexibility
without compromising energy efficiency.

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 33, Publication date: November 2009.

Ultra-Low Power Data Storage for Sensor Networks • 33:3

Table I. Comparison of Capsule to Related Efforts

Storage Energy Memory Wear Check-
Devices Optimized Optimized Leveling pointing Abstraction Usage Models

Matchbox NOR No Yes No No Filesystem File storage;
Calibration Tables

MicroHash MMC Yes No Yes No Stream/Index Stream Storage and
Indexing

ELF NOR No Yes Yes No Filesystem Same as Matchbox
YAFFS NAND No No Yes No Filesystem Portable devices
Capsule NAND, NOR Yes Yes Yes Yes Object Data Storage and

Indexing; Packet
Queues; Temporary
Arrays

Mismatch between Storage Abstraction and Application Needs. Many flash-
based storage systems, such as YAFFS, YAFFS2 [Manning 2002], Match-
box [Gay 2003] and ELF [Dai et al. 2004], provide a byte-structured file system
abstraction to the application. While the traditional rewritable file has come to
dominate traditional computing, it often lacks features needed by some sensor
applications, or incurs extra operations to implement properties not needed by
others. For instance, a common use of local storage is to store a time series of
sensor observations and maintain a index on these readings to support queries.
If implemented over a byte-structured rewritable file, any overhead needed to
provide rewrite capabilities would be wasted, while each application would need
to to independently implement both log and index structures. An integrated in-
dexed data stream abstraction, however, would allow multiple applications to
take advantage of a single implementation, while that implementation could
be carefully tailored to the system storage characteristics.

At least one existing system, MicroHash [Zeinalipour-Yazti et al. 2005], pro-
vides such an abstraction. Yet just as a file abstraction is poorly suited to some
sensor applications, an indexed stream is poorly suited to others. Examples
include “live” application data, where storage is being used as an extension of
device memory, calibration tables, and configuration data, to name a few. In
these cases, yet other storage abstractions may be best suited to the applica-
tion’s requirements. Rather than advocate a single storage abstraction for all of
these cases, we argue that the storage substrate should support a “rich” object
storage abstraction with the ability to create, store and retrieve data objects of
various types such as files, streams, lists, arrays, and queues, enabling effective
use of flash storage by the widest range of applications.

Lack of Portability. Most existing storage solutions have been designed to op-
erate only on a specific type of flash memory—for example, both Matchbox and
ELF require capabilities found only in NOR flash but not in NAND. Further,
sensor applications written for the same flash memory type do not seamlessly
work across different hardware platforms; for example, Matchbox relies on fea-
tures of a specific flash device, which are not available in most other devices.
Capsule, on the other hand, supports portability across both NOR and NAND
flash memories, as its design was based on the subset of features common to
both these types of flash memories. It organizes the flash as a log and employs
a flash abstraction layer to hide the details of the specific flash being used,

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 33, Publication date: November 2009.

33:4 • G. Mathur et al.

allowing the higher Capsule layers to be used without any modification on vir-
tually any flash memory.

Lack of Support for Use as a Backing Store. Current flash-based storage
systems use flash as a persistent data storage medium. However, memory is
often a scarce commodity on small sensor platforms, with Telos and Mica motes
containing 10KB and 4KB of RAM, respectively. With empirical studies showing
the energy cost of accessing data in flash becoming nearly as low as for data in
RAM, it is now possible for applications to use higher-capacity flash for storing
live application data and manipulating it in an energy efficient manner. For
instance, tasks can use flash as a form of backing store to store large data
structures, as well as intermediate results for data processing tasks, enabling
the implementation of local data processing algorithms that manipulate data
sets larger than the size of RAM.

Files, however, typically do not provide the appropriate storage abstraction
for this purpose. It may be nearly impossible to map the data structures of some
applications onto append-only streams as provided by, for example, Matchbox,
while mapping to rewritable byte-structured files may still be difficult and in-
efficient. Instead we argue that a richer storage abstraction will allow com-
putational structures to map more easily onto storage, resulting in decreased
complexity and increases in efficiency.

Incompatibility with Energy and Memory Constraints. Energy efficiency and
the small amount of available memory are key constraints of tetherless sen-
sor platforms—consequently, the storage subsystem for sensor platforms must
optimize both constraints. In contrast, traditional nonsensor storage systems
have been optimized for bandwidth and access latency, with little regard for
memory usage or energy. NAND-flash based file systems such as YAFFS [Man-
ning 2002] are difficult to use on sensor platforms, due to their large RAM
footprint. And even in explicitly energy-aware nonsensor file systems, such as
BlueFS [Nightingale and Flinn 2004], the target energy usage is far higher
than can be sustained by long-lived sensor platforms.

Among existing approaches designed specifically for sensor devices, only
MicroHash [Zeinalipour-Yazti et al. 2005] makes claims about energy efficiency.
MicroHash, however, requires more memory than is feasible on the sensor plat-
forms which we target, as well as being restricted to a subset of the Capsule
functionality.

1.2 Case for In-Network Storage and Archival

Semiconductor-based flash memory is now widely used in applications rang-
ing from BIOS code on motherboards to image storage in digital cameras, and
volume production is driving costs down while capacities rise. The emergence
of new generations of flash memories has dramatically altered the capacities
and energy efficiency of local flash storage. It is possible today to equip sen-
sor devices with several gigabytes of low-power flash storage, while available
capacities continue to grow even further.

Further, Table II presents a summary of the results of our detailed mea-
surement study of flash memories [Mathur et al. 2006b]. We notice that new

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 33, Publication date: November 2009.

Ultra-Low Power Data Storage for Sensor Networks • 33:5

Table II. Total (device + platform) Amortized Per-byte Energy Consumption of Selected Flash
Memories. Data Approximates the Average Energy Needed by the System to Store a Single

Byte of Data to Flash and Retrieve it Once

Per-byte storage cost (μJ) Platform Operations measured
Atmel NOR – 0.5MB 6.92 Mica2 write+read
Hitachi MMC – 128MB 1.108 Mica2 erase+write+read
Telos NOR – 1 MB 0.368 Telos write+read
Micron NAND – 128MB 0.017 Mica2 erase+write+read

Fig. 1. Energy cost of storage compared to most energy-efficient radio (CC2420 radio) used on
Mote platforms. Note that values include energy used by the CPU during device driver execution.

generations of flash memories not only offer higher capacity, but do so at de-
creasing energy costs per byte stored. Equipping the MicaZ platform with
NAND flash memory allows storage to be two orders of magnitude cheaper
than communication, and comparable in cost to computation. (i.e., only several
times more expensive than copying data in RAM.) Figure 1 compares the per-
byte energy cost of computation, communication and storage for various sensor
platforms, and shows that the cost of storage has fallen drastically with the
emergence of efficient NAND flash memories. This observation fundamentally
alters the relative costs of communication versus computation and storage,
making local archival on sensor platforms attractive as an alternative to com-
munication, where it was not in the past.

Based on these trends, we argue that the design of sensor network architec-
tures should include consideration of the 3-way trade-off among computation,
communication, and storage, rather than ignoring storage as is often done today.
This in turn results in the following recommendations: (i) Emphasis should be
placed on in-network storage at sensors, and in particular most nodes should be
equipped with high-capacity, energy-efficient local flash storage. (ii) Algorithms
design should take into account the potential for cheap storage to reduce expen-
sive communication. (iii) There is a need for an energy-efficient storage solution
that allows sensors to maximally exploit storage for in-network data storage
and archival; Capsule is an example of such a system.

1.3 Research Contributions

In this article we survey existing storage systems for sensor network systems,
describe their shortcomings for sensor applications, and propose Capsule, which

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 33, Publication date: November 2009.

33:6 • G. Mathur et al.

overcomes these drawbacks. We then present the design of the Capsule system,
and give analysis and experimental results demonstrating its advantages. Our
design and implementation provides the following contributions over prior
approaches:

Object-Based Abstraction. Capsule provides the abstraction of typed stor-
age objects to applications; supported object types include streams, indexes,
stacks and queues. A novel aspect of Capsule is that it allows composition of
objects—for instance, a stream and index object can be composed to construct
a sensor database, while a file object can be composed using buffers and a mul-
tilevel index object. In addition to allowing reads and writes, objects expose a
data structure-like interface, allowing applications to easily manipulate them.
Storing objects on flash enables flexible use of storage resources: for instance,
data-centric indexing using indices, temporary buffers using arrays, buffering
of outgoing network packets using queues and storing time-series sensor obser-
vation using streams. Furthermore, the supported objects can also be used by
applications to store live data and thereby use flash as an extension of RAM.

Portability Across Flash Devices. Capsule has been designed assuming only
the common characteristics of both NAND and NOR flash memories. It employs
a flash abstraction layer that uses a log-structured design to hide the low-level
details of flash hardware from applications, allowing Capsule to function on
any flash memory.

Energy-Efficient and Memory-Efficient Design. While traditional storage sys-
tems are optimized for throughput and latency, Capsule is explicitly designed
for energy- and memory-constrained platforms. Capsule achieves a combina-
tion of very high energy-efficiency and a low memory footprint using three tech-
niques: (a) a log-structured design along with write caching for efficiency, (b)
optimizing the organization of storage objects to the type of access methods, and
(c) efficient memory compaction techniques for objects. While its log-structured
design makes Capsule easy to support on virtually any flash storage media,
this paper focuses on exploiting the energy efficiency of NAND flash memories.

Handling Failures Using Checkpointing. Sensor devices are notoriously
prone to failures due to software bugs, system crashes, as well as hardware
faults due to harsh deployment conditions. Capsule simplifies failure recov-
ery in sensor applications by supporting checkpoints and rollback—it provides
energy-efficient support for checkpointing the state of storage objects and the
ability to rollback to a previous checkpoint in case of a software fault or a crash.

