
Large-Scale Vehicle Trajectory Reconstruction with Camera
Sensing Network

Panrong Tong
Nanyang Technological University

Singapore
tong0091@e.ntu.edu.sg

Mingqian Li∗

Nanyang Technological University
Singapore

mingqian001@e.ntu.edu.sg

Mo Li
Nanyang Technological University

Singapore
limo@ntu.edu.sg

Jianqiang Huang†

Alibaba Group
China

jianqiang.hjq@alibaba-inc.com

Xiansheng Hua
Alibaba Group

China
xiansheng.hxs@alibaba-inc.com

ABSTRACT

Vehicle trajectories provide essential information to understand

the urban mobility and bene!t a wide range of urban applications.

State-of-the-art solutions for vehicle sensing may not build accu-

rate and complete knowledge of all vehicle trajectories. In order to

!ll the gap, this paper proposes VeTrac, a comprehensive system

that employs widely deployed tra"c cameras as a sensing network

to trace vehicle movements and reconstruct their trajectories in

a large scale. VeTrac fuses mobility correlation and vision-based

analysis to reduce uncertainties in identifying vehicles. A graph con-

volution process is employed to maintain the identity consistency

across di#erent camera observations, and a self-training process is

invoked when aligning with the urban road network to reconstruct

vehicle trajectories with con!dence. Extensive experiments with

real-world data input of over 7 million vehicle snapshots from over

one thousand tra"c cameras demonstrate that VeTrac achieves

98% accuracy for simple expressway scenario and 89% accuracy for

complex urban environment. The achieved accuracy outperforms

alternative solutions by 32% for expressway scenario and by 59%

for complex urban environment.

CCS CONCEPTS

• Information systems → Data analytics; Sensor networks.

KEYWORDS

Trajectory Reconstruction, Camera Sensing Network, Vehicle Mo-

bility, Identity Uncertainty

ACM Reference Format:

Panrong Tong, Mingqian Li, Mo Li, Jianqiang Huang, and Xiansheng Hua.

2021. Large-Scale Vehicle Trajectory Reconstruction with Camera Sensing

∗Also with Alibaba Group.
†Also with Nanyang Technological University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro!t or commercial advantage and that copies bear this notice and the full citation
on the !rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci!c permission and/or a
fee. Request permissions from permissions@acm.org.

ACM MobiCom ’21, October 25–29, 2021, New Orleans, LA, USA

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8342-4/21/10. . . $15.00
https://doi.org/10.1145/3447993.3448617

Network. In The 27th Annual International Conference On Mobile Computing

And Networking (ACM MobiCom ’21), October 25–29, 2021, New Orleans, LA,

USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3447993.

3448617

1 INTRODUCTION

Knowing the moving trajectories of millions of vehicles traveling

in a city provides fundamental understanding of the urban mobility,

and the reconstruction of such knowledge bene!ts a wide range

of applications in transportation and urban redevelopment, e.g.,

usage-based electronic toll collection, more accurate tra"c analy-

sis, intelligent tra"c light control, retrospective analysis of urban

planning, and many others (§2.1).

State-of-the-art solutions to trajectory reconstruction are mainly

based on (i) tracking with in-vehicle devices (e.g., GPS), which

however only obtains information from participating vehicles that

are cooperative in reporting their GPS statuses and thus of partial

knowledge, and (ii) roadway monitoring with &ow sensors (e.g.,

loop detectors, piezoelectric sensors, and infrared sensors), which

however only captures tra"c &ows, i.e., the number of vehicles

passing by roads, thus not applicable to reconstructing individual

vehicle trajectories.

In this paper, we study the use of widely deployed tra"c cameras

as a sensing network to observe general vehicle mobility and based

on that reconstruct the complete knowledge of all general vehicles

in the city with high accuracy. Compared with existing solutions,

the use of the tra"c camera network possesses the following ad-

vantages: (i) Tra"c cameras are generally available in urban cities

and require no additional deployment cost; (ii) Tra"c cameras are

widely deployed and provide high coverage of the city, providing an

opportunity for sensing and monitoring complete vehicle tra"cs;

(iii) Advanced image analysis techniques can be applied to extract

vehicle identi!ers, providing essential information for recovering

their trajectories.

With the vehicle identities being discovered by tra"c cameras

along their moving trajectories, a straightforward solution is to

maintain such identities across all roadways and reconstruct the

trajectory of each vehicle by concatenating its sequence of time-

stamped observations from all concerned tra"c cameras. Applying

such a solution in practice is challenged by the inherent incom-

pleteness and inaccuracy of the camera sensing network. First, the

tra"c camera observations are spatial-temporally incomplete —

188

ACM MobiCom ’21, October 25–29, 2021, New Orleans, LA, USA Panrong Tong, Mingqian Li, Mo Li, Jianqiang Huang, and Xiansheng Hua

not all road intersections are covered by tra"c cameras and that

results in uncertainties in inferring the true moving trajectories

over those uncovered areas. Such data incompleteness is made more

challenging when considering camera malfunctions and data loss.

Second, the vehicle identities extracted from video and image anal-

ysis may be inaccurate, and it is further complicated due to the

heterogeneity among tra"c cameras and their data quality — the

vehicle snapshots taken from di#erent cameras (e.g., front-view

v.s. rear-view) and under di#erent environmental conditions are of

di#erent quality in resolution, view !eld, focus control, and clarity.

State-of-the-art vehicle identi!cation based on license plate recog-

nition (LPR) or visual re-identi!cation (Re-ID) may give inaccurate

results for low-quality camera data [42].

This paper proposes a comprehensive system design centered

around reducing the uncertainties of vehicle identi!cation. The

proposed design considers the vehicle identities based on both

their appearance in the camera data as well as their mobility de-

pendency across locations where those camera data are obtained.

Multi-dimensional similarity examination is performed with vehi-

cle snapshots taken from di#erent tra"c cameras. Speci!cally, our

system examines similarities on LPR text, vehicle appearance, and

mobility causality across the locations of observation, and gains

combined con!dence to relate vehicle identities across di#erent

camera observations. A graph convolution network (GCN) model

is built to cluster vehicle snapshots, and based on that maintain

the identity consistency across di#erent camera observations. With

GCN, our approach bene!ts from its e"cacy in belief propagation

and is able to converge to accurate clusters of representations. Fi-

nally, our system joins the graph of GCN and the graph of urban

road network, and undergoes a self-training process which incor-

porates the complex mobility dependency along the urban road

network into the GCN, and thus further improves the accuracy of

the reconstructed vehicle trajectories.

We implement the proposed approaches and build an end-to-end

system — VeTrac. We extensively experiment VeTrac with real-

world data collected from a network of 1342 cameras deployed in

an urban region. A full day camera data consisting of over 7 mil-

lion vehicle snapshots are examined, from which 1,247,835 vehicle

trajectories are reconstructed. We evaluate VeTrac’s performance

based on several sets of manually labeled vehicle trajectories as

well as synthesized ground truths from both public transits and pri-

vate vehicles. The evaluation results suggest that VeTrac achieves

98% accuracy for simple expressway scenario and 89% accuracy for

complex urban environment. The achieved accuracy outperforms

alternative solutions by 32% for expressway scenario and by 59%

for complex urban environment.

2 SENSINGWITH CAMERAS

2.1 Why Vehicle Trajectories?

VeTrac reconstructs a city-wide vehicle trajectory dataset that con-

tains general vehicles. Such a dataset provides more complete mo-

bility information for individual, communities, as well as the city,

and thus bene!ts various applications.

Intelligent transportation systems (ITS).Many real-world

ITS are built with the knowledge of general vehicle trajectories,

e.g., usage-based electronic toll collection (ETC) for highway fares,

Vehicle

Snapshots

(a) Front-view camera

Vehicle

Snapshots

(b) Rear-view camera

Figure 1: Example frames of two typical tra!c cameras

trajectory-based road pricing for congestion management, tra"c

light control based on prediction of driving intention, and so on.

Tra!c analysis. Tra"c analysis is essential in transportation

research. Instead of sticking to surveyed origin-destinations (ODs),

recent studies have been using GPS-tagged vehicle trajectories (e.g.,

those of taxi &eets) to conduct analytical studies (e.g., OD analysis

and travel time estimation [19, 34, 41]), and with that to improve

the transportation e"ciency and resilience [18, 38]. Obviously, a

dataset with general vehicle tra"cs can more truthfully re&ect the

city mobility and support more accurate decision making.

