
Project 2-Individual assignment

Mini team sports game simulation 
(80 points)

Due: 12/07 Wednesday 11:59 pm
No late submission accepted



Computer Gaming Simulation

Computer gaming is a computer simulation of a 

virtual world

Game designers must have knowledge of the 

following to make people, objects, and 

environments behave realistically in a virtual world:
– Computer graphics

– Artificial intelligence

– Human-computer interactions and simulation

– Software engineering

– Computer security

– Fundamentals of mathematics

– Laws of physics relating to gravity, elasticity, light, and sound

2



3

https://www.youtube.com/wat

ch?v=I6AjwpwxhoQ

https://www.youtube.com/watch?v=I6AjwpwxhoQ
https://www.youtube.com/watch?v=D7FC0ajDefw


Creating the Virtual World

Game engine--a software system within which 

games can be created 

Following functionality provided by tools of a game 

engine:

• A rendering engine for graphics

• A physics engine to provide a collision detection system  

and dynamics simulation

• A sound-generating component

4



Creating the Virtual World

Additional functionality resulting from tools of a game 

engine:

• A scripting language apart from the code driving the 

game

• Animation

• Artificial intelligence algorithms (e.g., path-finding 

algorithms)

• A scene graph that holds the spatial representation 

in a graphical sense

5



Soft Skills

High Quality Game Design and Development 

Requires Effective Use of “Soft Skills”:

• Effective collaboration with designers, programmers, and 

artists on various technical ideas throughout the entire 

game design and development process

• Flexibility and adaptability as the game design constantly 

evolves and changes throughout the development and 

production process

6



Soft Skills

• Willingness to abandon much of the completed design 

work when the game’s story line, mechanics, art, 

programming, audio, video, and/or scripting requires 

significant changes

7



Game Programming 

A variety of application programming interfaces 

(APIs) and libraries are available to help 

developers with key programming tasks

The choice of API determines which vocabulary

and calling conventions the programmer should 

employ to use the services

The target game platform determines which 

service the programmer will use; some libraries 

permit efficient cross-platform development

8



Game Programming

Coding process begins with the creation of “the  

game loop”

Game loop is responsible for managing the game 

world, regardless of any input from the user

For example, the game loop might update enemy 

movement in the game or check for victory/loss

conditions

Basically, the game loop manages the simulation

9



10

What Is Simulation?

Simulation 

A model of a complex system and the experimental 

manipulation of the model to observe the results

Systems that are best suited to being simulated are 

dynamic, interactive, and complicated

Model 

An abstraction of a real system

It is a representation of the objects within the system 

and the rules that govern the interactions of the objects



11

Constructing Models

Continuous simulation

– Treats time as continuous 

– Expresses changes in terms of a set of differential equations 

that reflect the relationships among the set of characteristics

– Meteorological models fall into this category



12

Thinking Machines

Can you

list the items

in this

picture?

https://www.youtube.com/watch?v=QdQL11uWWcI

http://www.theverge.com/2013/9/17/4740466/how-siri-found-its-voice-video

https://www.youtube.com/watch?v=QdQL11uWWcI
http://www.theverge.com/2013/9/17/4740466/how-siri-found-its-voice-video


13

Thinking Machines

Can you

list the items

in this

picture?

Can you count the 

distribution of letters in a book?

Add a thousand4-digit numbers?

Match finger prints?

Search a list of a million values

for duplicates?

Humans do best Computers do best



14

Thinking Machines

Artificial intelligence (AI) 

The study of computer systems that attempt to model and 

apply the intelligence of the human mind

For example, writing a program to pick out objects in a 

picture



15

The Turing Test

Turing test

A test to empirically determine 
whether a computer has achieved 
intelligence

Alan Turing

An English mathematician who wrote 
a landmark paper in 1950 that asked 
the question: Can machines think?

He proposed a test to answer the 
question "How will we know when 
we’ve succeeded?"



16

The Turing Test

https://deepmind.com/alpha-go.html

https://deepmind.com/alpha-go.html


17

The Turing Test

Weak equivalence  

Two systems (human and computer) are equivalent in 

results (output), but they do not arrive at those results in the 

same way

Strong equivalence

Two systems (human and computer) use the same internal 

processes to produce results



18

Robotics

Mobile robotics

The study of robots that move relative to their environment, 
while exhibiting a degree of autonomy

Sense-plan-act (SPA) paradigm

The world of the robot is represented in a complex 
semantic net in which the sensors on the robot are used to 
capture the data to build up the net



19

Subsumption Architecture

Rather than trying to model the entire world all the time, the 

robot is given a simple set of behaviors each associated with 

the part of the world necessary for that behavior



20

Subsumption Architecture

https://en.wikipedia.org/wiki/Three_Laws_of_Robotics


Recursive Searching:

Simple maze!