To evaluate the effectiveness of the Capsule design, we have augmented
Mica2 Motes with a custom-built board allowing the use of external NAND
flash, and have implemented Capsule in TinyOS with an option to use either
the Mica2 NOR flash memory or our custom NAND flash board. We perform
a detailed experimental evaluation of Capsule on our storage-centric camera
sensor network to demonstrate its energy efficiency. Our results show that even
after extensively using Capsule to store and process camera images, Capsule
consumed only 5.2% of the total energy consumed by the system. In addition, we
have compared our file system implementation against Matchbox, and conclude
that not only does Capsule provide a significantly more useful set of features,
but does so with better performance and a better overall energy profile as well.

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 33, Publication date: November 2009.

Ultra-Low Power Data Storage for Sensor Networks • 33:7

Fig. 2. Object Storage architecture.

The remainder of this article presents an overview of the Capsule architec-
ture in Section 2, discusses its design in Sections 3 and 4, and presents Capsule
implementation and evaluation in Sections 5 and 6. Section 7 shows the use of
Capsule in a storage-centric camera sensor network, while we discuss related
work in Section 8 and conclude in Section 9.

2. CAPSULE ARCHITECTURE

Capsule employs a three layer architecture consisting of a flash abstraction
layer (FAL), an object layer, and an application layer (see Figure 2). The FAL
hides the low-level flash hardware details from the rest of the object store. It
provides an explicitly log-structured store of variable length records or chunks.
Chunks are buffered as they are received from the object layer and written
in batches, possibly interleaving chunks from multiple objects. At read time,
however, chunks may be addressed and retrieved individually. Writes do not
overwrite old data, but rather allocate new storage; when storage runs low, the
FAL triggers a reclamation or cleaning process which explicitly garbage-collects
stale data.

The object layer resides above the FAL. This layer provides native and flash-
optimized implementation of basic objects such as streams, queues, stack and
static indices, and composite objects such as stream-index and file. Each of
these structures is a named, persistent object in the storage layer. Applications
or higher layers of the stack can transparently create, access, and manipulate
any supported object without dealing with the underlying storage device.

In addition to storage and retrieval methods for use by the application, each
object class in Capsule supports efficient compaction methods that are invoked
by the FAL when a cleaning operation is triggered. Finally, the object layer
supports a checkpointing and rollback mechanism to enable reliable recovery
of object data from software faults or crashes.

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 33, Publication date: November 2009.

33:8 • G. Mathur et al.

2.1 Flash Abstraction Layer

The Capsule FAL is shaped by the constraints of the hardware on which it may
be implemented, and in particular those of the targeted flash devices. These
are block storage devices, organized into pages of typically 512 or 2048 bytes;
however, unlike a disk drive it is possible to read (or sometimes write) partial
portions of a page. A key constraint of all flash devices is that data cannot
be rewritten—once written, a location must be reset or erased before it may
be written again. These erase operations are relatively slow and expensive,
and must be performed in granularity of an erase block, which usually spans
multiple pages, complicating storage management.

High-density NAND flash devices impose additional constraints: the number
of nonoverlapping write operations in each page is typically limited to between
1 and 4, and (for some devices) pages within an erase block must be be written
sequentially. Finally, flash devices will degrade after a certain number of write
cycles—typically 105—and so care must be taken to spread writes across the
device rather than repeatedly erasing and rewriting the same location.

To support flash portability in Capsule, we must conform to the strictest
constraints placed by any flash memory technology we wish to support. Since
NAND flash constraints are the most restrictive, we use these in Capsule: (i)
Data may not be overwritten until it is erased; (ii) writes should be mapped
to pages in a way that spreads them across all pages, to avoid degradation,
and (iii) writes must be ordered sequentially within each page and within each
erase block.

These constraints lead directly to a log-structured approach, where new in-
formation is written sequentially to storage as it arrives, rather than in prede-
termined locations. Although this approach was originally applied to storage
systems (in Rosenblum and Ousterhout’s Sprite LFS [Rosenblum and Ouster-
hout 1992]) for the purpose of minimizing disk seeks when writing, it is applica-
ble to a broader range of problems, as we see here. The FAL treats the storage
device as a “log”—it sequentially traverses the device from start to the end,
writing data to consecutive pages. Once data has been written to a segment of
the storage device it cannot be modified until it has been freed and erased.

By buffering small writes and aggregating them into full-page write oper-
ations we eliminate the need to read existing data and then rewrite it, thus
minimizing the energy required. By moving the write frontier sequentially,
out-of-order writes to pages within an erase block are avoided. In addition,
since a page will not be rewritten until the write frontier wraps around and
all other pages have been written once, we maximize the time until any single
page reaches its write cycle limit—in order for any page to reach 105 write/erase
cycles, a total of nearly N · 105 pages must be written, where N is the size of
the flash.1 At the same time, the ability of flash devices to quickly and effi-
ciently perform small, randomly-addressed reads allows us to easily retrieve
data which has been stored in an interleaved log. By taking this log-structured

1Given proper wear leveling, we note that energy limits will prevent small wireless sensors from
exceeding write cycle limits. For instance, at 0.017μJ per byte, 105 write cycles on a 1GB device
would require 6 · 105 J , as compared to the capacity of 2 AA cells, 2 · 104 J .

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 33, Publication date: November 2009.

Ultra-Low Power Data Storage for Sensor Networks • 33:9

Table III. Taxonomy of Applications and Storage Objects

Application Data Type Storage object
Archival Storage Raw Sensor Data Stream
Archival Storage and Querying Index Stream-Index
Signal Processing or Aggregation Temporary array Index
Network Routing Packet Buffer Queue/Stack
Debugging logs Time-series logs Stream-Index
Calibration Tables File

approach we are thus able to work within the hardware constraints imposed
by NAND flash memories, and in turn meet the less restrictive constraints of
NOR flash (e.g., on existing Mote platforms) with minimum modification.

In a log-structured system, modifications do not overwrite existing stor-
age, but rather allocate new storage locations. As data is modified, this pro-
cess will eventually fill all available storage with stale data, requiring some
sort of cleaner task akin to a memory garbage collector. Cleaning algorithms
such as hole-plugging [Matthews et al. 1997; Rosenblum and Ousterhout 1992]
proposed for disk-based log-structured file systems, however, are not feasi-
ble on flash devices which lack in-place modification capability. Instead, the
Capsule approach divides responsibility for compaction. The FAL is responsi-
ble for tracking flash usage, and under low storage conditions will notify the
object layer that compaction is needed. Each object class, in turn, is responsible
for traversing and compacting its own instances.

2.2 Object Storage Layer

While the Capsule FAL is largely shaped by system constraints, the organi-
zation of the Object Storage Layer is primarily determined by application re-
quirements. A cross section of representative sensor network applications or
use cases is shown in Table III, along with the corresponding Capsule object
which has been defined to meet the needs of that application; these use cases
are described below.

First, many data-centric applications and research efforts need the capabil-
ity to perform in-network archival storage, indexing and querying of stored
data. Sensor data is typically stored as time series streams that are in-
dexed by time [Li et al. 2006], value [Zeinalipour-Yazti et al. 2005], or event
[Ratnasamy et al. 2002]. Such applications need to efficiently store data streams
and maintain indices.

A second class of applications that can take advantage of efficient storage
are those that need to use flash memory as a backing store to perform memory-
intensive computation. Many data-rich sensing applications such as vehicle
monitoring, acoustic sensing, or seismic sensing need to use large arrays to
perform sophisticated signal processing operations such as FFT, wavelet trans-
forms, etc. In cases where such processing is only needed infrequently, external
storage may allow the use of a much smaller, cheaper, and less energy-intensive
processor for the task.

A number of system components can also benefit from efficient external stor-
age. The radio stack in TinyOS [Levis et al. 2005] does not currently support

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 33, Publication date: November 2009.

33:10 • G. Mathur et al.

packet queuing due to memory limitations on supported CPUs; Queue objects
could be used to buffer packets on flash in an energy-efficient manner. De-
bugging distributed sensors is often a necessary aspect of sensor network de-
ployments, and requires efficient methods for storing and retrieving debugging
logs [Ramanathan et al. 2005]. Other uses of the object store include support
for persistent storage of calibration tables, corresponding to different sensors
on the node. Finally, there is a need to support a file system abstraction to eas-
ily migrate applications that have already been built using existing sensor file
systems such as Matchbox.

Based on this taxonomy of flash memory needs of applications (Table III),
we identify a set of objects—Stream, Queue, Stream, Index, Stream-Index, and
File—that correspond to these application needs. Four of these (Stack, Queue,
Stream, and Index) form the basic first-order objects in Capsule, while Stream-
Index and File may be composed from multiple basic objects.

3. FLASH ABSTRACTION LAYER DESIGN

Meeting flash device constraints was necessary in order for the Flash Trans-
lation Layer to function on the devices we targeted. In order to function well,
however, it was necessary to optimize the FAL for energy efficiency and a low
memory footprint. In the following section we provide details of this optimiza-
tion, describing the trade-off between memory and energy for our preferred plat-
form, NAND flash. In addition, we briefly discuss handling of flash hardware
errors, as well as provisions for supporting non-Capsule-aware applications.