Retrospective analysis for urban planning. Vehicle move-

ments also re&ect the operations of a city. By analyzing the observed

vehicle movements, researchers are able to discover city functional-

ities [37], trace social footprints [7] and improve municipal services

[21, 29, 30] as well as urban infrastructures [10].

2.2 Camera Sensing Network

This work employs a tra"c camera network for sensing vehicles. A

tra"c camera is a video camera which monitors vehicles on a road.

These cameras are often mounted on overhead poles and aimed

at one or more lanes within their !eld of view (FoV). Di#erent

from speed cameras which upon triggers take still pictures of much

higher resolution, tra"c cameras are purposed for observation

and constantly take low-resolution videos. In urban areas, tra"c

cameras are installed to capture either the front face or the rear face

of passing vehicles. Figure 1 shows example frames from the front-

view and rear-view cameras. Front-view cameras are deployed for

controlling access at important locations like entrances/exits of

expressways or key locations along arterial roads, where both the

vehicle and its driver are monitored; Rear-view cameras are used to

monitor tra"c violations (e.g., running a red light), and are deployed

at intersections of surface roads, where both the vehicle and tra"c

light signals are recorded.

Infrastructure and data. To understand the real-world deploy-

ment of tra"c cameras, we investigate an urban area in China,

with 1342 tra"c cameras covering 66 :<2. Figure 2 visualizes the

road network within the area and the locations of the tra"c cam-

eras. As shown, the front-view cameras (denoted in red) are mainly

distributed on the left of the map where locate expressways and

arterial roads that lead to a local airport, whereas the rear-view

189

Large-Scale Vehicle Trajectory Reconstruction with Camera Sensing Network ACM MobiCom ’21, October 25–29, 2021, New Orleans, LA, USA

1 km

E

S

W

N

Figure 2: Spatial distribution of tra!c cameras, where front-

view cameras are denoted in red and rear-view cameras are

denoted in white

cameras (denoted in white) scatter across road intersections over

the entire area.

We perform a vision-based vehicle detection and tracking algo-

rithm [15] over the video frames collected from the tra"c cameras,

and obtain snapshots each of which pictures an individual vehi-

cle like those shown in Figure 1. Each snapshot is associated with

meta information including time, location and road lane, as Table 1

illustrates1.

On average, ∼7 million vehicle snapshots are generated from

the 1342 cameras every day. In this paper, we speci!cally report

the results from the data collected on 2019-03-06, which contains

7,206,500 snapshots in total. Figure 3 presents the data statistics

at di#erent time and across cameras. Figure 3a plots the number

of vehicle snapshots generated at di#erent time of day. It shows

two peak hours (i.e., 8 am and 5 p.m.), which accords with the

local tra"c demands. Figure 3b plots the distribution of the number

of snapshots generated by the 1342 cameras. As shown, 90% of

the cameras generate fewer than 10k snapshots, and the majority

generate 2k–6k snapshots a day.

Data incompleteness. The snapshot data are spatial-temporally

incomplete due to two main reasons. First, not all road intersec-

tions are covered by tra"c cameras. The area depicted in Figure

2 contains 334 major intersections but only 190 of them (57%) are

covered with cameras. Second, not all passing vehicles are properly

captured as snapshots at all time. The miss is mainly attributed to

camera-side issues (e.g., frame skipping, interrupted power, trans-

mission loss, corrupted images) as well as vehicle detection failures

due to low quality video input. As a result, a substantial portion

of the cameras (>10%) generate fewer than 1k records as Figure

3b shows. Although tra"c volume may di#er across cameras, the

majority of cameras provide a proper recall of over 2k records per

day.

Data inaccuracy. The problem of data incompleteness is ex-

acerbated by the inaccuracy introduced when extracting vehicle

identities from the snapshots. License plate is one strong identi!er

for vehicles. However, the license plate image contained within

1The data used in this work come from an in-use transportation management system.
The data were hosted in the data owner’s private servers and can only be accessed
internally under a proper supervision.

Field Description

Camera metadata Camera ID, location and viewpoint

Snapshot An Image of the detected vehicle

Entering Time Timestamp of entering the camera’s FoV

Exit Time Timestamp of leaving the camera’s FoV

Lane directions* Permissible driving directions of the lane

*Land directions might include left / right turn, U-turn, straight, and their combinations

Table 1: Information in a vehicle snapshot record

(a) Records over time (b) Records over cameras

Figure 3: Statistical summary of vehicle snapshots

each snapshot is often small and subject to conditions like blurred,

dusty, obscured, incomplete or bad lighting, which introduce errors

to recognized results. Figure 4a gives examples of those imperfect

conditions. Visual appearance is another useful clue to identify vehi-

cles, which however may also introduce errors due to the variance

in image qualities and environment conditions, e.g., viewpoints,

illumination, backgrounds. Figure 4b gives an example showing

that di#erent vehicles may have very similar appearances, while

Figure 4c gives examples showing how the same vehicle captured

by di#erent cameras may look quiet di#erent.

2.3 Uncertainties in Vehicle Identi"cation

The data incompleteness and inaccuracy cause uncertainties in

vehicle identities, which hinder trajectory reconstruction. In this

subsection, we analyze the cause of identity uncertainties, and quan-

tify its impact on state-of-the-art vision based schemes targeting

license plate or appearance.

License Plate Recognition (LPR). This scheme represents the

common practice of obtaining vehicle trajectories from camera

data. A LPR model (usually a deep CNN-based model [27]) is used

to identify plate characters from each snapshot, based on which

snapshots are then grouped to assemble trajectories.

The accuracy of LPR based scheme is however subject to accurate

recognition of plate characters. Most existing LPR algorithm assume

high-quality input, normally high-resolution images with decent

lighting conditions. This is common in applications like automatic

parking payment system where a front camera is dedicated to

capturing plates at a short distance. Unfortunately, tra"c camera

snapshots are usually small and subject to a variety of imperfections

as Figure 4a shows, which make LPR results error prone.

Inaccurate LPR results of the same vehicle result in high un-

certainty in inferring its trajectory. Figure 5a presents a typical

190

ACM MobiCom ’21, October 25–29, 2021, New Orleans, LA, USA Panrong Tong, Mingqian Li, Mo Li, Jianqiang Huang, and Xiansheng Hua

Blurred Dusty Bad LightingObscured Incompleted

(b) Re-ID: different vehicles could have similar appearances

Viewpoint / Background Variations

Illumination Variations Occlusion

(a) LPR: common imperfect conditions of license plate images

(c) Re-ID: one vehicle may have different appearances

Figure 4: Cause of Identity uncertainties

example from what we experience. Due to LPR errors, record 3

from camera C is wrongly recognized as a di#erent identity, which

leads to uncertain route candidates from camera A to camera B.

Although the time and distance constraints could have helped re-

move such uncertainties, the e"cacy has a limit, and that is further

impaired when the observations become sparse due to both LPR

errors as well as insu"cient camera deployment.

Figure 5b summarizes the LPR errors tested from a set of 2610

snapshots that we collect. The result shows that less than 10% of the

snapshots are correctly recognized. For those incorrectly recognized

plate, over 75% are with only one character wrong, while ∼12% are

completely unrecognizable.

Vehicle Re-Identi"cation (Re-ID). Visual Re-ID aims at re-

trieving a vehicle of interest from an image database with a general

model based on visual characteristics. A trained deep CNN-based

model is often employed to extract features of appearance informa-

tion in each vehicle snapshot. With that, all snapshots are ranked

based on their feature distances to a given query image, and snap-

shots within a prede!ned threshold are retrieved to assemble tra-

jectories.