21

4 4 4 4 4 4 4

4 0 0 0 0 0 4

4 0 4 0 4 0 4

4 0 0 4 0 4 4

4 0 4 0 0 0 4

4 0 0 0 4 0 4

4 4 4 4 4 4 4

4 4 4 4 4 4 4

4 7 7 7 7 7 4

4 7 4 7 4 7 4

4 7 7 4 0 4 4

4 7 4 7 7 7 4

4 7 7 7 4 7 4

4 4 4 4 4 4 4

4 4 4 4 4 4 4

4 7 7 7 7 7 4

4 7 4 7 4 7 4

4 7 7 4 0 4 4

4 7 4 7 7 7 4

4 7 7 7 4 7 4

4 4 4 4 4 4 4



Project 2

Mini team sports game simulation 

(80 points)

Due: 8/21 Sunday 11:59 pm

No late submission accepted



• Soccer Rules: The basic rules of soccer for kids and adults. 
• https://www.youtube.com/watch?v=M18UNJDspO4

• Football Simulator
• http://www.betstatz.com/simulator

https://www.youtube.com/watch?v=M18UNJDspO4
http://www.betstatz.com/simulator


http://www.agame.com/games/soccer

http://www.y8.com/games/the_champions_4_-
_world_domination

http://www.y8.com/tags/soccer

http://www.agame.com/games/soccer
http://www.y8.com/games/the_champions_4_-_world_domination
http://www.y8.com/tags/soccer


http://www.ea.com/uk/news/national-team-infographics http://www.eloratings.net/system.html

http://www.sportsnet.ca/hockey/nhl/ea-
sports-nhl-14-predicts-boston-bruins-stanley-
cup-san-jose-sharks/

http://www.easports.com/2014-fifa-
world-cup/news/2014/ea-sports-2014-
fifa-world-cup-prediction

http://keithlyons.me/
blog/2014/05/30/pred
icting-the-outcome-of-
the-2014-fifa-world-
cup/

http://www.ea.com/uk/news/national-team-infographics
http://www.eloratings.net/system.html
http://www.sportsnet.ca/hockey/nhl/ea-sports-nhl-14-predicts-boston-bruins-stanley-cup-san-jose-sharks/
http://www.easports.com/2014-fifa-world-cup/news/2014/ea-sports-2014-fifa-world-cup-prediction


Unified Modeling Language (UML) 

• The UML is a visual modeling language that enables system 
builders to create blueprints that capture their visions in a 
standard, easy-to-understand way, and provides a 
mechanism to effectively share and communicate these 
visions with others.

The key is to organize the design process in a way that analysts, clients, 
programmers, and others involved in system development can understand and 
agree on. 
The UML provides the organization.

Project Requirement
1. UML Diagram document



WashingMachine class  is  a template for creating 
new instances of washing machines.

WashingMachine

brandName 

modelName 

serialNumber capacity

acceptClothes() 

acceptDetergent() 

turnOn()
turnOff()

Attributes

brandName 

modelName 

serialNumber 

capacity

Operations

acceptClothes() 

acceptDetergent() 

turnOn()

turnOff()

Class Diagram

Object Diagram

myWasher:WashingMachine :WashingMachine



Working with Object- Orientation

Visualizing  a Class

• a rectangle is the icon that represents a class
• If your class has a two- word name, join the 

two words together and capitalize the first 
letter of the second word (as in 
WashingMachine )

• the UML represents a package as a tabbed
folder. 

• If the WashingMachine class is part of a 
package called Household, you can give it 
the name Household::WashingMachine. The 
double colons separate the package name 
on the left from the classname on the right. 
This type of classname is called a pathname 

WashingMachine

Household

Household::WashingMachine

http://www.pearsonhighered.com/pearsonhigheredus/educator/product/products_detail.page?isbn=9780672326400&forced_logout=forced_logged_out


Attributes

• An attribute is a property of a class. It 
describes a range of values that the property 
may hold in objects (that is, in instances) of 
that class. A class may have zero   or more 
attributes.

• By convention, a one-word attribute name 
is written in lower- case letters. If the name 
consists of more than one word, the words 
are joined and each word other than the first 
word begins with an uppercase letter. The 
list of attribute names begins below a line 
separating them from the class name.