3.1 Energy / Memory Trade-Off

The goal of the Capsule system is to use as little memory as possible on
resource-constrained sensor nodes, while at the same time minimizing energy
use for typical sensor network applications. These criteria rule out existing
NAND flash-based storage systems designed for portable devices, which have
either large memory footprints, poor energy efficiency, or both. Some systems
such as JFFS [Woodhouse 2001], for instance, maintain an in-memory logical-
to-physical block map to simplify erase management, while others such as
YAFFS [Manning 2002] maintain an in-memory map of the file blocks—in both
cases using large amounts of memory. Energy consumption of these systems is
high, as well, as even the smallest modification requires a read-modify-write of
an entire page.

In order to minimize the amount of data that must be written to or re-
trieved from flash, the FAL supports read/write of variable-length records called
chunks, each consisting of a 2-byte length, 1 byte of checksum, and a data field.
Our design questions, then, boil down to these: When should chunks be written
to flash? Where should they be stored until they are written? Similarly, when
should they be retrieved? And where should retrieved chunks be stored?

In order to answer these questions we first look at our design constraints.
Memory is the easy constraint—low-end sensors have between 4096 and 10240
bytes of RAM, of which a substantial fraction will no doubt be used by the
application itself. Under the most demanding conditions it is unlikely that we

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 33, Publication date: November 2009.

Ultra-Low Power Data Storage for Sensor Networks • 33:11

Table IV. Measured Energy Use and Latency of Flash Operations for Toshiba 128MB Flash

Write Read Write Read
cost (μJ) cost (μJ) latency latency

NAND Flash (device only) per operation 13.2μJ 1.073μJ 238us 32 us
per byte 0.0202μJ 0.0322μJ 1.530us 1.761us

NAND Flash + CPU per operation 24.54μJ 4.07μJ 274us 69us
(driver execution) per byte 0.0962μJ 0.105μJ 1.577us 1.759us

would be able to reserve more than 500 or 1000 bytes for the storage sub-
system, although in other cases somewhat more memory might be available.
Energy constraints are more difficult to quantify, as the energy used is de-
pendent on the flash access pattern. In Table IV we see measured device and
system energy costs incurred by the read and write operations of a Toshiba
TC58DVG02A1FT00 128 MB NAND flash [Toshiba 2003]. This device, like the
others supported by Capsule, supports variable-length reads and writes at non-
block-aligned offsets. (subject to constraints discussed previously)

Our measurements show that energy use may be modeled accurately as a
fixed cost per operation, plus an additional cost for each byte retrieved or writ-
ten. In particular, device and system energy cost for a set of operations is:

Edevice = 13.2 · opswrite + 0.020 · byteswrite +
1.07 · opsread + 0.032 · bytesread μJ (1)

Esystem = 24.4 · opswrite + 0.096 · byteswrite +
4.07 · opsread + 0.105 · bytesread μJ. (2)

The device energy value reflects measurements of the energy used by the
flash device itself, and represents a lower bound on the efficiency achievable
unless a lower-power device is used. The system energy value, conversely,
reflects energy used by the entire system, including that necessary to power
the CPU while executing the flash device driver and transferring data. Use of a
lower-power processor than the Atmel AVR used in these experiments, or more
highly optimized drivers, might result in lower energy use.

Write Buffering. In Figure 3 we see three possible write buffering strategies
for the FAL: no buffering, per-object buffers, and a single pooled buffer. The
unbuffered strategy is expensive in terms of both energy and storage space.
The high per-operation write energy usage causes a series of small writes to
use many times more energy than if the same data were written in a single
page-sized operation. In addition, if a flash with page size p can only support
k (typically 4 or 8) writes to a page between erase operations, either a buffer
of p/k bytes is needed, or after a series of k small writes it will be neces-
sary to move to a fresh page, wasting any remaining storage in the current
page.

The per-object buffering strategy in Figure 3(b) allows us to accumulate an
entire page of data and then write it in a single operation. This would result
in significantly lower energy usage, due to the decreased number of write op-
erations; however, memory usage would be high. In TinyOS, for instance, this
would prevent the dynamic creation of storage objects, as buffers would have

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 33, Publication date: November 2009.

33:12 • G. Mathur et al.

Fig. 3. Write buffering alternatives for the Capsule FAL.

to be allocated at compile time. Even worse, buffers might never be flushed to
flash if (as we expect) typical object sizes are smaller than a full page.

Instead, we use the log-structured approach shown in Figure 3(c), where
writes to different objects are interleaved in the order they are received, and
stored in a single shared buffer. When this buffer fills, or optionally when the
application forces a flush operation, the buffer is written to flash and then
cleared. The size of this buffer may be configured at compile time; the minimum
size is p/k as described before, but we advocate that the FAL write buffer be
made as large as possible given system memory constraints, up to a full flash
page.

Read Buffering. As shown in Table IV, read operations have very little per-
operation overhead. In turn, this means that data transfer is expensive in com-
parison: reading an extra 30 or 40 bytes uses as much energy as invoking an
additional read operation. We therefore avoid any form of speculative read op-
erations (e.g., reading an entire block when a data chunk is requested), as these
would not be justified unless we were very confident that the data would not
be wasted. Since TinyOS is not a fully multitasking system we are unable to
buffer multiple reads before they are issued; if we were able to it would still be
unlikely that they would be contiguous.

For these reasons we avoid any form of read buffering in Capsule, instead
transferring data directly into application memory. For fixed-length objects this
is straightforward, as the buffer supplied in the read request can be expected
to be the same length as the data to be retrieved. For variable-length objects,
however, it is more complicated, as the application is likely to supply a buffer
large enough to hold the maximum-length object. To optimize this case, our
flash driver provides an efficient single-phase read mechanism for retrieving
such chunks. As described above, each chunk contains a header with checksum
and length. The length field is examined as it is received, and is then used to
terminate the driver operation after the correct number of data bytes have been
retrieved.

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 33, Publication date: November 2009.

Ultra-Low Power Data Storage for Sensor Networks • 33:13

3.2 Storage Compaction

As described in Section 2, the FAL and Object Layer cooperate to reclaim stor-
age when necessary. The design of this compaction process is based on three
principles: (i) the FAL determines when, while the Object Layer is responsible
for how; (ii) compaction and deletion should be deferred as long as possible, and
(iii) simple cleaning algorithms are best for simple devices.

The FAL hides the size of the flash device and the amount of free storage
from the Object Layer, in part because device characteristics may make it dif-
ficult to calculate how much additional application data the device is currently
able to store. Instead, the FAL tracks device utilization, and when it reaches a
configured threshold (by default 50%), the FAL issues a compaction event to the
Object Layer. (In the TinyOS implementation, each upper-layer object exports
a Compaction event input, which is wired to the FAL compaction interface.)

In the current implementation, each Capsule object implements a simple
copy-and-delete compaction procedure, where each data structure is traversed
and rewritten to the current write frontier. Once all object classes have per-
formed compaction, the FAL marks the older blocks for deletion. These blocks
are not erased until needed for new storage, thus preserving their contents as
long as possible, for example, for checkpoint and rollback purposes.

Performance of the compaction process is dependent on the amount of live
data to be copied vs. the size of the flash device. To derive the amortized cost of
compaction, we analyze operation starting at the completion of one compaction
operation until the end of the next compaction. If the fraction of storage used
by live data is r, and the size of the device is N , then during this cycle we will
write N (1 − r) bytes of data, followed by a compaction phase which copies Nr
bytes of data; the fraction of bytes written by the reclamation process is thus r.

In order to guarantee enough free storage for the compaction phase to com-
plete, r must be less than 1/2; however at this utilization level, Capsule will
perform as much work compacting as it will writing application data. We rec-
ommend that device utilization be kept substantially lower than 50%—for ex-
ample, 25% should be feasible on large devices with dynamic data structures.

3.3 Error Handling

Flash memory is vulnerable to a number of types of error, including single-bit er-
rors in NAND flashes, and corrupted data due to transmission errors or crashes
during writes. The FAL provides support for a simple checksum for each chunk,
enabling the FAL and higher layers to check for errors after reading a chunk. In
addition, for NAND flashes which are vulnerable to single-bit errors, the FAL
provides a single-error-correction double-error-detection (SECDED) page level
code. If the chunk checksum cannot be verified, the entire page is read into mem-
ory, and the error correction operation can be performed using the SECDED
code. Error correction can be disabled for extremely memory limited sensor
platforms, or if more reliable NOR flashes are used, as it it necessitates allocat-
ing an extra page-sized read buffer; our experience has shown these errors to be
rare in practice. Our current implementation supports the chunk-level check-
sums, and support for page-level error correction is part of our future plans.

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 33, Publication date: November 2009.

33:14 • G. Mathur et al.

Table V.
Complexity Analysis of Storage Object Methods. Here N = Number of Elements in

the Storage Object, H is the Number of Levels in the Index, and k = Number of
Pointers Batched in a Chunk for Compaction or Indexing

Object Name Operation Energy Cost
Stack Push 1 chunk write

Pop 1 chunk read
Compaction N header reads, chunk reads and chunk

writes + N
k chunk reads and writes

Queue Enqueue 1 chunk write
Dequeue N-1 chunk header reads + 1 chunk read
Compaction Same as Stack

Stream Append 1 chunk write
Pointer Seek 0
Seek N-1 chunk header reads
Next Traversal N-1 chunk header reads + 1 chunk read
Previous Traversal 1 chunk read
Compaction Same as Stack

Index Set H chunk write
Get H chunk read
Compaction kH −1

k−1 chunk reads and writes

3.4 Block Allocation

The FAL also offers a raw read and write interface that bypasses the log-
structured component and accesses the flash directly. The FAL designates a
part of the flash (a static group of erase blocks) for special objects or appli-
cations that directly access the flash. Such direct access is necessary for root
directory management performed by the Checkpoint component (discussed in
Section 4.4), which is used for logging critical data and needs to have control
over when this data is committed to storage. In addition to checkpointing, net-
work re-programming (e.g., Deluge [Hui and Culler 2004]) requires direct flash
access, as to re-program a Mote reprogramming module needs to store new code
contiguously in flash, without FAL headers.