However, using only visual features to identify vehicles are fun-

damentally challenging, as the examples in Figure 4b and Figure

4c suggest: (i) di#erent vehicles may be similar in appearance, and

(ii) the same vehicle observed from di#erent camera views could

have di#erent appearances due to the variance in image qualities

and environment conditions. Such discrepancy limits the identity

accuracy of retrieved snapshots, especially with a large dataset of

millions of snapshots. Figure 5c depicts this observation with the

same vehicle. If we apply Re-ID based scheme with only visual

features, !ve extra snapshots of other vehicle identities rank top

Route 1-b:

1.2km / 5min

A

B

Record 1

c=camera A

p=**N8L27

ts=07:00:11

Record 2

c=camera B

p=**N8L27

ts=07:09:33

Record 3

c=camera C

p=**N8LZZ

ts=07:03:59

Route 1-a:

1.9km / 8min

C

Route 2-b:

1.4km / 6min

(a) LPR: ambiguous routes (b) Errors in LPR texts

A

B

C

p=**036KS

p=**E3B88

p=**568CY

p=**818QE

p=**R382M

(c) Re-ID: false positives (d) Re-ID representations

Figure 5: Impact of identity uncertainties on vehicle trajec-

tory reconstruction

Accuracy Daylight (8 a.m.) Evening (8 p.m.) Rain

LPR errors <=2 92% 84% 88%

Vehicle Color* 98% 89% 97%

*the accuracy of vehicle color classi!cation based on visual features

Table 2: Impact of environment varieties

together with record 3, and the inclusion of them will severely

divert the reconstructed trajectory.

We also examine the appearance features of the expressway

dataset (§4.2). Figure 5d visualizes the feature vectors (each a sam-

ple point projected to a 2D space by TSNE projection) of those

snapshots, where the samples of the same vehicle are denoted in

the same color. It is clearly shown that samples of di#erent vehi-

cles are tangled together and hard to distinguish solely from their

appearance features.

To mitigate the identity ambiguity, recent research e#orts in

visual Re-ID [2, 9, 16, 35, 42]mainly resort to learning discriminative

features of vehicles or augmenting training data by generating near-

duplicates and data of other views. These approaches often require

high resolution input images and large amount of labeled data for

training, which are not available in this study nor in many practical

camera surveillance systems. In §5, we summarize recent studies

in Re-ID and address its di#erence with trajectory reconstruction.

Environment variety. To evaluate the potential impact that

environment variety has on the input data quality, we perform LPR

and vehicle color classi!cation over 3,000 snapshots independently

collected in three common environment contexts, i.e., “Daylight”

for reference, “Evening” for light changes and “Rain” for weather

191

Large-Scale Vehicle Trajectory Reconstruction with Camera Sensing Network ACM MobiCom ’21, October 25–29, 2021, New Orleans, LA, USA

changes. The results in Table 2 suggest consistent qualities in iden-

tity clues from vision based schemes (with slight drop of accuracies

for evening and rain contexts).

3 VETRAC DESIGN

To tackle the identity uncertainties due to incomplete and inaccu-

rate observations from tra"c cameras, we propose VeTrac, which

exploits the mobility dependency and embeds that in a graph convo-

lution process in order to reduce such uncertainties. VeTrac employs

a multi-dimensional similarity (MDS) block to combine estimations

from di#erent aspects and gain extra con!dence on vehicle identi-

!cation (§3.1). A graph convolution network (GCN) is developed

to capture system-wise correlations among vehicle snapshots and

achieve global optimality in assigning snapshots to di#erent ve-

hicle identities (§3.2). The vehicle trajectories are produced based

on snapshots belonging to di#erent vehicle identities. To further

improve the accuracy, VeTrac also applies an iterative self-training

process to incorporate the trajectory-level mobility within the road

networks into the GCN (§3.3).

3.1 Multi-Dimensional Similarity (MDS)

For any pair of vehicle snapshots, MDS block derives a more robust

identity similarity measure with fused identity estimations from

LPR texts, vehicle appearance and mobility causality. We detail the

three similarity estimators as follows.

LPR similarity. Figure 5b suggests that over 90% of the LPR

results contain errors with the tra"c camera snapshots. The !g-

ure however also suggests that ∼80% of those only contain 1–2

unrecognized characters, which means a substantial portion of the

LPR text can provide information on vehicle identities. In order to

use that information, VeTrac employs a neural network model to

quantify similarity between any pair of LPR texts.

Conventional LPR models assume !xed-length inputs and adopt

a CNN-based multi-headed network architecture, where a CNN-

based backbone network (e.g., VGGNet [27]) !rst extracts a global

feature vector from the license plate image and uses a number of

heads (i.e., fully-connected layers) to decode the feature vector into

a !x-length text sequence. Each of the head is trained to classify

one character in the license plate image into one of many prede-

!ned characters. When a mismatch of plate length occurs (which

is common with the tra"c camera snapshots under the imperfect

conditions as exempli!ed in Figure 4), the model wrongly segments

the feature vector and thus introduces uncontrollable uncertainties

to LPR results.

Instead of the all-or-none strategy, VeTrac recognizes readable

characters by convolutional recurrent neural network (CRNN) [26].

CRNN is chosen because it can support variable-length recognition

with slight modi!cations to three types of its layers: (i) Convolu-

tion layers, which extract a feature sequence from the input license

plate image. Di#erent from conventional LPR models, the convo-

lution layers obtain a sequence of feature vectors, each of which

corresponds to a region smaller than a character. (ii) Recurrent

layers, which predict a label distribution for each feature vector.

The recurrent layers consist of multiple bi-directional LSTM cells,

each trained to predict a label distribution based on the information

of its own element as well as the information from adjacent cells.

Record A

Record B

Plate Image A CRNN

Plate Text A
(A013RR)

Plate Text B
(A013)

Plate Image B

P(•)

Edit
Distance

ResNet-18 - P(•)

Cosine
Distance

Snapshot A

Snapshot B

Visual
Feature A

Visual
Feature B

-

Location A
Timestamp A

Location B
Timestamp B

Inversed Gaussian

Model
P(•)-

(d, t)

! σ

Figure 6: Multi-dimensional Similarity (MDS) block

The unrecognizable characters on the plate can be skipped in the

model. (iii) Transcription layers, which convert the prediction of

each LSTM cell to a text of readable plate characters.

With the CRNN-based LPRmodel,VeTrac is able to handle license

plates that contain unrecognizable characters or have varied lengths.

The similarity between any two LPR texts A and B can thus be

modeled by:

%?;0C4 (�, �) = 1 − 0.08 ∗ 43 (�, �) ∗ (43 (�, �) + 1) (1)

where 43 (�, �) refers to the edit distance of plate texts.

Appearance similarity. VeTrac adopts a multi-head CNN mod-

ule to extract high-level visual features containing information of

the vehicle color, type and make from the snapshots. Di#erent from

previous works that exploited sophisticated features (§5), we focus

on the most intrinsic three attributes for their general availability

and relative robustness across snapshots of various resolutions,

viewpoints and lighting conditions as o#ered by the tra"c camera

network.

The CNN module employs a ResNet-18 network as the backbone

to extract a 512-dimension feature vector from each snapshot. The

feature vector is then independently fed to three heads, each of

which is a fully-connected layer trained to classify one attribute of

the following:

• The color head classi!es each snapshot into one of the 10

colors, i.e., white, black, grey, blue, red, yellow, green, brown,

purple and pink.

• The type head classify each snapshot into one of the 9 types,

i.e., sedan, SUV, bus, minibus, taxi, van, MPV, truck, mini-

truck.

• The make head classi!es each snapshot into one of the 96

brands, e.g., Audi, Honda, Nissan, Toyota, Volkswagen.

The appearance similarity of any two snapshots can thus be

quanti!ed by the cosine distance of their feature vectors:

%0?? (�, �) = 1 −

∑512
8=1�8�8

√∑512
8=1�

2
8

√∑512
8=1 �

2
8

(2)

where A and B are the corresponding feature vectors.

Mobility similarity. VeTrac models the similarity between two

snapshots taken at di#erent times and locations by the probability

that a vehicle can travel from one to the other within the time

192

ACM MobiCom ’21, October 25–29, 2021, New Orleans, LA, USA Panrong Tong, Mingqian Li, Mo Li, Jianqiang Huang, and Xiansheng Hua

constraint. The lane direction (see Table 1) is specially considered

to build more accurate mobility transitions.