• Every object of the class has a specific value 
for every attribute. Note that an object’s 
name begins with a lowercase letter, pre-
cedes a colon that precedes the class name, 
and the whole name is underlined.

WashingMachine

brandName 

modelName 

serialNumber capacity

myWasher: WashingMachine

brandName = "Laundatorium" 

modelName = "Washmeister" 

serialNumber = "GL57774" 

capacity = 16

An object has a specific value 

for every one of its class’s 

attributes.



An attribute can show its type

as well as a default value.

• The UML gives you the option of indicating additional 
information for attributes. In the icon for the class, you can 
specify a type for each attribute’s value. Possible types include 
string, floating-point number, integer, and Boolean (and other 
enu- merated types). To  indicate a type, use a colon to separate 
the attribute name   from the type. You can also indicate a 
default value for an attribute. a

WashingMachine

brandName: String = "Laundatorium" 

modelName: String

serialNumber: String 

capacity: Integer



Operations

• An operation is something a class can do, 
and hence it is something that you (or 
another class) can ask the class to do. 

• The list of operations begins below a line 
that separates the operations from the 
attributes

• In the parentheses that follow an operation 
name, you can show the parameter that the 
operation works on, along with that 
parameter’s type. One kind of operation, the 
function, returns a value after   it finishes 
doing its work. For a function, you can show 
the value it returns and that value’s type.

• These pieces of information about an 
operation are called the operation’s signa-
ture. The first two operations show the type 
of the parameter. The third and fourth show 
the type of the return value.

WashingMachine

brandName modelName 

serialNumber capacity

acceptClothes() 

acceptDetergent() 

turnOn()

turnOff()

WashingMachine

brandName modelName 

serialNumber capacity

acceptClothes(c:String) 

acceptDetergent(d:Integer) 

turnOn():Boolean 

turnOff():Boolean



Attributes,  Operations,  

and Visualization

• In practice, you don’t always show all 
of a class’s attributes and operations

• An ellipsis indicates that the 

displayed attributes or operations 

aren’t the whole set.

• You can use a keyword to organize a 
list of attributes or operations.

WashingMachine

WashingMachine

brandName

…

acceptClothes()

…

WashingMachine

«id info» brandName 

modelName serialNumber

«machine info» 

capacity

«clothes-related» 

acceptClothes() 

acceptDetergent()

«machine-related»

turnOn() turnOff()



Responsibilities  and Constraints

• In a class icon, you can write the class’s 
responsibilities in an area below the 
operations list area.

WashingMachine

brandName modelName 

serialNumber capacity

acceptClothes() 

acceptDetergent() turnOn()

turnOff()

Take dirty clothes

as input and produce clean 

clothes as output.

WashingMachine

brandName 

modelName 

serialNumber capacity

acceptClothes() 

acceptDetergent() 

turnOn()

turnOff()

{capacity = 16 or 18 or 20 lb}

• The rule in curly brackets 

constrains the capacity attribute to 

be one of three possible values.



Classes—What 

They Do and How to 

Find Them

• An initial class 
diagram for 
modeling the game 
of basketball.



Analyst: “Coach, what’s basketball all  about?”

Coach: “The goal of the game is to shoot the ball through the basket and score more

points than your opponent. Each team consists of five players: two guards, two
forwards, and a center. Each team advances the ball toward the basket with the
objective of ultimately shooting the ball through the basket.”

Analyst: “How does it advance the ball?”

Coach: “By dribbling and passing. But the team has to take a shot at the basket 

before the shot clock expires.”

Analyst: “Shot clock?”

Coach: “Yes. That’s 24 seconds in the pros, 30 seconds in international play, and 35 
seconds in college to take a shot after a team gets possession of the ball.”

Analyst: “How does the scoring  work?”

Coach: “Each basket counts two points, unless the shot is from behind the three-

point line. In that case, it’s three points. A free throw counts one point. A free throw,    
by the way, is the penalty a team pays for committing a foul. If a player fouls an 
opponent, play stops and the opponent gets to shoot at the basket from the free-throw 
line.”

Analyst: “Tell me a little more about what each player  does.”

Coach: “The guards generally do most of the dribbling and passing. They’re typi-

cally shorter than the forwards, and the forwards are usually shorter than the center. 
All the players are supposed to be able to dribble, pass, shoot, and   rebound. The 
forwards do most of the rebounding and intermediate-range shoot- ing, while the 

center stays near the basket and shoots from close   range.”