4. OBJECT STORAGE LAYER DESIGN AND ANALYSIS

The Capsule Object Storage layer resides above the FAL, and provides both
basic and composite objects based on our application taxonomy described above.
Basic objects are based on linked lists (Stream, Queue, and Stack) and a k-
ary tree for the Index. Composite objects are the Stream/Index, that provides
powerful methods for retrieving data by value or by temporal position, and a
file system that provides a flexible and powerful replacement for systems such
as Matchbox. Each of these objects is designed for simplicity, using only small
amounts of RAM buffering, code space, and CPU cycles.

In this section we discuss these storage objects and their methods (summa-
rized in Table V) in more detail. We describe for each their internal implemen-
tation and external access methods supported, and analyze the energy costs
of both access and compaction operations. In addition, we describe how check-
pointing and rollback is supported in our system for failure recovery.

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 33, Publication date: November 2009.

Ultra-Low Power Data Storage for Sensor Networks • 33:15

Fig. 4. Structure and operation of the Queue and Stack objects.

4.1 Linked List-Based Objects

Three of the basic objects identified in our taxonomy in Table V are implemented
using a simple linked list structure, where each record written to flash contains
a header with a pointer to the previously written record, and a list head pointer
is maintained in RAM. The Queue object is the simplest of these—push()writes
a new record and updates the head pointer, while pop() retrieves the most
recent record, the address of which may be found in the head pointer in RAM.
The link pointer in the retrieved record will indicate the previous record, and
will be used to update the RAM head pointer. The Queue and Stack operations
are shown in Figure 4.

The Queue object implementation is more complex, as the lack of in-place
update forces us to use the same reverse-linked list as a queue. To retrieve the
record at the tail of the queue it is necessary to traverse the entire list, at a cost
of retrieving N record headers where N is the length of the queue.2 In addition
the in-RAM state for a queue must include a length count so that we can locate
the end of the queue, as we are unable to modify link pointers when removing
items from the tail of the queue. The Stream object, in turn, is similar to the
Queue, with additional methods for seeking to absolute locations within the
list, as well as traversing in either direction from a given point.

Compaction. As the Queue, Stack, and Stream objects use the same in-flash
data structure, the compaction process is identical for each. It involves retriev-
ing each object, and then rewriting them in the order that they were originally
written. To avoid traversing the list for each object, we use a two-step scheme,
as shown in Figure 5. First, the list is traversed from head to tail (last inserted
to first inserted element) at cost N · R(h) (see Equation (2)), where N is the
number of elements in the stack and h is the total header size, that is, the sum
of FAL and stack headers. The pointers for each of these elements are written
into a temporary stack of pointers, perhaps after batching k pointers together
in each write incurring cost N

k ·W (d), where d is the size of a stack chunk. Next,
the stack of pointers is traversed (at cost N

k · R(d)) and each data chunk corre-
sponding to the pointer is now read and then rewritten to the FAL to create the

2The inability to modify data after it is written to flash rules out the traditional queue implemen-
tation where new items are linked to the object at the tail.

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 33, Publication date: November 2009.

33:16 • G. Mathur et al.

Fig. 5. Compaction of the Stack object.

Fig. 6. Organization and compaction of the Static Index object.

new compacted stack (at cost N · (R(d) + W (d))). The total cost is, therefore,

(N + N
k

) · (R(d) + W (d)) + N · R(h),

as shown in Table V. Note that the reclamation cost is independent of the
amount of stale storage which is reclaimed. This is the case with other object
types, as well, due to the use of a copying compaction mechanism.

4.2 Static-Sized Index/Array

Our trie-based index object permits data to be stored using (ke y , opaque data)
format, and supports a range of ke y values that is fixed at compilation time.
Since this object provides an access pattern similar to that of an array, we use
both interchangeably in this paper. Figure 6 shows the structure of the index
object—it is hierarchical with a fixed branching factor k at each level (k = 10 in
the figure). Due to platform limitations (i.e., TinyOS does not support dynamic
memory allocation) the number of levels for any individual object is fixed.

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 33, Publication date: November 2009.

Ultra-Low Power Data Storage for Sensor Networks • 33:17

Figure 6 shows the construction of a two-level index. Level zero of the imple-
mentation is the actual opaque data that has been stored. Level one of the index
points to the data, and level 2 of the index aggregates the first level nodes of
the index. Each level of the index has a single buffer that all nodes at that level
share. For example, the set operation on the index looks up and then loads the
appropriate first level index corresponding to the key. It then writes the value
to FAL and updates the first level of the index with the location of the written
value. If the next set or get operation operates on the same first level index node,
then this index gets updated in memory. But if the next operation requires some
other first level index node, the current page is first flushed to flash (if it has
been modified) and then the second level index is updated similarly, and finally
the relevant first level page loaded into memory.

Compaction. This involves traversing the object in a depth-first manner,
reading the pointers and writing them to FAL. The cost of the compaction op-
eration is therefore the same as the cost of reading the index in a depth-first
manner, and writing the entire index into a new location in flash. If the index
has H levels, and each index chunk can store k pointers, the total number of in-
dex chunks in the tree is kH−1

k−1 . Compaction involves reading and writing every
chunk in the index, and has cost

kH − 1
k − 1

(R(d) + W (d)).

4.3 Composite Storage Objects

The object store permits the construction of composite storage objects from the
basic set of objects that we described. The creation and access methods for
the composite objects are simple extensions of the primary objects, but com-
paction is more complex and cannot be achieved by performing compaction on
the individual objects. Object composition is currently done “by-hand” in Cap-
sule; making nesting of objects simpler is part of our future plans. We present
two composite storage objects. The first composite object that we describe is
a stream-index object that can be used for indexing a stored stream. For in-
stance, an application can use a stream-index to store sensed data and tag seg-
ments of the stored stream where events were detected. Second, we describe
our implementation of a file system in Capsule using a file composite storage
object that emulates the behavior of a regular file. This object facilitates port-
ing applications that have already been developed for the Matchbox filesystem
[Gay 2003] to Capsule.

4.3.1 Stream-Index. The stream-index object encapsulates a stream and
an index object and offers a powerful interface to the application. The applica-
tion can directly archive its data to this object by using the add method, which
saves the data to the stream. When an event is detected in the sensed data, it
can be tagged using the setTag method, which stores the pointer to the stored
stream data in the next free key in the index object. This interface can also be
trivially modified to tag ranges of sensor readings instead of a single reading.
The seekmethod allows the application to seek into the stream based on a given

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 33, Publication date: November 2009.

33:18 • G. Mathur et al.

Fig. 7. Design of a filesystem using Capsule.

tag, and the next and previous methods allow the application to traverse data
in either direction.

4.3.2 File System. Capsule can be used to construct a simple filesystem
with the help of the index object discussed earlier—Figure 7 shows our design
and we provide a brief overview of our implementation. A file system object is
composed of two classes of objects—file objects, representing individual files,
and a singleton file-system object, storing metadata associated with each file.
The file system object is responsible for assigning each file a unique file-id and
mapping the filename to its associated file-id. Each file-id maps to a unique
file object, which is actually a static index storing the contents of the file in
separate fixed-size file blocks, with the index pointing to the location of each
file block on flash. The object also maintains the current length of the file (in
bytes) and any working read/write pointers that the file may have. Additionally,
associated with each open file are two file block-sized buffers, serving as read
and write caches. When performing a data write, the data is copied into the
write cache, which is flushed when filled. Similarly, data is first read into the
read cache before being returned to the application. Organizing the file blocks
using the index object allows us to support random access to each block. We use
this feature to modify previously written data, by first loading the appropriate
file block from flash, modifying the relevant bytes, writing the block to a new
location, and then updating the index accordingly. The previous block is now
no longer referenced, and will be reclaimed after compaction.

Our implementation supports simultaneous reads and writes to a single file,
and multiple files can be open and operated upon at the same time. In addition,
our file system takes advantage of the checkpoint-rollback capability of Capsule
to provide consistency guarantees. These features are not supported by ELF
and Matchbox, and demonstrate the flexibility of object composition within
Capsule. In addition to this comparison of features, in Section 6.3 we provide a
performance comparison Capsule and Matchbox, as well.

4.4 Checkpointing and Rollback

Capsule also supports capability for checkpointing and rollback of objects:
checkpointing allows the sensor to capture the state of the storage objects,
while rollback allows the sensor to go back to a previously checkpointed state.
This not only simplifies data management, but also helps recover from software
bugs, hardware glitches, energy depletion, and other faults which may occur in
sensor nodes.

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 33, Publication date: November 2009.

Ultra-Low Power Data Storage for Sensor Networks • 33:19

The inability of flash to overwrite data once written in fact simplifies the
implementation of checkpointing. The internal pointers of an object (e.g., the
next pointer for a stack or a queue) cannot be modified once they are written
to flash. The in-memory state of a storage object (which typically points to its
written data on flash) thus becomes sufficient to provide a consistent snapshot
of the object at any instant. The in-memory states of all active storage objects,
then, provides a snapshot of the entire system at any given instant. We im-
plement checkpointing support using a special checkpoint component, which
exposes two operations—checkpoint and rollback. The checkpoint operation
captures the snapshot of the system and stores it to flash. This saved snapshot
can be used to revert to a consistent state in the instance of a system failure or
object corruption.