VeTrac !rst extracts direct neighbors of each camera by consider-

ing the road connectivity and camera lane information. With that,

a camera transition graph is built where each vertex represents

a camera and each edge denotes a direct link between neighbor-

ing cameras (which corresponds to the road segment connecting

the two cameras). Two attributes are speci!ed for each edge: (i)

The transition time of each edge is estimated by the map API [1]

provided by a popular vehicle navigation service provider in the

country. (ii) The lane direction of each edge denotes the driving

action (i.e., right turn, left turn, straight, or U-turn) it takes to transit

from the camera to its neighbor on the graph.

With the camera transition graph, possible routes and their esti-

mated travel time can be enumerated. The mobility model between

each pair of cameras can be learned and represented by an inverse

Gaussian distribution �� (`, _) [13]. Thus, the mobility similarity

between snapshots can be modeled by:

%<>1 (C |`, _) =

[
_

2cC3

]1/2
exp

{
−
_(C − `)2

2`2C

}
(3)

where t is the di#erence in timestamps of two snapshots, and ` and

_ are learned parameters of inverse Gaussian distribution �� (`, _),

which models the travel time from the road segments of one camera

to that of the other.

MDS score. For any pair of snapshots, VeTrac employs an MDS

block (as depicted in Figure 6) to parallelly estimate their similarities

on all three aspects, and uses the product to describe the probability

of the two snapshots belonging to the same vehicle trajectory:

f�,� = %?;0C4 (�, �) ∗ %0?? (�, �) ∗ %<>1 (�, �) (4)

3.2 Learning Vehicle Identities with Graph

MDS derives a more robust identity similarity measure for any

pair of snapshots. The next key problem to trajectory reconstruc-

tion is how to accurately assign vehicle identities to snapshots for

assembling trajectories.

Query-based approaches have been conventionally applied to

solve the identity assignment problem, where all snapshots are

ranked based on their distances to a given query and those within

a prede!ned threshold are considered as being of the same identity.

However, most query-based approaches provide no guarantee that

all top images are of the same identity and the best threshold may

di#er from query to query. As a result, query-based approaches

fail non-negligible number of hard cases with high intra-trajectory

diversity or high inter-trajectory similarity.

VeTrac addresses this problem by modeling complex correla-

tions among many snapshots with a graph structure. Instead of

considering only pair-wise similarities (i.e., the query to other snap-

shots), a graph can model system-wise relationships (i.e., among

all the snapshots) to achieve global optimality in assigning vehicle

identities to di#erent snapshots. The hard cases that fail pair-wise

similarity assessment may be inferred from correlation of their

similarity assessments with other strongly connected peers. Errors

introduced in MDS estimation may also be mitigated through a

graph convolution process.

Snapshot Graph

!

!

!

!
!

!

!

!

Road Network Graph

GCN

!"#$$#$%

$&#$"#!' $&#$(#"'

$&#!!#$%

Input: Snapshot Database

Output: Reconstructed Trajectories

MDS

S
elf-train

in
g

w
ith

p
o
sitiv

e
/

n
eg

ativ
e

p
airs

Representations

!"#!!#!&

!"#$)#$$

!"#$"#'$

Figure 7: VeTrac overview

Figure 7 gives an overview of the VeTrac’s work&ow. The MDS

scores are taken as input to a graph convolution network (GCN)

containing all vehicle snapshots. After a graph convolution process,

a new identity representation is learned for each snapshot and

snapshots can then be clustered into individual vehicle trajectories

based on the representations of all snapshots. In the following, we

detail the GCN-based learning process in three steps.

Snapshot graph construction. With the full dataset of vehicle

snapshots, VeTrac builds a undirected graph �B=0?Bℎ>C = (+ , �),

where a vertex set + corresponds to all snapshots and an edge set

� denotes the multi-dimensional similarity (MDS) between two

vertices. Theoretically, �B=0?Bℎ>C can be a complete graph. Such

a graph however will introduce quadratic complexity, i.e., O(=2)

where = is the number of vertices, to the convolution process, and

thus not scale to our graph containing millions of vertices. In prac-

tice, VeTrac reduces the number of edges by removing those of

large spatio-temporal spans. We de!ne two vertices to be k-hop

connected if the two snapshots are taken from cameras within k-hop

distance in the road network. Similarly, we de!ne two vertices to

be T-minute valid if the time di#erence between their timestamps

is below T minutes. An edge is generated only between those k-hop

connected and T-minute valid vertices. In VeTrac’s implementation,

k and T are empirically set to 3 and 10, and that helps to reduce

the edges from ∼52 trillion to ∼2 billion, where the average vertex

degree is 307. After calculating MDS scores as edge weights and

removing edges of zero weight, the average vertex degree becomes

15.

Learning identity representations. Graph convolution is per-

formed on the snapshot graph, where each vertex keeps updating

itself to a suitable representation based on the knowledge it gains

from its neighboring vertices.

Figure 8 depicts the developed GCN structure and the learning

process. In the input layer, for each vertex E8 ∈ + , a representation

193

Large-Scale Vehicle Trajectory Reconstruction with Camera Sensing Network ACM MobiCom ’21, October 25–29, 2021, New Orleans, LA, USA

vector G8 is initialized to represent its identity. To start with, the one-

hot encoding technique can be used to assign each vertex a unique

representation, e.g., a 1-by-n vector with its i-th element to be 1

and the rest to be 0 for G8 , where = = |+ |. The initial representation

matrix - 0 can thus be constructed by combining representation

vectors of all vertices, as indicated by Equation 5.

- 0
= � =

1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

(5)

In practice, we leverage noisy LPR results to initialize represen-

tations to speed up the convolution process. The rationale is that,

the more a certain LPR text is observed across di#erent cameras,

the more likely that LPR text is a correct one. So for a snapshot

with an LPR text that appears more than three times in the entire

dataset we consider the LPR text credible and thus label all involved

snapshot vertices by the same representation vector.

� =

1 f1,2 · · · f1,=
f2,1 1 · · · f2,=
...

...
. . .

...

f=,1 f=,2 · · · 1

(6)

An adjacency matrix � is also constructed with MDS scores as

edge weights, as indicated by Equation 6. Each element in � repre-

sents the probability of the corresponding two vertices belonging to

the same trajectory. We add self-loops to the snapshot graph by set-

ting the diagonal as 1. Since the graph only contains a signi!cantly

reduced edge set, the adjacency matrix � is a sparse matrix with

most elements equal 0. The sparsity of� ensures the computational

e"ciency when performing graph convolution.

In the graph convolution layers, the representation of each vertex

is iteratively updated by aggregating its own representation and the

representations of its neighbors. The aggregation is a normalized

averaging with regard to edge weights. The propagation rule of

graph convolution at each iteration can be expressed in matrix mul-

tiplication, i.e., - 8+1
= �− 1

2��− 1
2- 8 , where � = 3806(31, 32, ..., 3=)

is the degree matrix of � and 38 =
∑

9 08 9 is the degree of vertex E8 .

From representations to identities. A two-layer GCN (Figure

8) is used to learn new identity representations. The two graph

convolution layers complete the aggregation of updated identity

information — in the !rst layer each vertex updates its representa-

tion with knowledge from its neighbors and in the second layer the

updated representations are aggregated across the snapshot graph.

In such a way, the vertices converge to proper representations and

the complex correlations in the graph are encoded into those repre-

sentations. The snapshot representations of the same trajectories

tend to agree while those of di#erent trajectories tend to di#er.

Therefore, we can cluster the snapshots into individual trajecto-

ries by identifying snapshots of similar representations. Since the

learned representation vectors are sparse, VeTrac !rst employs the

random projection [4] to reduce the dimensionality to 512 and then

performs HDBSCAN (<8=_2;DBC4A_B8I4 = 5) [5] to cluster vertices

with the cosine distance. The random projection and HDBSCAN

Input Output

!

Graph Conv.

R
an

d
o
m

P
ro

je
ct

io
n Identity

Representations

!

Graph Conv.

!!

! !

!

!

!

!

!

!

!"

!#

$

!%

!"

!#

$

!%

!"

!#

$

!%

!"

!#

$

!%

!"

!#

$

!%

!"

!#

$

!%!"

!#

$

!%

Figure 8: Identity learning with the two-layer GCN

are chosen for their accuracy and e"ciency in processing sparse

vectors.

3.3 Self-Training with Road Network Graph

The GCN learns graph wide correlations and mitigates identity

uncertainties from inaccurate pair-wise similarity estimations. As

a result, clusters of same vehicle identities are identi!ed. For each

cluster of snapshots, VeTrac is able to generate a maximum likeli-

hood trajectory that connects them based on their timestamps.