Analyst: “How about the dimensions of the court? And by the way, how long does a 
game last?”

Coach: “In international play, the court is 28 meters long by 15 meters wide. The
basket is 10 feet off the ground. In the pros, a game lasts 48 minutes, divided into four

12-minute quarters. In college and international play, it’s 40 minutes divided into two
20-minute halves. A game clock keeps track of the time remaining.”



UML Project Diagram



Copyright © 2014 Pearson Addison-Wesley.  All rights reserved. Slide 1- 37



• Your program must include

1. Structure (or class) design 
• Must design structures (or classes) such as person, player, referee, game class etc. 

2. Method/function blocks

• Design your own methods (e.g., scoring, penalty kick etc.) 

3. User inputs, Loops & Conditional statements

• Being used to design your game logics

4. Arrays (including an array of objects) and Pointer variable (*)

• Must demonstrate how to use both primitive array data and an array of objects 

5. Game logics (2 Semi-finals & Final game)

• 3 games.

6. Randomization for base scoring/performance

• Review previous assignment (also next slide)

7. Adding Penalty kick mechanism 

• Computer vs. User choice. Make a game more fun and dynamic through a user 
interaction. 

8. File generation (summary result output to both screen and txt format)

• Generate a txt file to show the summary (winner, total score, MVP etc. Be creative)

• Display ranking in sorted order.

• Review lecture 5

80 points



Project requirement:
1. Your project is due by 8/21 11:59 pm. No late submission will be accepted.

2. This is an individual assignment, no plagiarism. If more than 20% of your code looks similar/same from 
another person’s work, your work will be considered as ‘copying, violating plagiarism’, and both people (who 
provides codes and you) will receive ‘0’ on this project.

3. You must submit one zip file including all your C++ files (test it before you submit!) and one MS Word 
document (minimum 3 pages, name it as project_youLastnameFirstnameInitial.docx)

• In your MS Word document, 

• Provides overall summary of your design approach

• summarize the highlights of your work including your unique design features

• indicates things/reason/constraints which you weren’t able to accomplish (even if some of your 
program lacks required components, you may get some partial marks by explaining why/what went 
wrong)

• UML diagram

4. Please review all the specification describe in next pages.

5. Some bonus mark will be added on your extra work. 



Team and Player data generation

Generate 2 semi-final games and one final game, 

a) For the final game, two winning teams from the semi-final game should battle for 
the championship!

b) Using array(s) (1D or 2D), create minimum 4 teams, and define minimum 3 
variables/factors characterizing team performance (i.e., Nationality reputation, 
Speed, Power, Injury, Teamwork and Star Player)

• Game play interface: When two teams for each game are selected, you program must 
display both name of each country(or team) and name of all 4 players with each player’s 
(minimum) 3 skill levels.

• Also, when  the game ends, the game statistics/results should both  be displayed on 
the monitor and be generated as ‘wcResult.txt’ file showing the summary (3 games: 
score of each team from 2 semi-final games, and the final game) This topic (file 
read/write) will be covered next week.

• Your program should display the record of all 4 teams, and output the team ranks in 
order based on each member variable, not total.  Also, calculate the total sum for each 
team, and show the winning team.  Also, try an extra factor (quality of star player)



Game mechanics/play1. Functions relate to game play

a) Scoring (goal!) can be achieved by comparing performance of team players from two different teams:

b) Design functions relate to attack and defense functions.
• Not all 4 players should get involved in attack or defense.  Pick a random number of players who will 

be involved in attack and defense. Then compare their total skill sets on top of overall team 
reputation/performance. You must design your own formula to figure out combined skill sets of 
multiple players. Also, consider how you can incorporate overall team reputation/performance into 
player’s performance. 

• Example: Aassign a random value (1 as poor -5 as best) to 3 variables (speed, power, and/or 
teamwork) and 2 user entered values (Nationality and Star Player) relate to performance and apply 
these values to performance formula you designed (e.g. Performance = 2 x Nationality + Speed x 
Power + Teamwork + Star Player - injury) .