The Capsule storage objects implement a serialize interface. The check-
point component calls the checkpoint method on this interface when it needs
to take a snapshot. This method is passed a shared memory buffer where
it stores its in-memory state, which is then written to flash. The checkpoint
component uses a few erase blocks in flash as the root directory that it manages
explicitly, bypassing the FAL (Section 3.4). Once the checkpoint data has been
written to flash, a new entry is made to the root directory pointing to the
created checkpoint.

In the event of node restart or an explicit rollback call from the application,
the root directory is searched to find the most recent checkpoint, which is used to
restore system state. CRCs are maintained over the checkpoint data and
the root directory entries to prevent corrupt checkpoints (possibly caused by
the node crashing while a checkpoint is being created) from being recovered. The
root directory entry provides a pointer to the saved checkpoint state, and the
the checkpoint component uses the rollback method in the serialize interface
to replace the in-memory state of linked objects using the same shared buffer
mechanism as checkpoint.

5. IMPLEMENTATION

Implementing Capsule3 presented a number of unique challenges. TinyOS
is event-driven, and thus Capsule is written as a state machine, using the
split-phase paradigm. The checkpointing component required careful timing
and co-ordination between components for its correct operation. We went
through multiple iterations of Capsule design to maximize code and object
reuse even within our implementation—for example, the checkpoint compo-
nent uses a stack object to store state information, as do the stack compaction
methods for streams and stacks (Section 4.1). Another major concern was the
overall memory footprint of Capsule. We optimized the Capsule architecture
to minimize buffering and maximize code reuse; buffers have only been used
at stages where they have a sufficient impact on the energy efficiency. A test
application that does not use checkpointing/recovery but uses one instance of
each of the following objects—index, stream, stream-index, stack, and queue,
requires only 25.4Kb of ROM and 1.6Kb of RAM. Another application that uses

3Capsule source code is available at http://sensors.cs.umass.edu/projects/capsule/

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 33, Publication date: November 2009.

33:20 • G. Mathur et al.

one each of the stack and stream objects along with checkpointing support,
had a foot-print of 16.6Kb in ROM and 1.4Kb in RAM. While the Capsule code
base is approximately 9000 lines of code, the percentage of the code used by
an application depends largely on the number and type of objects instantiated
and the precise Capsule features used.

6. EVALUATION

In this section, we evaluate the performance of Capsule on the Mica2 platform.
While Capsule works on the Mica2 and Mica2dot NOR flash as well as our
custom NAND flash adapter, the energy efficiency of the NAND flash [Mathur
et al. 2006a] motivated its use as the primary storage substrate for our
experiments. However, the experiment comparing the Capsule and Matchbox
file systems is based on the Mica2 NOR flash (Section 6.3), demonstrating
Capsule’s portability.

Our evaluation has four parts—first, we benchmark the performance of the
FAL, including the impact of read and write caching. Second, we perform an
evaluation of the performance of the different storage objects, measuring the
relative efficiency of their access methods, and the impact of access pattern
and chunk size on the performance of checkpointing and storage compaction.
Third, we describe interesting trade-offs that emerge in an application study
that combines the different pieces of our system and evaluates system perfor-
mance as a whole. Finally we compare the performance of a file system built
using Capsule (Section 4.3.2) with Matchbox. No such comparison was possi-
ble between Capsule and MicroHash, which relies on the significantly greater
memory size of the RISE platform [Mitra et al. 2005], and could not be used on
the platforms supporting Capsule.

Experimental Setup. We use our fabricated NAND flash adapter for the Mica2
with the Toshiba 128 MB flash [Toshiba 2003] for our experiments; the device
has a page size of 512 bytes, an erase block size of 32 pages and permits a
maximum of 4 nonoverlapping writes within each page. Our measurements
involved measuring the current at the sensor and flash device power leads, with
the help of a 10� sense resistor and a digital oscilloscope. The mote was powered
by an external power supply with a supply voltage of 3.3V; energy consumption
“in the field” with a partially discharged battery may be somewhat lower.

6.1 FAL Performance

The choices made at the FAL are fundamental to the energy usage of Capsule.
We ask two questions in this section: How much write buffering should be
performed at the FAL layer? and How much buffering should be performed
by a higher layer before writing to FAL? To answer these, we vary write and
read buffer sizes and examine the energy consumption of the write and read
flash operations. Figure 8 shows our results, where each point corresponds to
the energy consumed by writing or reading one byte of data amortized over a
buffer of that particular size.

Impact of FAL Write Buffer Size. For this particular flash the minimum write
buffer size is 128 bytes, to avoid exceeding the limit of 4 writes per 512 byte

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 33, Publication date: November 2009.

Ultra-Low Power Data Storage for Sensor Networks • 33:21

Fig. 8. The amortized energy consumption of the read and write operations was measured for
different data sizes using the Mica2 and the fabricated Toshiba 128 MB NAND adapter. The figure
clearly shows that the write operation has a high fixed cost involved in comparison to the read
operation.

page, as described in Section 3. The per-byte write curve in Figure 8 shows that
write costs increase significantly as write buffering decreases. A reduction in
buffer size from 512 bytes to 128 bytes saves 9.4% of the available memory on
the Mica2, but the per byte write energy consumption increases from 0.144μJ
to 0.314μJ, that is, 118%. Reducing memory consumption from 512 bytes to 256
bytes results in memory savings of 6.3% of the available memory on the Mica2
mote, but at 40% additional energy cost.

Thus, increased write buffering at the FAL has a considerable impact on
reducing the energy consumption of flash write operations—consequently, the
FAL write buffer should be a full page, or if not, then as large as possible.

Higher Layer Buffer size. In our log-structured design, chunks are passed
from the object layer to FAL, and are not guaranteed to be stored contiguously
on flash. As a result, reads of consecutive chunks must be performed one at a
time, since consecutive object chunks are not necessarily spatially adjacent on
flash. To amortize the read cost, data buffering needs to be performed at the
object or application layer. We aim to find the appropriate size of the higher
layer buffer through this experiment.

Figure 8 illustrates the effect of chunk size on the cost of flash reads. Sim-
ilar to write costs, the per-byte cost of a read reduces with increasing buffer
sizes, dropping sharply (by 72%) as the buffer size increases from 8 bytes to
64 bytes. However, beyond 64 bytes the per byte cost decreases more slowly,
and larger read buffers have relatively less impact. For example, increasing the
write buffer from 128 bytes to 512 bytes results in a gain of 0.17μJ , whereas
the same increase in read buffer size results in a gain of only 0.024 μJ , that is,
only 14% of the write benefit.

Thus, approximately 64 bytes of data buffering at the storage object or
application layer is sufficient to obtain good energy efficiency for flash read
operations.

6.2 Performance of Basic Storage Objects

In this section, we first evaluate the energy efficiency of each access method
supported by the core Capsule objects. Then, we present some important

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 33, Publication date: November 2009.

33:22 • G. Mathur et al.

Fig. 9. Breakdown of energy consumed by the operations supported by core Capsule storage objects
storing 64 bytes of data. The operations resulting in writes to FAL consume substantially less energy
than the read operations.

trade-offs that arise in the choice of chunk size based on the access pattern
of an object, using the Index object as a case study. Finally, we measure the
performance of compaction and checkpointing.

6.2.1 Energy Consumption of Object Operations. Table V presents an anal-
ysis of the energy consumption of the access methods supported by the core
objects. In this experiment we use micro-benchmarks to evaluate energy con-
sumption of methods on different objects. The following specific choice of oper-
ating parameters is used.

—Stack, Queue, and Stream Objects. Each object stores 5 elements, each of size
64 bytes.

—Index Object. A two-level index, where the second level is cached in memory,
and the first level is read from and written to flash as discussed in Section 4.2.
Each index node holds 5 pointers to the next lower level.

A 512-byte FAL write buffer was used in all experiments. In each test 5
elements were stored in the object, and then the 5 elements were retrieved; in
cases where energy consumption varied between calls to the same operation,
the order of the operations is indicated. Thus dequeue(1) is the first dequeue
operation and dequeue(5) the last.

Figure 9 provides an energy consumption breakdown of the Capsule object
methods.

—Stack. the energy cost of the push operation and the pop operation are not
affected by repeated operations, as each operates directly on the top of the
queue. The push operation uses 34% less energy than that pop, as multiple
push may be buffered in the FAL, while each pop results in a read to flash.

—Queue. the energy cost of the enqueue operation is the same as the Stack push
operation, as the work done is equivalent. The cost for dequeue varies; the
first operation executed (dequeue(1)), which must traverse pointers from the
tail to the head, is 2.4 times more expensive than dequeue(5), which removes
the last remaining element and is equivalent to a Stack pop.

—Stream. the Stream object combines traversal methods of both the Stack and
the Queue – the append operation is equivalent to push, previous to pop, and
next to dequeue, with equivalent costs as seen in Figure 9.

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 33, Publication date: November 2009.

Ultra-Low Power Data Storage for Sensor Networks • 33:23

—Index. The cost of get and set are constant across repetitions, as for Stack,
but slightly higher due to the increased complexity of the structure. As with
Stack, the read operation, get, is more expensive (by 52%) than the write
operation, set, due to write buffering in the FAL.

For each of the object types, our measurements validate the cost analysis pre-
sented in Table V.

6.2.2 Impact of Access Pattern and Chunk Size. The access pattern of an
object has considerable impact on the energy consumed for object creation and
lookup, and we evaluate this in the context of the Index object (refer Section 4.2).
We consider four different access patterns in this study: sequential and random
insert, and sequential and random lookup. Our evaluation has two parts. First,
we analytically determine the energy cost for each access pattern. Second, we
quantify the cost for different combinations of insertion and lookup to identify
the best choice of chunk size in each case. This study only considers the cost of
indexing, and does not include the cost of storing or accessing the opaque data
pointed to by the index.