The reconstructed trajectories, though greatly improved from

those query-based approaches, may still contain errors in its pre-

cision (snapshots of other vehicle contained in the trajectory) and

recall (not all snapshots of the trajectory are retrieved). We perform

an error analysis on the GCN results of the expressway dataset (§4.2)

and observe that over 70% of the generated clusters still contain

errors mainly due to two problems: (i) 14% of them are incomplete

clusters which contain only snapshots from the same vehicles but

do not have full recall, and (ii) 85% of them are imprecise clusters

which contain snapshots from more than one vehicle. As we in-

troduce more graph convolution layers in the GCN for thorough

identity propagation, the former source of errors may further go

down while the latter persists. That means the inaccuracy in iden-

tity clustering stems from the di"culty in separating negative pairs

of snapshots rather than aggregating positive pairs of snapshots in

the clusters.

VeTrac inspects the trajectory-level mobility within the road

network to address the issue. As depicted in Figure 7, an itera-

tive self-training process is introduced, which detects positive and

negative pairs from the reconstructed trajectories and feeds the

information back to the GCN to stop identity propagation between

negative pairs. The self-training process enhances the GCN by in-

stilling trajectory-level mobility into the representation learning

process. Three steps are involved in building the self-training loop.

Build the road network graph. VeTrac builds a directed road

graph �A>03 = (+ , �) from the road networks, where a vertex set

+ includes all road segments each represented as a vertex and an

edge set � denotes the linkage and physical directions between

road segments. The information about each road segment (i.e.,

coordinates of its two ends, name, length, category, accessibility

for vehicles) is extracted from OpenStreetMap, which is then used

to derive the linkage between adjacent road segments. The vehicle

194

ACM MobiCom ’21, October 25–29, 2021, New Orleans, LA, USA Panrong Tong, Mingqian Li, Mo Li, Jianqiang Huang, and Xiansheng Hua

transition time on each edge is obtained from the third-party vehicle

navigation service [1]. Each snapshot in �B=0?Bℎ>C can be mapped

to its corresponding vertex in �A>03 . The transition time from one

snapshot to another along the road network can thus be estimated

via shortest path search on �A>03 .

Detect positive and negative pairs. For a speci!c snapshot,

its similar snapshots that have a small cosine distance can be re-

trieved. The retrieved snapshots are spatio-temporally connected

to the query snapshot as ensured by the mobility branch of MDS

(snapshot-level), but together they may fail to form a feasible tra-

jectory (trajectory-level). By modeling trajectory-level mobility,

VeTrac examines whether those snapshots constitute one or more

feasible trajectories. Speci!cally, the snapshots are !rst mapped

into the�A>03 . With their timestamps and lane directions (see Table

1), possible trajectory candidates are enumerated on �A>03 . The

feasibility of a trajectory is then calculated based on transition

probabilities regrading time and distance between every two con-

secutive snapshots. The transition probability is modeled by an

inverse Gaussian, as indicated by Equation 3. The overall feasibility

of a trajectory is derived as the product of all consecutive transi-

tion probabilities and regularized by the total number of concerned

snapshots. An empirical threshold in the range of 0.65–0.85 can be

set to judge the feasibility (0.8 is set in VeTrac’s implementation,

though the performance is insensitive to the exact value). Based

on that, VeTrac labels all pairs of snapshots on �B=0?Bℎ>C . A pair

of snapshots from a feasible trajectory is considered as a positive

pair, and that from an infeasible trajectory or di#erent trajectories

is considered as a negative pair.

Iterative graph convolution with positive and negative

pairs. With positive and negative pairs, VeTrac adjusts the adja-

cency matrix � in GCN. For each positive vertex pair, an edge is

added if there exists none in the original �B=0?Bℎ>C , and the MDS

block is invoked to derive its weight. For each negative vertex

pair, the edge is removed if it exists in �B=0?Bℎ>C . After the adjust-

ment, VeTrac reruns the graph convolution process and updates

the identity representations. The self-training process is iterative

and terminates when all newly obtained pairs become positive. The

self-training process converges after 9 rounds on our dataset.

After the iterative graph convolution and self-training process,

VeTrac obtains clean and con!dent identity representations, and

with that reconstructs feasible vehicle trajectories.

4 EVALUATION

In this section, we describe the experimental setups (§4.1), compare

VeTrac performance with state-of-the-art alternatives under various

scenarios (§4.2) and analyze VeTrac by its components (§4.3).

4.1 Experimental Setups

Data and Implementation. We use the data described in §2.2,

which contain 7,206,500 snapshots and make up ∼150 GB. We im-

plement VeTrac on a server equipped with an Intel Xeon E5-2682

2.50GHz CPU and an NVIDIA RTX 2080Ti GPU (32 GB RAM). The

MDS block is trained with 10,000 labeled snapshots collected from

similar scenes. VeTrac takes approximately 3 hours to reconstruct

vehicle trajectories from one million snapshots, and takes 16 hours

in total to process all the data. The processing time can be signi!-

cantly reduced by paralleling the self-training module.

Overall statistics. In total, VeTrac reconstructs 1,247,835 trajec-

tories, 239,405 of which took place during the morning rush hours

(i.e., 7–9 a.m.). For roads, about 3% of the roads are traveled more

frequently by at least 10% of the trajectories, while most of the roads

(88%) are traveled by at least one thousand trajectories. For trajec-

tory distance, those trajectories usually pass 8–12 intersections

with an average distance of 3.8 kilometers. Most of the trajectories

(about 90%) are within a distance of 10 kilometers. For trajectory

duration, the average is 16.9 minutes. 40% of the trajectories are

within a duration of 10 minutes, while 20% of the trajectories have

a duration longer than an hour.

Alternative schemes to compare. To the best of our knowl-

edge, none of existing works can directly reconstruct trajectories of

general vehicles from camera snapshots. We thus borrow key ideas

of three di#erent principles and implement them for reconstructing

the vehicle trajectories:

• License plate recognition (LPR) [27].As described in §2.3,

this scheme represents common practice of obtaining vehicle

trajectories from camera data. We implement the scheme

by employing VGG-16 to recognize license plates, ordering

snapshots of the same plate according to timestamps and

forming trajectories by linking consecutive snapshots with

the shortest path on the road network.

• Vehicle re-identi"cation (Re-ID) [17]. As described in

§2.3, this scheme represents visual appearance based re-

identi!cation methods. Considering the high false-positive

rate of using only visual features, we adopt a progressive

vehicle Re-ID pipeline as suggested by [17] due to its state-of-

the-art performance when multimodal information is avail-

able. Speci!cally, we !rst employ a coarse !ltering with

visual features to select candidates, which are then re!ned

by removing snapshots with large plate di#erence (i.e., 3 or

more characters) or infeasible spatio-temporal relations. A

most likely trajectory is formed by linking consecutive can-

didate snapshots with the shortest path on the road network.

• History based route inference system (HRIS) [40]. This

scheme represents mobility-based methods that reduce un-

certainties of low-sampling-rate trajectories. Instead of look-

ing into camera data, this scheme assumes that trajectories

with the same OD usually have similar route choices, and

thus rebuilds uncertain parts of a trajectory by referring to

other vehicles with the same OD. We implement this scheme

by taking the results of LPR as input and assign the most

popular routes sharing the same ODs as !nal trajectories.

Performance metrics. We de!ne four metrics:

• 022 measures the accuracy of reconstructed trajectories, and

is de!ned as the fraction of correctly reconstructed trajecto-

ries among all the trajectories.

• ? measures the precision of a vehicle cluster, and is de!ned

as the fraction of true positives within a cluster.

• A measures the recall of a vehicle cluster, and is de!ned as the

fraction of the total number of snapshots that are actually

clustered into a cluster.

195

Large-Scale Vehicle Trajectory Reconstruction with Camera Sensing Network ACM MobiCom ’21, October 25–29, 2021, New Orleans, LA, USA

(a) Comparison of reconstructed trajectories

(b) Visual representation (c) VeTrac representation

Figure 9: An example. (a) Ground truth of a trajectory passing

7 interchanges; (b) The snapshots clustered in the represen-

tation space of visual features; (c) The snapshots clustered

in the representation space of VeTrac. The black crosses in

(b) and (c) indicate 7 snapshots of the same vehicle in the

representation spaces.