• Could However, the magnitude of selected weight variable is not known to the user (Surprise! Apply 
random selected weight values for each team). If less than 1 (multiply this weight value to a selected 
variable; recalculation!), under performance than previous initial sum. If more than 1 (multiplied by 
weight >1), this special weight value introduced on one variable would perform better than the 
normal weight (1.0).

a. Design functions relate to penalty function as well as a function representing a unique skill to 
goalkeeper (e.g., catchingBall).

b. Design functions relate to foul, and receiving Yellow or Red card (Link explaining foul and 
yellow/red card from referee : http://www.understandingsoccer.com/rule-12-fouls-and-
misconduct.html ).  Red card removes a player from the game.

http://www.understandingsoccer.com/rule-12-fouls-and-misconduct.html


1. Using array(s) (1D or 2D), create minimum 4 teams, and define 5 variables/factors( 3 random 
values and 2 value entered by a user) characterizing team performance (i.e., Nationality 
reputation, Speed, Power, Injury, Teamwork and Star Player)

2. To compare initial performance of each team, assign a random value (1 as poor -5 as best) to 3 
variables (speed, power, and/or teamwork) and 2 user entered values (Nationality and Star 
Player) relate to performance and apply these values to performance formula you designed (e.g. 
Performance = 2 x Nationality + Speed x Power + Teamwork + Star Player - injury) .

3. Team competition is based on the total sum of all member variables for each team. To make the 
game more engaging, apply one weight value directly to manipulate/change  one specific 
member variable entered by the user(either speed, power or teamwork) affecting initial sum.

4. However, the magnitude of selected weight variable is not known to the user (Surprise! Apply 
random selected weight values for each team). If less than 1 (multiply this weight value to a 
selected variable; recalculation!), under performance than previous initial sum. If more than 1 
(multiplied by weight >1), this special weight value introduced on one variable would perform 
better than the normal weight (1.0).

5. Your program should display the record of all 4 teams, and output the team ranks in order based 
on each member variable, not total.  Also, calculate the total sum for each team, and show the 
winning team.  Also, try an extra factor (quality of star player)



Tips for Bonus mark! Add more factors affecting 
game play and user interaction.

• Research what typically happens at the championship? Who can 
be a MVP? Audience factor?

• Any extra factor affecting game condition? Different locations? 
Weather? Home advantage? 

• Feel free to add more detail/refinement on certain functions 
(e.g., different attack types?)











International Hockey Results.txt







Penalty kick mechanism 











56

Problem Solving

Problem solving

The act of finding a solution to a perplexing, distressing, 

vexing, or unsettled question

How do you define problem solving?



57

Problem Solving

How to Solve It: A New Aspect of Mathematical Method by 

George Polya

"How to solve it list" written within the context of 

mathematical problems

But list is quite general

We can use it to solve computer

related problems!



58

Problem Solving

How do you solve problems?

Understand the problem

Devise a plan

Carry out the plan

Look back



59

Strategies

Ask questions!

– What do I know about the problem?

– What is the information that I have to process in order the find 
the solution?

– What does the solution look like?

– What sort of special cases exist?

– How will I recognize that I have found 
the solution?



60

Strategies

Ask questions! Never reinvent the wheel!

Similar problems come up again and again in different 

guises

A good programmer recognizes a task or subtask that has 

been solved before and plugs in the solution

Can you think of two similar problems?



61

Strategies

Divide and Conquer!

Break up a large problem into smaller units and solve each 

smaller problem 

– Applies the concept of abstraction 

– The divide-and-conquer approach can be applied over and 

over again until each subtask is manageable



62

Computer Problem-Solving

Analysis and Specification Phase

Analyze

Specification

Algorithm Development Phase

Develop algorithm

Test algorithm

Implementation Phase

Code algorithm

Test algorithm

Maintenance Phase

Use

Maintain

Can you 

name

a recurring

theme?



63

Phase Interactions

Should we

add another

arrow?

(What happens

if the problem

is revised?)



64

Algorithms

Algorithm

A set of unambiguous instructions for solving a 

problem or subproblem in a finite amount of time 

using a finite amount of data

Abstract Step 

An algorithmic step containing unspecified details

Concrete Step

An algorithm step in which all details are specified



Review
C++ class (Chapter 2)



Copyright © 2017, 2012, 2008 Pearson Education, Inc. All Rights Reserved

C++ Classes

C++ Supports the use of classes to define new data types.

• Definition of a new class type requires a

– Class Declaration

– Class Implementation



Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Object-Oriented Programming

Object-oriented programming: focused on creating 

objects

Object: entity that contains data and procedures

Data is known as data attributes and procedures are known as 

methods

Methods perform operations on the data attributes

Encapsulation: combining data and code into a single 

object



Unified Modeling Language (UML) 

• The UML is a visual modeling language that enables system 
builders to create blueprints that capture their visions in a 
standard, easy-to-understand way, and provides a 
mechanism to effectively share and communicate these 
visions with others.