Cost Analysis. We use the following terms for our analysis: the size of each
index node is d , the number of pointers in each index node is k, and the height
of the tree is H. The cost of writing d bytes of data is W (d) and reading is R(d)
as per Equation (2).

Insertion into the Index object has two steps—first, H index chunks (root to
leaf) are read from flash to memory, then insertion results in H index writes
from the leaf up the root as we described in Section 4.2. Index lookup opera-
tions must read in the H index chunks corresponding to each level of the tree
before retrieving the stored data. In each case the cost is different for sequen-
tial access, where data can be buffered or cached, and random access where it
is not.

—Sequential Insert. index tree nodes can be cached, and are written only when
the next element crosses the range supported by the node. One chunk write
and chunk read is performed for each of the H levels for every k elements:
E = H

k · (W (d) + R(d)).
—Random Insert. If data is inserted randomly, each write results in a read

followed by write of an index chunk at each level of the index: E = H ·
(W (d) + R(d)).

—Sequential Lookup. As with writes, sequential reads cost less due to index
node caching, and the amortized cost of sequential lookup is: E = H

k · R(d).
—Random Lookup. Random reads force each level of the index to be loaded

afresh for each lookup operation. This increases the lookup cost: E = H ·R(d).

Measurement-Driven Analysis. Figure 10 shows index insertion and lookup
costs for varying chunk sizes for an index of height H = 2, based on our cost
analysis and index measurements. In this analysis, we fix the number of el-
ements inserted into the index at 32768 (i.e., N = 32768) and vary the size
of each index node d , and thus the number of pointers, k, in each index node.
Using the results derived above, we are thus able to examine the effect of chunk

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 33, Publication date: November 2009.

33:24 • G. Mathur et al.

Fig. 10. Energy consumption of the index for varying insertion and lookup operational patterns,
varying index node sizes—these are assume no associated data. Sequential insert and lookup are
substantially more energy efficient than their random counterparts.

size on efficiency for applications with different expected insertion and lookup
behaviors.

—Random Insert—Random Lookup. This access pattern results from a value-
based index, where elements are inserted randomly and specific values are
looked up. For this case, we seen in Figure 10 that energy usage is mini-
mized when index nodes are the smallest possible—in this case 64 bytes or
15 elements per node, where each pointer is 4 bytes long.

—Random Insert—Sequential Lookup. This models the case where time-series
data is stored in a value-based index, and then the entire index is read se-
quentially. (e.g., to build a histogram of the data) The choice of index node
size depends on number of inserts as well as the number of lookups—insert
is optimized at an index node size of 64 bytes, while optimum lookup per-
formance occurs with a size of 256 bytes. If lookups are less frequent than
inserts, then a small index node size should be used, while if lookups are
frequent then a large size should be used.

—Sequential Insert—Sequential Lookup. An index maintaining time series
data would store and later access the data sequentially. Larger chunk sizes
result in better energy optimization, however, a buffer size of 256 bytes is
sufficient as both insert and lookup costs are close to their lowest value.

—Sequential Insert—Random Lookup. An index maintaining time-series data
would store data sequentially, but temporal queries on past data can result
in random lookups. The optimal size again depends on the number of inserts
and lookups—the insert is optimal at 64 bytes while the lookup become more
efficient after 256 bytes. The ratio of the number of lookups to inserts would
determine the choice of index size (similar to the random insert-sequential
lookup case).

Our analysis shows that smaller index chunk sizes are favorable for random
insertion and lookup operations, since smaller sizes lead to lower cost of flash
read operations. Larger chunk sizes are better for sequential operations, since
they utilize buffering better, resulting in greater in-memory updates and fewer
flash operations.

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 33, Publication date: November 2009.

Ultra-Low Power Data Storage for Sensor Networks • 33:25

6.2.3 Storage Overhead. Both the object layer and FAL add overhead: the
object layer maintains an index with approximately 4 bytes of overhead for each
data chunk when the index is full, while the FAL adds an additional 3 bytes
per chunk. Matchbox, in contrast, has a fixed 8-byte overhead for each 256-byte
block of data stored. The overhead comparison is thus dependent on the size of
the application write operations and thus the chunks stored in the file. If these
chunks are larger than 256 bytes, then Capsule will be more storage-efficient
than Matchbox. In typical usage chunks would be smaller than this, but the
amount of storage used by Capsule remains less than 10% for chunk sizes down
to 36 bytes, while offering much higher levels of functionality.

6.2.4 Storage Reclamation Performance. Storage reclamation (Section 3.2)
is triggered when flash usage reaches a predefined threshold. Our current im-
plementation uses a simple compaction scheme, where the storage objects read
all their valid data and re-write it to the current write frontier on the flash. To
evaluate the performance of this approach, we present measurements of stor-
age reclamation on the stream and index objects. We note that the compaction
procedure and costs for stack and queue objects are identical to those of the
stream object (Table V).

In our experimental setup, we trigger compaction when 128 KB of object
data has been written to flash; our goal is to find the worst case time taken for
compaction. In the case of the Stream object, an intermediate stack is used to
maintain ordering of the elements post-compaction, as discussed in Section 4.1.
For the 2-level Index object (discussed in Section 4.2), we set the second level
of the index to hold 100 pointers to level 1 index nodes (k1 = 100) and each
level 1 node holds pointers to 50 data blobs (k2 = 50). In the experiments, we
vary the size of the data being stored in each object chunk from 32 bytes to 256
bytes, in order to measure the range of compaction costs. We first perform a
measurement of the energy consumption of the compaction process followed by
a measurement of the time taken.

Energy Consumption. Figure 11 shows the energy cost of compaction in com-
parison to the cost of sequential data insertion. We first consider the write
and compaction costs for the Stream object—we observe that increasing chunk
size reduces the cost of writing and compacting. The reduction in write costs
is attributed to reduced header overhead from writing fewer chunks. The re-
duction in the stream compaction cost is considerably greater. As the size of
data chunks increase, the number of elements in the stream decreases, which
results in fewer pointer reads and writes to the intermediate stack during the
compaction phase. Additionally, the efficiency of both read and write operations
improves as the data size increases (refer Section 6.1). The compaction over-
head can be reduced considerably by increasing the chunk size from 32 to 128
bytes—in fact, the savings equal about three times the cost of writing the orig-
inal data. Further increase in chunk size results in smaller improvements in
compaction performance.

The write and compaction costs for the Index object follow a similar over-
all trend. Interestingly, the write cost for the Index object is greater than
that of the Stream object whereas the compaction cost of the Stream object is

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 33, Publication date: November 2009.

33:26 • G. Mathur et al.

Fig. 11. The energy consumed by compaction not only depends on the amount of data, but also on
the size of each data chunk of the object. The energy consumed by an Index and a Stream object
holding 128KB of data is shown here for varying chunk data sizes. Larger object-level buffering
requires fewer number of chunks to be read and written—the compaction costs more than double
when changing buffering strategy from 32 bytes to 256 bytes.

Fig. 12. The compaction time of the storage object is linked to both the amount of data the object
holds and the size of each data chunk. The time taken to compact an Index and a Stream object
holding 128KB of data is shown here for different data chunk sizes.

considerably higher than that for the Index object. This is because creating an
Index object is more expensive due to the writing and reading of the level 1 index
nodes. The compaction of the Index is less expensive than Stream compaction
because Index compaction requires only a depth-first traversal of the index,
while Stream compaction requires the creation and traversal of the intermedi-
ate pointer stack, which requires additional energy. If the fraction of discarded
data is f for either the stream or the index, then the cost of compaction will be
(1 − f) times the corresponding point in Figure 11.

Latency. Figure 12 shows the latency of the compaction operation. This is
also an important measure of compaction, as no operation can be performed

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 33, Publication date: November 2009.

Ultra-Low Power Data Storage for Sensor Networks • 33:27

Table VI.
Energy Consumption and Latency of Performing

Checkpointing Operations on a Stream and Index Object

Operation Latency (μs) Energy consumption (μJ)
Checkpoint 996 82.5
Rollback 284 42.1
Restore 460 50.87

on the object while it is being compacted. We find that in all cases the entire
compaction operation executes in less than 5 seconds. This can be improved
to 2.5 seconds for the Stream and to 2 seconds for the Index by increasing the
data size to 128 bytes. This shows us that even while compacting 128K of object
data, the storage object will be unavailable only for a short duration, and this
can be dealt with easily by providing minimal application-level buffering.

The energy and latency results of compaction show that these operations can
be performed efficiently on a small sensor platform. We find that a buffer size
of 128 bytes provides a good balance between the memory needs of compaction
and the energy consumption/latency of the process.

6.2.5 Checkpointing. Capsule supports checkpointing with the help of
the special Checkpoint component that permits three operations: checkpoint,
rollback, and restore. For our experiment, we consider a Stream and an In-
dex object and link these to a single Checkpoint component. We then perform
each of the operations permitted on the Checkpoint component and measure
the latency of the operation and the energy consumed by the device—Table VI
presents our results. We see that the latency of all the operations is less than
1 ms. The energy consumption of the checkpoint operation is approximately 3
times that of a stack push operation or only 2 times that of a pop operation with
64 bytes of data. The energy consumed by the restore operation is a little more
than that of performing a pop, and the cost of rollback is equivalent to the cost
of performing a pop operation on the stack. These measurements indicate that
checkpointing support in Capsule is extremely low-cost and energy-efficient,
allowing Capsule to support data consistency and crash recovery with minimal
additional overhead.