• �64> quanti!es the errors in reconstructed trajectories. We

represent geolocations in trajectories with longitude and

latitude coordinates, and employ the dynamic time warp-

ing algorithm [24] to derive �64> . A smaller �64> means

two trajectories are geographically closer to each other and

�64> = 0 when they are identical.

4.2 Performance Evaluation

We assess the quality of reconstructed paths by emulating two test

scenarios of VeTrac:

• Expressway: complete ground truth. We form a express-

way dataset from the data collected along a local airport ex-

pressway. The expressway contains 21 interchanges, where

vehicles can either enter the expressway or exit via ramps.

We collect the morning-rush-hour data (i.e., 7–9 a.m.) from

the 54 cameras deployed along the expressway and obtain

8945 snapshots. Since the expressway has a simple road

topology and relatively isolated tra"c, we are able to manu-

ally label the true identities of all obtained snapshots, which

contain 1746 vehicles.

Figure 10: Expressway: end-to-end performance

(a) Wrong LPR texts (b) Similar appearances

Figure 11: Robustness evaluation

• Urban: large-scale and complex road network.We form

a urban dataset by collecting morning-rush-hour data (i.e., 7–

9 a.m.) from the original dataset, which consists of 1,098,467

snapshots obtained from 1342 cameras. We do not have full

ground truths, so we rely on manually labeled representative

subsets to evaluate the performance.

Expressway. Figure9a visualizes the expressway and locations

of the 21 interchanges (i.e., from 1© to 21©). With the complete

ground truths of 1746 vehicles, we observe that vehicles’ ODs evenly

distributed across the 21 interchanges. Most of the vehicles (more

than 80%) passed 4 or more interchanges before they exited the

expressway.

Figure 9a inspects a representative trajectory that enters the

expressway from interchange 5©, passes 7 interchanges and exits

from interchange 11©. The ground truth of the trajectory with the

actual snapshots captured by the cameras at those interchanges are

presented. With the snapshot captured in interchange 5© as the

query, the remaining rows of Figure 9a indicate snapshots that are

clustered as the same identity by VeTrac and alternative schemes,

respectively. The results show that VeTrac successfully clusters all

7 snapshots into one, even though some license plate are wrongly

recognized (i.e., at interchange 7©, 9© and 11©) and some snapshots

are visually di#erent from the rest (i.e., at interchange 6©, 10© and
11©). As comparison, LPR is vulnerable to plate errors and Re-ID

fails to recall some of the snapshots with di#erent viewpoints due

to visual di#erences. HRIS cannot rebuild the correct trajectory

either, due to the incapability of extracting unobvious mobility

dependency from the historical data.

Figure 9b depicts the representation space of visual features and

Figure 9c depicts that of VeTrac, by TSNE projection. Each point

indicates a snapshot and those of the same vehicle identity are

marked with the same color. The 7 snapshots from the trajectory

are highlighted in the two representation spaces. It is clear to see

that they are separated in the representation space of visual features

196

ACM MobiCom ’21, October 25–29, 2021, New Orleans, LA, USA Panrong Tong, Mingqian Li, Mo Li, Jianqiang Huang, and Xiansheng Hua

Bus route I

Bus route II

Bus route III

(a) Ground truth of the three bus routes

HRIS

LPR

Re-ID

VeTrac

(b) Reconstructed results of a bus on route I (c) Spatial distribution of VeTrac trajectories

(d) Spatial distribution of LPR trajectories (e) Spatial distribution of Re-ID trajectories (f) Spatial distribution of HRIS trajectories

Figure 12: Result trajectories for the public transits

but are clustered very close in VeTrac representation space. In the

representation space learned by VeTrac, snapshots of the same

identity but di#erent appearances are located more closely (average

intra-class distance is 1% of that in the representation space of

visual features), while snapshots of di#erent identities but similar

appearances are better separated (on average, VeTrac introduces 0.3

false positives to recall all related snapshots while visual features

introduce 387.5 false positives). The results suggest high-quality

representations learned by VeTrac, which contribute to the high

clustering accuracy.

Figure 10 summarizes the end-to-end performance of all methods

in terms of the average accuracy, precision and recall. Overall,

VeTrac achieves 98% accuracy, which outperforms all alternatives

by at least 32%. For precision and recall, VeTrac achieves 99% recall

at the cost of merely 1% decrease in precision. For LPR, although

all the recalled snapshots are correct, it cannot handle snapshots

with wrongly recognized plates, which results in only 74.3% recall.

Re-ID achieves a slight improvement on the recall (86.2%), but at

a cost of largely reduced precision (84.4%). HRIS gives the lowest

accuracy (41.3%) because the route choices between similar ODs

are not always the same.

To evaluate the robustness of VeTrac, we perform controlled

experiments by synthesizing two groups of datasets from the ex-

pressway data: (i) the !rst group of datasets contain 11 datasets,

where the ratio of records with wrongly recognized plates ranges

from 0% to 100%. Figure 11a shows a slight decrease in the accuracy

of VeTrac as the ratio increases, while the accuracy of LPR drops

steeply when the ratio is larger than 50%. (ii) the second group of

datasets also contain 11 datasets, where the ratio of records with

similar appearances ranges from 0% to 100%. Figure 11b shows a

slight decrease in the accuracy of VeTrac as the ratio increases,

while the accuracy of Re-ID drops steeply when the ratio is larger

than 40%.

Urban. The urban dataset contains huge number of snapshots

and their trajectories. Due to the di"culty in labeling the entire

dataset of such scale, we focus on labeling two representative sub-

sets: public transits and private vehicles. For public transits, we iden-

tify 125 trajectories on 3 bus routes by cross-referring the bus routes

released by the bus operator and snapshots captured by the cam-

era sensing network. For private vehicles, we randomly select 300

snapshots, manually label their identities by checking all snapshots

within proximity and then identi!ed a most likely trajectory for

each snapshot with regard to the road network. We eventually

identi!ed 2801 snapshots that belong to the 300 trajectories.

Figure 12 visualizes the reconstructed trajectories over the public

transit data of 3 bus routes. We identify 38 trajectories on bus route

I, 61 trajectories on bus route II and 26 trajectories on bus route III.

Figure 12a presents the three bus routes denoted in di#erent colors.

Figure 12b inspects one speci!c bus trajectory (which belongs to bus

route I) and visualizes the reconstructed trajectories by VeTrac and

alternative schemes. According to the !gure, VeTrac successfully

reconstructs the correct trajectory. The trajectory reconstructed

by LPR (denoted in red) deviates from the ground truth in several

parts of the trajectory due to the loss of snapshots that contain

errors. The granularity of the reconstructed trajectories is thus

limited. The trajectory reconstructed by Re-ID (denoted in black) is

signi!cantly deviated from the ground truth due to misclassi!ed

vehicle snapshots. Many false positives (which belong to other

vehicles) lead to wrong detours and thus limit the precision of

the reconstructed trajectory. The trajectory reconstructed by HRIS

(denoted in green) is a very di#erent path when compared with the

ground truth. That is because most vehicles sharing the same OD

choose di#erent routes from the bus, which results in the mobility

dependency di#erent from the operation of the bus route. Figure 12c-

f further depict the spatial distributions of all the 125 reconstructed

bus trajectories by VeTrac and alternative schemes. We see that

the majority of the trajectories reconstructed by VeTrac are correct,

197

Large-Scale Vehicle Trajectory Reconstruction with Camera Sensing Network ACM MobiCom ’21, October 25–29, 2021, New Orleans, LA, USA

Figure 13: Urban: end-to-end performance

(a) Public transits (b) Private vehicles

Figure 14: Errors of the reconstructed trajectories

and they converge to the ground truth routes shown in Figure 12a.

Substantive noises exist in trajectories by LPR and Re-ID due to the

identity uncertainties as analyzed in §2.3. The trajectories by HRIS

converge to routes of high inaccuracy.