The key is to organize the design process in a way that analysts, clients, 
programmers, and others involved in system development can understand and 
agree on. 
The UML provides the organization.



Washing Machine

http://www.bestbuy.ca/en-

CA/category/washers/33931p.aspx

http://www.bestbuy.ca/en-CA/category/washers/33931p.aspx


http://www.bestbuy.ca/en-

CA/product/lg-electronics-lg-29-6-0-cu-

ft-front-load-washer-wm9000hva-silver-

wm9000hva/10397331.aspx?path=d35ca

49232f245250683b52917cad954en02

http://www.bestbuy.ca/en-CA/product/lg-electronics-lg-29-6-0-cu-ft-front-load-washer-wm9000hva-silver-wm9000hva/10397331.aspx?path=d35ca49232f245250683b52917cad954en02


WashingMachine class  is  a template for creating 
new instances of washing machines.

WashingMachine

brandName 

modelName 

serialNumber capacity

acceptClothes() 

acceptDetergent() 

turnOn()
turnOff()

Attributes

brandName 

modelName 

serialNumber 

capacity

Operations

acceptClothes() 

acceptDetergent() 

turnOn()

turnOff()

Class Diagram

Object Diagram

myWasher:WashingMachine :WashingMachine



Object Diagram

myWasher:WashingMachine

Samsung:WashingMachine LG:WashingMachineWhirlpool:WashingMachine



Superclass & subclass 

Appliance

Appliances inherit the attributes 
and operations of the Appliance 
class. Each one is a subclass of the 
Appliance class. The Appliance class 
is a superclass of each subclass.



Superclasses can also be subclasses and inherit from 
other superclasses.

Appliance



Copyright © 2017, 2012, 2008 Pearson Education, Inc. All Rights Reserved

To run chapter 2.3 example from Textbook source code

1. Create a new project by choosing File > New > 
Project. Choose Empty project (or Console window).

2. Remove any existing file from the project

3. Press/hold RMB (right mouse button click), and 
select Add to Project option.

4. Choose three files (chapter2_3.cpp, Point.cpp and 
Point.h)



Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Object-Oriented Programming (cont’d.)



Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Object-Oriented Programming (cont’d.)

Data hiding: object’s data attributes are hidden from 

code outside the object

Access restricted to the object’s methods

Protects from accidental corruption

Outside code does not need to know internal structure of the object

Object reusability: the same object can be used in 

different programs 

Example: 3D image object can be used for architecture and 

game programming



Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Object-Oriented Programming (cont’d.)



Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Classes

Class: code that specifies the data attributes and 

methods of a particular type of object

Similar to a blueprint of a house or a cookie cutter

Instance: an object created from a class

Similar to a specific house built according to the blueprint or a 

specific cookie

There can be many instances of one class



Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Classes (cont’d.)



Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Classes (cont’d.)



Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Classes (cont’d.)



Copyright © 2017, 2012, 2008 Pearson Education, Inc. All Rights Reserved

Class Declarations

• Typically written in a file named “className.h”.

• Begins with keyword class followed by the name (identifier) 

of the new class type.

• Body of the class declaration is a block of code containing

– declaration of data members (attributes)

– method (function) prototypes

– keywords public, protected, and private are used to 

control access to data members and methods

– A semicolon must terminate the body of the class 

declaration. };



Copyright © 2017, 2012, 2008 Pearson Education, Inc. All Rights Reserved

Class Implementation

• The class is typically written in a file named 

“className.cpp”

• File should 

• Provides the code to implement class methods.



Copyright © 2017, 2012, 2008 Pearson Education, Inc. All Rights Reserved

Class Syntax



Copyright © 2017, 2012, 2008 Pearson Education, Inc. All Rights Reserved

Class Methods

• Define the operations that can be performed on class objects.

– A constructor is a special method that is executed when objects of the 

class type are declared (instantiated).

– Constructors have the same name as the class.

– A class may define multiple constructors to allow greater flexibility in 

creating objects.

▪ The default constructor has no parameters.

▪ Parameterized constructors provide initial values for data members.



Copyright © 2017, 2012, 2008 Pearson Education, Inc. All Rights Reserved

Using a Class

• Once a class is defined, you may use the class name as a 

type specifier.

– You must include the class declaration (i.e. header file)

– You must link to the class implementation (i.e. .cpp file)