6.3 Comparison with Matchbox

Having discussed the performance of the basic objects provided in Capsule,
we evaluate how these objects can be used by applications and system compo-
nents. We now compare our implementation of a file system based on Capsule
(Section 4.3.2) with Matchbox [Gay 2003]. Our implementation also provides
the following additional features: the ability to work with multiple files simul-
taneously, random access to a block in the file, modifying previously written
data, and file consistency guarantees even in the event of system failure during
a write operation.

Our experiment was performed on the Mica2 [Crossbow Technology 2004],
using the platform’s Atmel NOR flash. On both file systems, we created a new
file and wrote 80 bytes of data in each of 10 consecutive operations, for a total of

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 33, Publication date: November 2009.

33:28 • G. Mathur et al.

Table VII.
Energy Consumption and Latency of Matchbox and Capsule Operations, Measured

on Mica2 Mote. (Atmel AVR CPU, Atmel AT45DB041 NOR flash)

Capsule Matchbox
Energy (mJ) Latency (ms) Energy (mJ) Latency (ms)

Create 1.79 19.16 1.03 14.16
Write (80b x 10) 8.83 85.6 10.57 91.60
Open 0.0093 0.184 0.093 1.384
Read (80b x 10) 1.20 18.440 1.12 16.520
Total (c+w,o+r) 11.83 123.4 12.82 123.7
Write Bandwidth 18.0kbps 11.3kbps
Read Bandwidth 54.2kbps 60.4kbps
Memory Foot-
print

1.5K RAM, 18.7K ROM 0.9Kb RAM, 20.1K ROM

800 bytes. We then closed the file, reopened it, and read the 800 bytes similarly
in 10 consecutive read operations of 80 bytes each. Table VII shows the per-
formance of the Capsule file system in comparison to Matchbox. The memory
footprint of both file systems is comparable; providing support for checkpoint-
ing as well as buffering at FAL, file and the index objects are the reason for
the higher RAM footprint of Capsule. The individual energy consumption of
file system operations on both is comparable. The write bandwidth provided by
the Capsule file system is 59% more than Matchbox, while the read bandwidth
lags by 10%. Considering the net energy consumption of the experiment, the
Capsule file system turns out to be 8% more energy-efficient than Matchbox,
while taking approximately the same amount of time.

Thus, our Capsule file system implementation provides rich additional fea-
tures at an energy cost equivalent or less than that of Matchbox.

7. ARCHIVAL STORAGE AND INDEXING APPLICATION

As sensors are commonly used for archival storage and indexing, we measure
and analyze the energy consumption of a storage-centric camera sensor network
which archives and indexes its data. We then compare the energy usage of
Capsule with that of the communication and sensing subsystems. Figure 13
shows our camera sensor network; each MicaZ sensing node is equipped with
a Cyclops [Agilent] camera and our NAND flash adapter.

The sensor captures motion detection-triggered images that are archived
locally on the NAND flash using Capsule. The images are stored in a Stream
object, and an Index object is used to catalog the images by time. Smaller,
subsampled versions of the stored images at each motion event are created and
transmitted to the base station as an event summary; the reduction in size due
to subsampling results in a corresponding reduction in transmit energy usage.
At the base-station, which receives these subsampled images, the operator can
examine them and determine if they represent events of interest—for example,
a person walking by is an event of interest but a pet moving around is not. If
the image or event is not of interest it can be discarded; however, for interesting
events the full-resolution image can be requested from the sensor.

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 33, Publication date: November 2009.

Ultra-Low Power Data Storage for Sensor Networks • 33:29

Fig. 13. Setup of the storage-centric camera sensor network.

By requesting images on an as-needed basis, extraneous images for object
and event detection need not be transmitting on the power-hungry radio, re-
sulting in energy savings. Additionally, the sensor uses wavelet transformation
and run-length encoding (RLE) to reduce the size of the image that needs to be
transmitted to the base-station, trading computation for more expensive com-
munication. In spite of these operations, the size of the resulting image is much
larger than the packet size, which is limited to 20 bytes. The sensor chops the
image into packet-sized fragments and uses a flash-based packet queue to store
each packet, which is then batch transmitted to the base-station.

We perform a component-level breakdown of the energy consumption of the
storage, communication and sensing subsystems while performing these opera-
tions, and Figure 14 shows our results. We observe that Capsule consumes only
5.2% of the total energy while computation consumes 7.2%. The communication
subsystem comes in third, consuming 30.6% of the net energy with the Cyclops
camera sensor occupying the remaining 57.0%.

We show an energy-efficient redesign of a traditional camera sensor network
to a more storage-centric network where the use of pull-based techniques give
us the improved efficiency over the traditional push-based approach. We also
demonstrate that using Capsule in sensor applications is feasible and extremely
energy-efficient.

8. RELATED WORK

To our knowledge, our previous work [Mathur et al. 2006a] is the only published
work to date comparing different alternatives for energy-efficient local flash
storage in sensor networks, or the storage, computation and communication
trade-offs that emerge as energy costs of storage decrease sharply.

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 33, Publication date: November 2009.

33:30 • G. Mathur et al.

Fig. 14. Component level breakdown of the MicaZ sensor equipped with the Cyclops and local
NAND flash storage. Each image is stored locally and a sub-sampled image is sent to the base-
station as the event summary. Based on the summary, if the full-resolution image is requested then
the sensor performs a wavelet transform on the image and uses run-length encoding to reduce the
image size. The image is then chopped into packet-sized fragments and stored on flash and then
transmitted using the CC2420 radio.

A few studies have quantified the energy consumption of individual
flash memory devices chosen as part of sensor platform designs. The RISE
project [Mitra et al. 2005] at UC Riverside has developed a sensor platform
with an interface to external SD/MMC flash storage. They present measure-
ments [Zeinalipour-Yazti et al. 2005] of energy consumption for a single SD
card, which are comparable to those for one of the less efficient MMC cards we
tested. Several other studies have quantified the energy consumption of cur-
rently available flash storage on motes. Accurate energy figures for the Mica
flash are presented as part of the energy budget planning for the Great Duck
Island deployment [Mainwaring et al. 2002], and power consumption data is
available for the flash storage on the Telos mote [Polastre et al. 2005].

Other studies have compared energy use and performance of flash storage
technologies in the context of handheld battery-powered devices [Park et al.
2004; Lee and Chang 2003]. Since these devices are typically powered by
rechargeable batteries, power consumption is often of secondary importance
compared to performance; the results of these studies are therefore not directly
applicable to sensor platforms.

There have been four other efforts at building a sensor storage system that
we are aware of: Matchbox [Gay 2003], ELF [Dai et al. 2004], MicroHash
[Zeinalipour-Yazti et al. 2005], and TFFS [Gal and Toledo 2005].4 We compare
Capsule to these systems, discussing issues of energy efficiency, portability, and
functionality:

Energy Efficiency. Of the systems that we compare, only MicroHash and
Capsule make claims about energy efficiency. MicroHash provides an imple-
mentation of a Stream and Index object for SD-cards with greater emphasis on
the indexing and lookup techniques than in our paper. A fundamental difference

4Other filesystems like YAFFS2 [Manning 2002] and JFFS2 [Woodhouse 2001] are not considered,
as they are targeted at portable devices such as laptops and PDAs, and do not have sensor-specific
implementations.

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 33, Publication date: November 2009.

Ultra-Low Power Data Storage for Sensor Networks • 33:31

between the two systems is that MicroHash uses a page buffer for reads as well
as writes, and does not provide the ability to tune the chunk size to the access
pattern. This is unlike our system, which can adapt the choice of the chunk sizes
to the insert and lookup patterns, thereby better optimizing energy efficiency
(Section 6.2.2).

Portability. Embedded platform design is an area of considerable churn, as
evident from the plethora of sensor platforms that are being developed and
used by research groups. Storage subsystems for these platforms differ in the
type of flash (NAND or NOR), page size (256b to 4096b), erase block size (256b
to 64KB), bus speeds (SPI or parallel), and energy consumption. It is therefore
essential to design a general purpose storage system that can be easily ported to
a new platform with a new storage subsystem, while being sufficiently flexible to
enable developers to take advantage of new architectures. We believe Capsule
achieves these dual goals—it currently works on the Mica2, Mica2dot (both
NOR) and our custom NAND board. In contrast, MicroHash is only available
for the RISE platform, while Matchbox and ELF work only on the Mica2 NOR
flash.

Functionality. MicroHash is the closest existing system to Capsule, with
functionality similar to that of the Capsule Index object. Like the Capsule In-
dex, MicroHash uses a fixed-range index; however its index has only a single
level; as the number of entries in an index bucket grows, additional directory
pages are linked together. Capsule is thus able to look up and retrieve an item
with much less overhead, and requires much less RAM buffering. In contrast
to Capsule, MicroHash is able to index and retrieve multiple elements with the
same key, and uses its index storage somewhat more efficiently when sparsely
populated. Finally, the Capsule Stream/Index object offers more powerful nav-
igation methods than MicroHash.

More generally, we note that in comparison to the research effort that has
gone into the design of the radio stack on sensors, there have been relatively
few efforts at building the sensor storage system. As storage becomes a more
important part of sensor network design, increased attention is needed to
address questions of storage capacity, failure handling, long-term use, and
energy consumption that are not addressed by existing efforts. Capsule at-
tempts to fill this gap by building up a functionally complete storage system for
sensors.