We perform an overall evaluation on the urban dataset with the

ground truths of both the 125 public transit trajectories and the 300

private vehicle trajectories. Figure 13 compares the average accuracy,

precision and recall achieved by VeTrac and other schemes. Overall,

VeTrac is able to correctly reconstruct 89% of the trajectories, which

outperforms other alternatives by at least 59%. For precision and

recall, VeTrac produces trajectories with 94.3% precision and 91.0%

recall, which signi!cantly outperforms other alternatives as well.

The accuracy of LPR (30.6%) is limited due to the errors in LPR texts.

Compared with the results of the expressway data (Figure 10), the

precision of LPR drops to 68.5% because more vehicle snapshots

have similar LPR texts when the total number of vehicles grow to

such a scale. Re-ID scheme is also a#ected by such a scale e#ect

as more snapshots are visually similar in vehicle appearance. The

precision of Re-ID drops to 36.3% and the recall drops to 46.5%.

HRIS gives an accuracy of 17.3%, which is comparable to Re-ID.

To quantify the errors of inaccurately reconstructed trajectories,

we further derive the geographic di#erences �64> between recon-

structed trajectories and their corresponding ground truths. Figure

14 plots the cumulative distributions of �64> for both datasets,

where �64> is presented in log scale. For both public transits and

private vehicles, the majority (∼ 90%) of the �64> of VeTrac are 0,

which means that most of the trajectories by VeTrac are identical

to their ground truths. For the remaining 10%, the max �64> of

VeTrac is 0.3 for public transits and 0.65 for private vehicles, which

is lower than about 40%, 70% and 85% of that of LPR, HRIS and

Re-ID. On average, VeTrac’s �64> is 4.6x, 5.4x and 16x better than

that of HRIS, LPR and Re-ID respectively. Small �64> suggests that

even when the reconstructed trajectories by VeTrac are not 100%

(a) MDS block (b) Self-training

Figure 15: Performance of VeTrac components

Expressway Urban

Graph Construction 1.3m 2.5m

GCN 2.1m 5.5m

Self-training* 13m (26s) 2.75h (5.1m)

Overall* 0.3h (3.8m) 2.9h (13.1m)

*the computation time in parentheses are estimated by projecting to 32 CPUs.

Table 3: Computation time of VeTrac

correct, they are close to the ground truths and are representative

for many analytical applications.

4.3 VeTrac by Components

We demonstrate the e"cacy of key components in VeTrac by con-

trolled experiments with the expressway data.

TheMDS.We investigate the e"cacy of the proposedMDS block

by examining its performance in ranking snapshots belonging to

the same identity. Given a query snapshot, robust similarity features

should consistently rank the snapshots of the same identity to the

top. We query the dataset by each of its snapshots and extract

the ranks of snapshots of the same identities. Figure 15a presents

the cumulative distribution of the ranks by using the license plate

text, appearance features and MDS. As the !gure suggests, 10%

and 40% of the snapshots are poorly ranked by their license plate

texts or appearance features due to the identity uncertainties. MDS

greatly reduces the uncertainties by fusing similarity from multiple

dimensions and thus 98% of MDS ranks are within the top 20.

Self-training GCN. Figure 15b demonstrates the e"cacy of the

proposed self-training. As indicated in the !gure, without the self-

training, the accuracy of graph convolution improves slowly. After

reaching 62%, the accuracy stops improving even when more graph

convolution layers are added. That is because adding more graph

convolution layers may only help to address incomplete clusters.

However, when there is adequate depth of graph convolutions,

the imprecise clusters are the major problems. The proposed self-

training process e#ectively handles imprecise clusters and helps to

improve the accuracy to ∼ 98%.

Computation e!ciency.Table 3 presents the computation time

of VeTrac by its components. As shown, the snapshot construction

and GCN are computation e"cient because we ensure the sparsity

in the generated snapshot graph. The most time-consuming com-

ponent is the self-training process, which require fetching vertices

with similar representation for a large number of vertices. Currently,

198

ACM MobiCom ’21, October 25–29, 2021, New Orleans, LA, USA Panrong Tong, Mingqian Li, Mo Li, Jianqiang Huang, and Xiansheng Hua

self-training process is implemented by sequentially computing

pair-wise cosine distance with all other vertices. Such a process

however can be easily paralleled by applying multiple CPUs and

optimized by better neighborhood indexing (i.e., less amount of

cosine distances needed to be evaluated for each vertex). We de-

rive the projected computation time with 32 CPUs which can be

reduced to 3.8 minutes and 13.1 minutes for the expressway and

urban dataset respectively.

5 RELATEDWORKS

Mobility based trajectory recovery. This problem has been stud-

ied previously in two settings, either data of low sampling rate

or data with large localization errors. For low-sampled data, extra

information include historical data[3], personal habits [36], road

networks and reference trajectories [31, 40] have been used to in-

fer uncertain pieces of original trajectory. For noisy data, the key

rationale is to make use of location sequence information and en-

vironment constraints (rather than individual observations). As

such, methods like Kalman !lter[6] and Hidden Markov Model

[22] has been exploited to perform map matching. However, exist-

ing solutions assume high level of con!dence with the observed

identities in mobility traces, and thus cannot be applied to address

low-con!dence observations like the vehicle snapshots that VeTrac

utilizes. Their ability to distinguish objects with similar mobility pat-

terns is also limited. Recently, new sensing technologies have been

applied to sense trajectories, e.g., GPS [8], Wi-Fi signals [14, 23], in-

ertial sensors [25, 28], visible lights [12], steerable cameras[11, 39],

vehicular network [32, 33]. To the best of our knowledge, no exist-

ing approaches have been tested for recovering complete tra"cs at

a scale close to VeTrac does.

Vision based vehicle Re-ID.Most of the visual Re-ID works

focus on designing a general model solely based on visual char-

acteristics. In view of this, recent advances fall into three main

categories: (i) mining discriminative visual features, e.g., semantic

features like the number of doors/seats [16], local features like wind-

shield stickers, decoration marks and tissue boxes [9], and region

features of prede!ned vehicle landmarks [35]. The extraction of

those complex features requires high resolution input images and

large amount of labeled data for training, which are not available

in this study nor in many practical camera surveillance systems;

(ii) augmenting training data, e.g., selecting hard cases into triplets

to train a deep metric network [2], and generating features of other

views with GAN-based architecture [42]. Training above networks

however again requires a great number of labeled data. Selecting

and labeling adequate number of hard cases or multi-view data to

represent the diversity of real-world vehicle snapshots is challeng-

ing with large-scale data as studied in this paper; and (iii) re-ranking

with other information, e.g., with a progressive pipeline [17], with

spatio-temporal regularization [35], and with kinematic informa-

tion [20]. VeTrac di#ers from this thread of works by speci!cally

embedding system-wise correlation and trajectory-level mobility

into the process of trajectory generation.

In this paper, we study the problem of trajectory reconstruction,

which di#ers from the problem of Re-ID in two ways. First, Re-

ID is purposed at ranking images of similar identities to the query

image, but not properly assigning vehicle identities to connect them.

Simple threshold-based solution is suboptimal because there is no

guarantee on identity assignment and the best threshold is hard to

determine. Second, Re-ID is highly query oriented while trajectory

reconstruction is identity oriented. As a result, Re-ID techniques

focus on pair-wise relationships but often neglect system-wise

relationships, which however is critical to trajectory reconstruction.

Therefore, directly applying any of existing Re-ID solutions cannot

solve the problem of trajectory reconstruction.

6 CONCLUSIONS

In this paper, we present a vehicle trajectory reconstruction system

that uses widely deployed tra"c cameras as a sensing network and

reconstructs the trajectories of general tra"cs. Large scale experi-

ments with city-wide camera sensing data suggest high accuracy

and e"ciency of VeTrac. We believe VeTrac design provides insights

that can be generalized to other mobility analysis of similar nature.

7 ACKNOWLEDGMENTS

This research is supported, in part, by NRF Singapore under its

grant SDSC-2019-001, Alibaba Group through Alibaba Innovative

Research (AIR) Program and Alibaba-NTU Singapore Joint Research

Institute (JRI), and Singapore MOE Tier 1 grant RG18/20. Any

opinions, !ndings and conclusions or recommendations expressed

in this material are those of the author(s) and do not re&ect the

views of funding agencies.

