
1

ENG1008 C Programming

Project 2

This is a group project consisting of 5 students in each group.

Aims

• To read in sensor data into single and multidimensional arrays;

• To carry out data analysis on it.

Introduction

A small text file (proj2.txt) containing the data (i.e. temperature readings) from the sensor is

given. To avoid formatting errors, download the proj2.txt file and use it as it is – do not cut

and paste into another text file.

You should use I/O redirection and standard scanf statements to read the readings into the

program. I/O redirection forces the program to read the data from the proj2.txt file instead of

from the keyboard. The scanf function is being used in the usual manner to get the input, as if

the data was read from the keyboard.

To read input from file proj2.txt (instead of from the keyboard) and assuming the compiled

program is named a.exe, type:

./a < proj2.txt

Readings

The data contains sensor readings from 7:00 AM to 8:59 PM at intervals of 15 mins.

There are 30 days of readings per month and three months of data (i.e. April, May and June)

are recorded.

Note:

• Global variables are not to be used in the project.

• Only 4 arrays, as described below, should be used in the project.

• You have to use the following lines at the start of the program:

#include <stdio.h>
#include <math.h>

Your program should do the following:

1. Create FOUR (4) arrays (Single and Multi-dimensional arrays)

1.1. The "readings" array is a 1 dimensional array.

This array is used to store the raw readings read in from the proj2.txt file.

1.2. The second to fourth arrays are 2 dimensional arrays (month arrays) representing the

3 months of April, May and June.

1.3. The first dimension of each array represents the days in each month and the second

dimension are calculated readings/values for a particular day.

1.4. The calculated readings/values for each day are:

1.4.1. the hourly average temperature starting from 7:00 AM (i.e. 7:00 AM to 8:59 PM)

1.4.2. this is followed by the mean temperature for that day

1.4.3. the last element is the standard deviation for that day

2

2. Implement THREE (3) functions

2.1. Function: void hourave(parameter-list ...)

2.1.1. This function reads the 30 days of data associated with the corresponding

month (either April, May or June) from the "readings" array (as specified in

1.1).

2.1.2. It calculates the average temperature in every hour and updates the hourly

average temperature to the corresponding day in the month array.

2.1.3. For example, the temperature readings recorded between 7:00 AM to 7:59 AM

are used to calculate the average temperature for the first hour (7:00 AM)

while the temperature readings recorded between 8:00 PM to 8:59 PM are

used to calculate the average temperature for the last hour (8:00 PM) of the

day.

2.1.4. This function has the following parameters/arguments:

2.1.4.1. the readings array (as specified in 1.1 above);

2.1.4.2. the month array (either April, May or June array as specified in 1.2);

2.1.4.3. additional parameters may (or may not) be needed to differentiate

which month's data is being processed.

2.2. Function: void dailymsd(parameter-list ...)

2.2.1. This function reads the 30 days of data associated with the corresponding

month (either April, May or June) from the "readings" array (as specified in

1.1)

2.2.2. It calculates the mean temperature and standard deviation in a day using all

the readings recorded between 7:00 AM and 8:59 PM for that day.

2.2.3. It updates the mean & standard deviation to the corresponding day in the

month array.

2.2.4. This function has the following parameters/arguments:

2.2.4.1. the readings array (as specified in 1.1)

2.2.4.2. the month array (either April, May or June array as specified in 1.2)

2.2.4.3. additional parameters may (or may not) be needed to differentiate

which month's data is being processed

2.3. Function: float monthhr(parameter-list ...)

2.3.1. This function will calculate the monthly average temperature for a specified

time.

2.3.2. This function has 2 parameters/arguments:

2.3.2.1. the month array (either April, May or June array as specified in 1.2);

2.3.2.2. the hour (0 for the first hour 7:00 AM; 1 for the second hour 8:00 AM,

and so on).

2.3.3. This function will return the calculated monthly average temperature for the

specified hour.

2.3.4. For example, the hourly average temperature for Day 1 to Day 30 at 7:00 AM

(i.e hour specified is 0) will be averaged to give the monthly average

temperature at 7:00 AM.

3. Read in the data from the proj2.txt file using I/O redirection and scanf statements.

3.1. For the output,

3.1.1. the program is to print out for each day the hourly average temperatures;

3.1.2. the daily mean, the daily standard deviation and to repeat this for the 30 days

in the month;

3.1.3. the program will also print out the monthly average temperature from 7:00

AM to 8:00 PM.

3

Deliverables

1. Report (PDF format) consisting of Aims, Algorithms and Methods, Testing and Results,

Conclusion and Appendix (Program listing).

2. Original source code (*.c format).

Deadline

Submission to LMS Dropbox by end of Week 13.

Assessment Rubrics

 Component Weightage

1 Algorithm

This describes the algorithms either in terms of pseudocode or as a flow

chart/diagram for the functions hourave, dailymsd and monthhr

20

2 Programming

• Style: the program should have the appropriate layout, as shown

in the lecture slides.

• Generous use of comments to make sure that everything is

explained clearly. Comments should be vertically aligned as much

as possible. In addition, make sure that the comments do not 'spill

over' to the next line – this is very distracting and looks messy.

50

3 Documentation

 (a) Content: 10

 • The format of the report must include the Aims, Algorithms and

Methods, Testing and Results, Conclusion and Appendix (Program

listing).

• Program listing to be included in the Appendix (cut and paste from

the source code .c file).

• DO NOT provide the source code in the form of screen dumps as

this is very difficult to read and impossible to annotate properly.

Instead, copy and paste the program from a text editor such as

Notepad.

 (b) Testing & Results: 20

 • This would normally be screen dumps of the working program for

both valid and invalid inputs.

 Total 100

Feedback procedure

After your assignment has been marked, feedback will be provided.