Our work is related to a number of object and file systems outside of the
field of sensor networks, as well, such as the log-structured file system LFS
[Rosenblum and Ousterhout 1992], and Vagabond [Nrvag 2000], a temporal
log-structured object database. These systems, however, are disk-based sys-
tems designed for read-write optimization, security, and network sharing. Cap-
sule, however, is designed specifically for sensor platforms using NAND or NOR
flash memory based storage and optimized for energy efficiency. This results in
substantially different technical strategies; for instance, the compaction tech-
niques used in Capsule significantly different from storage reclamation tech-
niques found to be effective for disks, such as hole-plugging [Wilkes et al. 1996]
and heuristic cleaning [Blackwell et al. 1995].

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 33, Publication date: November 2009.

33:32 • G. Mathur et al.

9. CONCLUSIONS

In this article we argue that a simple file system abstraction is inadequate
for realizing the full benefits of flash storage in data-centric applications. In-
stead, we advocate a rich object storage abstraction to support flexible use of
the storage system for a variety of application needs, and one which is specifi-
cally optimized for memory and energy-constrained sensor platforms. We pro-
posed Capsule, an energy-optimized log-structured object storage system for
flash memories that enables sensor applications to exploit storage resources
in a multitude of ways. Capsule employs a hardware abstraction layer to hide
the complexities of flash memory from the application, and supports highly
energy-optimized implementations of commonly used storage objects such as
streams, files, arrays, queues and lists. Further, Capsule supports checkpoint-
ing and rollback to tolerate software faults in sensor applications running in
unreliable environments. Our Capsule implementation is portable, and cur-
rently supports the Mica2 and Mica2Dot NOR flash as well as our custom-built
NAND flash memory board. We also showcase the use of Capsule in our de-
ployment of a storage-centric camera sensor network. Here our experiments
have demonstrated that Capsule provides greater functionality, more tunabil-
ity, and greater energy-efficiency than existing sensor storage solutions, while
operating within the resource constraints of the Mica2.

Future Work. We plan to examine the platform-specific design of Capsule
in light of more resource-rich platforms such as the iMote2. For example, a
memory-rich platform would allow Capsule to use a per-object log-segment
allocation strategy that would place each object’s data chunks contiguously,
permitting FAL to do read-buffering. In additional, even on memory-limited
platforms it may be possible to achieve improvements in performance with the
application of small amounts of additional memory. Finally, we are also working
on fabricating an SPI based NAND flash daughter board for the Telos.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for Mathur et al. [2006a, 2006b] and for
their valuable feedback and comments.

REFERENCES

AGILENT. Cyclops camera. http://www.cyclopscamera.org.
BLACKWELL, T., HARRIS, J., AND SELTZER, M. 1995. Heuristic cleaning algorithms in log-structured

file systems. In Proceedings of the USENIX Annual Technical Conference. USENIX, 277–288.
CROSSBOW TECHNOLOGY. 2004. Datasheet: MICA2. Crossbow Technology. part number 6020-0042-

06 Rev A.
DAI, H., NEUFELD, M., AND HAN, R. 2004. ELF: an efficient log-structured flash file system for

micro sensor nodes. In Proceedings of the 2nd International Conference on Embedded Networked
Sensor Systems (SenSys’04). ACM Press, New York, NY, USA, 176–187.

GAL, E. AND TOLEDO, S. 2005. A transactional flash file system for microcontrollers. In Proceedings
of the USENIX Annual Technical Conference. USENIX, 89–104.

GAY, D. 2003. Design of matchbox, the simple filing system for motes. in TinyOs 1.x distribution,
www.tinyos.net. Version 1.0.

HELLERSTEIN, J., HONG, W., MADDEN, S., AND STANEK, K. 2003. Beyond average: Towards sophisti-
cated sensing with queries. In Proceedings of the International Conference on Information Pro-
cessing on Sensor Networks (IPSN’03).

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 33, Publication date: November 2009.

Ultra-Low Power Data Storage for Sensor Networks • 33:33

HILL, J., SZEWCZYK, R., WOO, A., HOLLAR, S., CULLER, D., AND PISTER, K. 2000. System architecture
directions for networked sensors. ACM SIGPLAN Notices 35, 11, 93–104.

HUI, J. W. AND CULLER, D. 2004. The dynamic behavior of a data dissemination protocol for net-
work programming at scale. In Proceedings of the 2nd ACM Conference on Embedded Networked
Sensor Systems (SenSys’04).

LEE, H. G. AND CHANG, N. 2003. Energy-aware memory allocation in heterogeneous non-volatile
memory systems. In Proceedings of the 2003 International Symposium on Low Power Electronics
and Design (ISLPED’03). 420–423.

LEVIS, P., MADDEN, S., POLASTRE, J., SZEWCZYK, R., WHITEHOUSE, K., WOO, A., GAY, D., HILL, J., WELSH, M.,
BREWER, E., AND CULLER, D. 2005. TinyOS: An operating system for wireless sensor networks.
In Ambient Intelligence, Springer-Verlag.

LI, M., GANESAN, D., AND SHENOY, P. 2006. Presto: Feedback-driven data management in sensor
networks. In Proceedings of the 3nd USENIX/ACM Symposium on Networked Systems Design
and Implementation (NSDI’06).

MADDEN, S., FRANKLIN, M., HELLERSTEIN, J., AND HONG, W. 2005. Tinydb: An acqusitional query
processing system for sensor networks. ACM Trans. Datab. Syst.

MAINWARING, A., POLASTRE, J., SZEWCZYK, R., CULLER, D., AND ANDERSON., J. 2002. Wireless sensor
networks for habitat monitoring. In Proceedings of the ACM International Workshop on Wireless
Sensor Networks and Applications. Atlanta, GA.

MANNING, C. 2002. YAFFS: the NAND-specific flash file system. www.aleph1.co.uk/yaffs.
MATHUR, G., DESNOYERS, P., GANESAN, D., AND SHENOY, P. 2006b. Capsule: An energy-optimized

object storage system for memory-constrained sensor devices. In Proceedings of the 4th ACM
Conference on Embedded Networked Sensor Systems (SenSys).

MATHUR, G., DESNOYERS, P., GANESAN, D., AND SHENOY, P. 2006a. Ultra-low power data storage for
sensor networks. In Proceedings of the 5th International Conference on IPSN/SPOTS.

MATTHEWS, J. N., ROSELLI, D., COSTELLO, A. M., WANG, R. Y., AND ANDERSON, T. E. 1997. Improving
the performance of log-structured file systems with adaptive methods. In Proceedings of the 16th
Symposium on Operating Systems Principles. 238–251.

MITRA, A., BANERJEE, A., NAJJAR, W., ZEINALIPOUR-YAZTI, D., GUNOPULOS, D., AND KALOGERAKI, V. 2005.
High performance, low power sensor platforms featuring gigabyte scale storage. In Proceedings of
the 3rd International Workshop on Measurement, Modeling, and Performance Analysis of Wireless
Sensor Networks (SenMetrics’05).

NIGHTINGALE, E. B. AND FLINN, J. 2004. Energy-efficiency and storage flexibility in the blue file
system. In Proceedings of the 5th Symposium on Operating System Design and Implementation
(OSDI).

NRVAG, K. 2000. Vagabond: The design and analysis of a temporal object database management
system. Tech. Rep., PhD thesis, Norwegian University of Science and Technology.

PARK, C., KANG, J.-U., PARK, S.-Y., AND KIM, J.-S. 2004. Energy-aware demand paging on NAND
flash-based embedded storages. In Proceedings of the International Symposium on Low Power
Electronics and Design (ISLPED’04). 338–343.

POLASTRE, J., SZEWCZYK, R., AND CULLER, D. 2005. Telos: Enabling ultra-low power wireless re-
search. In Proceedings of the 4th International Conference on IPSN/SPOTS.

POTTIE, G. J. AND KAISER, W. J. 2000. Wireless integrated network sensors. Comm. ACM 43, 5,
51–58.

RAMANATHAN, N., CHANG, K., KAPUR, R., GIROD, L., KOHLER, E., AND ESTRIN., D. November 2-4, 2005.
Sympathy for the sensor network debugger. In Proceedings of the 3rd ACM Conference on Em-
bedded Networked Sensor Systems (SenSys).

RATNASAMY, S., ESTRIN, D., GOVINDAN, R., KARP, B., S. SHENKER, L. Y., AND YU, F. 2001. Data-centric
storage in sensornets. In Proceedings of the 1st ACM Workshop on Hot Topics in Networks.

RATNASAMY, S., KARP, B., YIN, L., YU, F., ESTRIN, D., GOVINDAN, R., AND SHENKER, S. 2002. GHT—
a geographic hash-table for data-centric storage. In Proceedings of the 1st ACM International
Workshop on Wireless Sensor Networks and their Applications.

ROSENBLUM, M. AND OUSTERHOUT, J. K. 1992. The design and implementation of a log-structured
file system. ACM Trans. Comput. Syst. 10, 1, 26–52.

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.. 2003. Datasheet: TC58DVG02A1FT00. Toshiba
America Electronic Components, Inc. (TAEC), www.toshiba.com/taec.

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 33, Publication date: November 2009.

33:34 • G. Mathur et al.

WILKES, J., GOLDING, R., STAELIN, C., AND SULLIVAN, T. 1996. The HP AutoRAID hierarchical storage
system. ACM Trans. Comput. Syst. 14, 1, 108–136.

WOODHOUSE, D. 2001. Journalling Flash File System. In Proceedings of the Ottowa Linux
Symposium.

ZEINALIPOUR-YAZTI, D., LIN, S., KALOGERAKI, V., GUNOPULOS, D., AND NAJJAR, W. 2005. MicroHash:
An efficient index structure for flash-based sensor devices. In Proceedings of the 4th USENIX
FAST Conference.

Received October 2007; revised August 2008; accepted October 2008

ACM Transactions on Sensor Networks, Vol. 5, No. 4, Article 33, Publication date: November 2009.