REFERENCES
[1] A navigation service by Gaode Maps. https://lbs.amap.com/.
[2] Y. Bai, Y. Lou, F. Gao, S. Wang, Y. Wu, and L.-Y. Duan. Group-sensitive triplet em-

bedding for vehicle reidenti!cation. IEEE Transactions on Multimedia, 20(9):2385–
2399, 2018.

[3] P. Banerjee, S. Ranu, and S. Raghavan. Inferring uncertain trajectories from
partial observations. In IEEE ICDM, pages 30–39, 2014.

[4] E. Bingham and H. Mannila. Random projection in dimensionality reduction:
applications to image and text data. In ACM SIGKDD, pages 245–250, 2001.

[5] R. J. Campello, D. Moulavi, and J. Sander. Density-based clustering based on
hierarchical density estimates. In Springer PAKDD, pages 160–172, 2013.

[6] M. E. El Najjar and P. Bonnifait. A road-matching method for precise vehicle
localization using belief theory and kalman !ltering. Springer Autonomous Robots,
19(2):173–191, 2005.

[7] Q. Gao, G. Trajcevski, F. Zhou, K. Zhang, T. Zhong, and F. Zhang. Trajectory-based
social circle inference. In ACM SIGSPATIAL, pages 369–378, 2018.

[8] H. Hassanieh, F. Adib, D. Katabi, and P. Indyk. Faster gps via the sparse fourier
transform. In ACM MobiCom, pages 353–364, 2012.

[9] B. He, J. Li, Y. Zhao, and Y. Tian. Part-regularized near-duplicate vehicle re-
identi!cation. In IEEE CVPR, pages 3997–4005, 2019.

[10] S. He, F. Bastani, S. Abbar, M. Alizadeh, H. Balakrishnan, S. Chawla, and S. Mad-
den. Roadrunner: improving the precision of road network inference from gps
trajectories. In ACM SIGSPATIAL, pages 3–12, 2018.

[11] S. Jain, V. Nguyen, M. Gruteser, and P. Bahl. Panoptes: Servicing multiple applica-
tions simultaneously using steerable cameras. In ACM/IEEE IPSN, pages 119–130,
2017.

[12] L. Li, P. Xie, and J. Wang. Rainbowlight: Towards low cost ambient light posi-
tioning with mobile phones. In ACM MobiCom, pages 445–457, 2018.

[13] M. Li, A. Ahmed, and A. J. Smola. Inferring movement trajectories from gps
snippets. In ACM WSDM, pages 325–334, 2015.

[14] H. Liu, Y. Gan, J. Yang, S. Sidhom, Y. Wang, Y. Chen, and F. Ye. Push the limit of
wi! based localization for smartphones. In ACM MobiCom, pages 305–316, 2012.

[15] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg. Ssd:
Single shot multibox detector. In Springer ECCV, pages 21–37, 2016.

[16] X. Liu, W. Liu, T. Mei, and H. Ma. A deep learning-based approach to progressive
vehicle re-identi!cation for urban surveillance. In Springer ECCV, 2016.

[17] X. Liu, W. Liu, T. Mei, and H. Ma. Provid: Progressive and multimodal vehicle rei-
denti!cation for large-scale urban surveillance. IEEE Transactions on Multimedia,
20(3):645–658, 2017.

[18] Z. Liu, Z. Li, M. Li, W. Xing, and D. Lu. Mining road network correlation for
tra"c estimation via compressive sensing. IEEE TITS, 17(7):1880–1893, 2016.

199

Large-Scale Vehicle Trajectory Reconstruction with Camera Sensing Network ACM MobiCom ’21, October 25–29, 2021, New Orleans, LA, USA

[19] Z. Liu, Z. Li, K. Wu, and M. Li. Urban tra"c prediction from mobility data using
deep learning. IEEE Network, 32(4):40–46, 2018.

[20] B. C. Matei, H. S. Sawhney, and S. Samarasekera. Vehicle tracking across nonover-
lapping cameras using joint kinematic and appearance features. In IEEE CVPR,
pages 3465–3472, 2011.

[21] S. Mathur, T. Jin, N. Kasturirangan, J. Chandrasekaran, W. Xue, M. Gruteser, and
W. Trappe. Parknet: drive-by sensing of road-side parking statistics. In ACM
MobiSys, pages 123–136, 2010.

[22] P. Newson and J. Krumm. Hidden markov map matching through noise and
sparseness. In ACM SIGSPATIAL, pages 336–343, 2009.

[23] B. Qi, L. Kang, and S. Banerjee. A vehicle-based edge computing platform for
transit and human mobility analytics. In ACM/IEEE SEC, pages 1–14, 2017.

[24] S. Salvador and P. Chan. Toward accurate dynamic time warping in linear time
and space. IOS Press IDA, 11(5):561–580, 2007.

[25] S. Shen, M. Gowda, and R. Roy Choudhury. Closing the gaps in inertial motion
tracking. In ACM MobiCom, pages 429–444, 2018.

[26] B. Shi, X. Bai, and C. Yao. An end-to-end trainable neural network for image-
based sequence recognition and its application to scene text recognition. IEEE T
PATTERN ANAL, 39(11):2298–2304, 2016.

[27] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv, 2014.

[28] F. Tahmasbi, Y. Wang, Y. Chen, and M. Gruteser. Your phone tells us the truth:
Driver identi!cation using smartphone on one turn. In ACM MobiCom, pages
762–764, 2018.

[29] P. Tong, W. Du, M. Li, J. Huang, W. Wang, and Z. Qin. Last-mile school shuttle
planning with crowdsensed student trajectories. IEEE TITS, 2019.

[30] G. Wang, X. Chen, F. Zhang, Y. Wang, and D. Zhang. Experience: Understand-
ing long-term evolving patterns of shared electric vehicle networks. In ACM
MobiCom, pages 1–12, 2019.

[31] J. Wang, N. Wu, X. Lu, X. Zhao, and K. Feng. Deep trajectory recovery with
!ne-grained calibration using kalman !lter. IEEE TKDE, 2019.

[32] X. Wang, L. Fu, Y. Zhang, X. Gan, and X. Wang. Vdnet: an infrastructure-less
uav-assisted sparse vanet system with vehicle location prediction. Wiley WCMC,
16(17):2991–3003, 2016.

[33] X. Wang, J. Zhang, X. Tian, X. Gan, Y. Guan, and X. Wang. Crowdsensing-based
consensus incident report for road tra"c acquisition. IEEE TITS, 19(8):2536–2547,
2017.

[34] Y. Wang, Y. Zheng, and Y. Xue. Travel time estimation of a path using sparse
trajectories. In ACM SIGKDD, pages 25–34, 2014.

[35] Z. Wang, L. Tang, X. Liu, Z. Yao, S. Yi, J. Shao, J. Yan, S. Wang, H. Li, and X. Wang.
Orientation invariant feature embedding and spatial temporal regularization for
vehicle re-identi!cation. In IEEE ICCV, pages 379–387, 2017.

[36] Y. Yang, X. Xie, Z. Fang, F. Zhang, Y. Wang, and D. Zhang. Vemo: Enabling
transparent vehicular mobility modeling at individual levels with full penetration.
In ACM MobiCom, pages 1–16, 2019.

[37] N. J. Yuan, Y. Zheng, X. Xie, Y. Wang, K. Zheng, and H. Xiong. Discovering urban
functional zones using latent activity trajectories. IEEE TKDE, 2014.

[38] D. Zhang, Y. Li, F. Zhang, M. Lu, Y. Liu, and T. He. coride: carpool service with
a win-win fare model for large-scale taxicab networks. In ACM SenSys, pages
1–14, 2013.

[39] T. Zhang, A. Chowdhery, P. Bahl, K. Jamieson, and S. Banerjee. The design and
implementation of a wireless video surveillance system. In ACMMobiCom, pages
426–438, 2015.

[40] K. Zheng, Y. Zheng, X. Xie, and X. Zhou. Reducing uncertainty of low-sampling-
rate trajectories. In IEEE ICDE, pages 1144–1155, 2012.

[41] P. Zhou, Y. Zheng, and M. Li. How long to wait? predicting bus arrival time with
mobile phone based participatory sensing. In ACM MobiSys, pages 379–392, 2012.

[42] Y. Zhou and L. Shao. Aware attentive multi-view inference for vehicle re-
identi!cation. In IEEE CVPR, pages 6489–6498, 2018.

200

